1
|
Wang S, Huang T, Wu Q, Yuan H, Wu X, Yuan F, Duan T, Taori S, Zhao Y, Snyder NW, Placantonakis DG, Rich JN. Lactate reprograms glioblastoma immunity through CBX3-regulated histone lactylation. J Clin Invest 2024; 134:e176851. [PMID: 39545414 PMCID: PMC11563687 DOI: 10.1172/jci176851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 09/25/2024] [Indexed: 11/17/2024] Open
Abstract
Glioblastoma (GBM), an aggressive brain malignancy with a cellular hierarchy dominated by GBM stem cells (GSCs), evades antitumor immunity through mechanisms that remain incompletely understood. Like most cancers, GBMs undergo metabolic reprogramming toward glycolysis to generate lactate. Here, we show that lactate production by patient-derived GSCs and microglia/macrophages induces tumor cell epigenetic reprogramming through histone lactylation, an activating modification that leads to immunosuppressive transcriptional programs and suppression of phagocytosis via transcriptional upregulation of CD47, a "don't eat me" signal, in GBM cells. Leveraging these findings, pharmacologic targeting of lactate production augments efficacy of anti-CD47 therapy. Mechanistically, lactylated histone interacts with the heterochromatin component chromobox protein homolog 3 (CBX3). Although CBX3 does not possess direct lactyltransferase activity, CBX3 binds histone acetyltransferase (HAT) EP300 to induce increased EP300 substrate specificity toward lactyl-CoA and a transcriptional shift toward an immunosuppressive cytokine profile. Targeting CBX3 inhibits tumor growth by both tumor cell-intrinsic mechanisms and increased tumor cell phagocytosis. Collectively, these results suggest that lactate mediates metabolism-induced epigenetic reprogramming in GBM that contributes to CD47-dependent immune evasion, which can be leveraged to augment efficacy of immuno-oncology therapies.
Collapse
Affiliation(s)
- Shuai Wang
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Department of Neurosurgery and Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York, USA
| | - Tengfei Huang
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Qiulian Wu
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Huairui Yuan
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Xujia Wu
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Fanen Yuan
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Tingting Duan
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Suchet Taori
- School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Yingming Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Nathaniel W. Snyder
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Dimitris G. Placantonakis
- Department of Neurosurgery and Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York, USA
| | - Jeremy N. Rich
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Malygin AA, Bondarenko EI, Ivanisenko VA, Protopopova EV, Karpova GG, Loktev VB. C-terminal fragment of human laminin-binding protein contains a receptor domain for Venezuelan equine encephalitis and tick-borne encephalitis viruses. BIOCHEMISTRY (MOSCOW) 2010; 74:1328-36. [DOI: 10.1134/s0006297909120050] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Interactions of human ribosomal proteins S16 and S5 with an 18S rRNA fragment containing their binding sites. Biochimie 2009; 91:1180-6. [DOI: 10.1016/j.biochi.2009.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 06/18/2009] [Indexed: 10/20/2022]
|
4
|
Malygin AA, Parakhnevitch NM, Ivanov AV, Eperon IC, Karpova GG. Human ribosomal protein S13 regulates expression of its own gene at the splicing step by a feedback mechanism. Nucleic Acids Res 2007; 35:6414-23. [PMID: 17881366 PMCID: PMC2095825 DOI: 10.1093/nar/gkm701] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 08/22/2007] [Accepted: 08/22/2007] [Indexed: 12/14/2022] Open
Abstract
The expression of ribosomal protein (rp) genes is regulated at multiple levels. In yeast, two genes are autoregulated by feedback effects of the protein on pre-mRNA splicing. Here, we have investigated whether similar mechanisms occur in eukaryotes with more complicated and highly regulated splicing patterns. Comparisons of the sequences of ribosomal protein S13 gene (RPS13) among mammals and birds revealed that intron 1 is more conserved than the other introns. Transfection of HEK 293 cells with a minigene-expressing ribosomal protein S13 showed that the presence of intron 1 reduced expression by a factor of four. Ribosomal protein S13 was found to inhibit excision of intron 1 from rpS13 pre-mRNA fragment in vitro. This protein was shown to be able to specifically bind the fragment and to confer protection against ribonuclease cleavage at sequences near the 5' and 3' splice sites. The results suggest that overproduction of rpS13 in mammalian cells interferes with splicing of its own pre-mRNA by a feedback mechanism.
Collapse
Affiliation(s)
- Alexey A. Malygin
- Institute for Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia and Biochemistry Department, University of Leicester, Leicester, UK
| | - Natalia M. Parakhnevitch
- Institute for Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia and Biochemistry Department, University of Leicester, Leicester, UK
| | - Anton V. Ivanov
- Institute for Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia and Biochemistry Department, University of Leicester, Leicester, UK
| | - Ian C. Eperon
- Institute for Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia and Biochemistry Department, University of Leicester, Leicester, UK
| | - Galina G. Karpova
- Institute for Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia and Biochemistry Department, University of Leicester, Leicester, UK
| |
Collapse
|