1
|
Baassiri K, Nicolau DV. Understanding the Impact of Synthetic Hematocrit Levels and Biomimetic Channel Widths on Bubble Parameters in Vascular Systems on a Chip. Biomimetics (Basel) 2025; 10:98. [PMID: 39997121 PMCID: PMC11852892 DOI: 10.3390/biomimetics10020098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/22/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Gas embolism is a rare but life-threatening process characterized by the presence of gas bubbles in the venous or arterial systems. These bubbles, if sufficiently large or numerous, can block the delivery of oxygen to critical organs, in particular the brain, and subsequently they can trigger a cascade of adverse biochemical reactions with severe medical outcomes. Despite its critical nature, gas embolism remains poorly understood, necessitating extensive investigation, particularly regarding its manifestations in the human body and its modulation by various biological conditions. However, given its elusive nature, as well as potential lethality, gas embolism is extremely difficult to study in vivo, and nearly impossible to be the subject of clinical trials. To this end, we developed a microfluidic device designed to study in vitro the impact of blood properties and vascular geometries on the formation and evolution of gas bubbles. The system features a biomimetic vascular channel surrounded by two pressure chambers, which induce the genesis of bubbles under varying circumstances. The bubble parameters were correlated with different input parameters, i.e., channel widths, wall thicknesses, viscosities of the artificial blood, and pressure levels. Smaller channel widths and higher equivalent hematocrit concentrations in synthetic blood solutions increased the nucleation density and bubble generation frequencies. Small channel widths were also more prone to bubble formation, with implications for the vulnerability of vascular walls, leading to increased risks of damage or compromise to the integrity of the blood vessels. Larger channel widths, along with higher equivalent hematocrit concentrations, translated into larger bubble volumes and decreased bubble velocities, leading to an increased risk of bubble immobilization within the blood vessels. This biomimetic approach provides insights into the impact of patient history and biological factors on the incidence and progression of gas embolism. Medical conditions, such as anemia, along with anatomical features related to age and sex-such as smaller blood vessels in women and children or larger vascular widths in adult men-affect the susceptibility to the initiation and progression of gas embolism, explored here in vitro through the development of a controlled, physiological-like environment. The analysis of the videos that recorded gas embolism events in vitro for systems where pressure is applied laterally on the microvasculature with thin walls, i.e., 50 μm or less, suggests that the mechanism of gas transfer for the pressure area to the blood is based on percolation, rather than diffusion. These findings highlight the importance of personalized approaches in the management and prevention of gas embolism.
Collapse
Affiliation(s)
| | - Dan V. Nicolau
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, QC H3A 0E9, Canada;
| |
Collapse
|
2
|
Mardanpour MM, Sudalaiyadum Perumal A, Mahmoodi Z, Baassiri K, Montiel-Rubies G, LeDez KM, Nicolau DV. Investigation of air bubble behaviour after gas embolism events induced in a microfluidic network mimicking microvasculature. LAB ON A CHIP 2024; 24:2518-2536. [PMID: 38623600 DOI: 10.1039/d4lc00087k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Gas embolism is a medical condition that occurs when gas bubbles are present in veins or arteries, decreasing blood flow and potentially reducing oxygen delivery to vital organs, such as the brain. Although usually reported as rare, gas embolism can lead to severe neurological damage or death. However, presently, only limited understanding exists regarding the microscale processes leading to the formation, persistence, movement, and resolution of gas emboli, as modulated by microvasculature geometrical features and blood properties. Because gas embolism is initially a physico-chemical-only process, with biological responses starting later, the opportunity exists to fully study the genesis and evolution of gas emboli using in vitro microfluidic networks mimicking small regions of microvasculature. The microfluidics networks used in this study, which aim to mimic microvasculature geometry, comprise linear channels with T-, or Y-junction air inlets, with 20, 40, and 60 μm widths (arterial or venous), and a 30 μm width honeycombed network (arterial) with three bifurcation angles (30°, 60°, and 90°). Synthetic blood, equivalent to 46% haematocrit concentrations, and water were used to study the modulation of gas embolism-like events by liquid viscosity. Our study shows that (i) longer bubbles with lower velocity occur in narrower channels, e.g., with 20 μm width; (ii) the resistance of air bubbles to the flow increases with the higher haematocrit concentration; and lastly (iii) the propensity of gas embolism-like events in honeycomb architectures increases for more acute, e.g., 30°, bifurcation angles. A dimensionless analysis using Euler, Weber, and capillary numbers demarcated the conditions conducive to gas embolism. This work suggests that in vitro experimentation using microfluidic devices with microvascular tissue-like structures could assist medical guidelines and management in preventing and mitigating the effects of gas embolism.
Collapse
Affiliation(s)
- Mohammad Mahdi Mardanpour
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, Québec, H3A 0E9, Canada.
| | | | - Zahra Mahmoodi
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, Québec, H3A 0E9, Canada.
| | - Karine Baassiri
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, Québec, H3A 0E9, Canada.
| | - Gala Montiel-Rubies
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, Québec, H3A 0E9, Canada.
| | - Kenneth M LeDez
- Faculty of Medicine, Health Sciences Centre, Memorial University, St. John's, Newfoundland and Labrador, A1C 5S7, Canada
| | - Dan V Nicolau
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, Québec, H3A 0E9, Canada.
| |
Collapse
|
3
|
Marsh PL, Moore EE, Moore HB, Bunch CM, Aboukhaled M, Condon SM, Al-Fadhl MD, Thomas SJ, Larson JR, Bower CW, Miller CB, Pearson ML, Twilling CL, Reser DW, Kim GS, Troyer BM, Yeager D, Thomas SG, Srikureja DP, Patel SS, Añón SL, Thomas AV, Miller JB, Van Ryn DE, Pamulapati SV, Zimmerman D, Wells B, Martin PL, Seder CW, Aversa JG, Greene RB, March RJ, Kwaan HC, Fulkerson DH, Vande Lune SA, Mollnes TE, Nielsen EW, Storm BS, Walsh MM. Iatrogenic air embolism: pathoanatomy, thromboinflammation, endotheliopathy, and therapies. Front Immunol 2023; 14:1230049. [PMID: 37795086 PMCID: PMC10546929 DOI: 10.3389/fimmu.2023.1230049] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/12/2023] [Indexed: 10/06/2023] Open
Abstract
Iatrogenic vascular air embolism is a relatively infrequent event but is associated with significant morbidity and mortality. These emboli can arise in many clinical settings such as neurosurgery, cardiac surgery, and liver transplantation, but more recently, endoscopy, hemodialysis, thoracentesis, tissue biopsy, angiography, and central and peripheral venous access and removal have overtaken surgery and trauma as significant causes of vascular air embolism. The true incidence may be greater since many of these air emboli are asymptomatic and frequently go undiagnosed or unreported. Due to the rarity of vascular air embolism and because of the many manifestations, diagnoses can be difficult and require immediate therapeutic intervention. An iatrogenic air embolism can result in both venous and arterial emboli whose anatomic locations dictate the clinical course. Most clinically significant iatrogenic air emboli are caused by arterial obstruction of small vessels because the pulmonary gas exchange filters the more frequent, smaller volume bubbles that gain access to the venous circulation. However, there is a subset of patients with venous air emboli caused by larger volumes of air who present with more protean manifestations. There have been significant gains in the understanding of the interactions of fluid dynamics, hemostasis, and inflammation caused by air emboli due to in vitro and in vivo studies on flow dynamics of bubbles in small vessels. Intensive research regarding the thromboinflammatory changes at the level of the endothelium has been described recently. The obstruction of vessels by air emboli causes immediate pathoanatomic and immunologic and thromboinflammatory responses at the level of the endothelium. In this review, we describe those immunologic and thromboinflammatory responses at the level of the endothelium as well as evaluate traditional and novel forms of therapy for this rare and often unrecognized clinical condition.
Collapse
Affiliation(s)
- Phillip L. Marsh
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Ernest E. Moore
- Department of Surgery, Ernest E. Moore Shock Trauma Center at Denver Health and University of Colorado Health Sciences Center, Denver, CO, United States
| | - Hunter B. Moore
- University of Colorado Health Transplant Surgery - Anschutz Medical Campus, Aurora, CO, United States
| | - Connor M. Bunch
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Michael Aboukhaled
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Shaun M. Condon
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | | | - Samuel J. Thomas
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - John R. Larson
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - Charles W. Bower
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - Craig B. Miller
- Department of Family Medicine, Saint Joseph Health System, Mishawaka, IN, United States
| | - Michelle L. Pearson
- Department of Family Medicine, Saint Joseph Health System, Mishawaka, IN, United States
| | | | - David W. Reser
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - George S. Kim
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - Brittany M. Troyer
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - Doyle Yeager
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - Scott G. Thomas
- Department of Trauma & Surgical Research Services, South Bend, IN, United States
| | - Daniel P. Srikureja
- Department of Trauma & Surgical Research Services, South Bend, IN, United States
| | - Shivani S. Patel
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Sofía L. Añón
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Anthony V. Thomas
- Indiana University School of Medicine, South Bend, IN, United States
| | - Joseph B. Miller
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - David E. Van Ryn
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
- Department of Emergency Medicine, Beacon Health System, Elkhart, IN, United States
| | - Saagar V. Pamulapati
- Department of Internal Medicine, Mercy Health Internal Medicine Residency Program, Rockford, IL, United States
| | - Devin Zimmerman
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Byars Wells
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Peter L. Martin
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - Christopher W. Seder
- Department of Cardiovascular and Thoracic Surgery, RUSH Medical College, Chicago, IL, United States
| | - John G. Aversa
- Department of Cardiovascular and Thoracic Surgery, RUSH Medical College, Chicago, IL, United States
| | - Ryan B. Greene
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Robert J. March
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Hau C. Kwaan
- Division of Hematology and Oncology, Department of Medicine, Northwestern University, Chicago, IL, United States
| | - Daniel H. Fulkerson
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Department of Trauma & Surgical Research Services, South Bend, IN, United States
| | - Stefani A. Vande Lune
- Department of Emergency Medicine, Naval Medical Center Portsmouth, Portsmouth, VA, United States
| | - Tom E. Mollnes
- Research Laboratory, Nordland Hospital, Bodø, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Erik W. Nielsen
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Anesthesia and Intensive Care Medicine, Surgical Clinic, Nordland Hospital, Bodø, Norway
- Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - Benjamin S. Storm
- Department of Anesthesia and Intensive Care Medicine, Surgical Clinic, Nordland Hospital, Bodø, Norway
- Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - Mark M. Walsh
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Indiana University School of Medicine, South Bend, IN, United States
| |
Collapse
|
4
|
Baassiri K, Nicolau DV. Investigating the Mechanism of Intravascular Bubble Formation in Designed Arrays of Vascularized Systems on a Chip. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-5. [PMID: 38083489 DOI: 10.1109/embc40787.2023.10340569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Vascular gas embolism is a rare medical condition, resulting from the existence of air or gas in the venous or arterial system. Gas embolism is associated with a wide range of circulatory, cardiovascular, and neurological complications that can lead to sudden and unexplained death. Despite the recent increase in related studies, gas embolism remains under-reported with a poor understanding of its genesis and pathophysiology. In this work, intravascular bubble formation is investigated in an array of biomimetic microscale systems, where the endogenous generation of gas bubbles is induced by variations in the surrounding pressure. Microfluidic devices, based on polydimethylsiloxane, are designed and fabricated as vascularized systems on a chip with one main channel at two different diameters (30 µm, and 40 µm), surrounded by a pressure chamber (200 µm) on each side, at a separation of 50 µm. Two blood-equivalent solutions, at 20% and 46% hematocrit concentrations were prepared from a glycerin and xanthan gum mixture to mimic the physicochemical characteristics of the blood. As the volume of injected air increased, the events related to gas embolism were occurring at shorter timespans with more significant characteristics, i.e., length and number of bubbles. Additionally, correlations were established between the input parameters, i.e., the vascular diameter and equivalent hematocrit concentration, and the output parameters, i.e., the bubble size, velocity, frequency, and nucleation sites.Clinical Relevance- The reported results constitute a reproducible observation and quantification of intravascular bubble formation induced by global pressure variations, where the emergence of bubbles exhibits different patterns depending on biological characteristics related to gender and medical history.
Collapse
|
5
|
Miranda I, Souza A, Sousa P, Ribeiro J, Castanheira EMS, Lima R, Minas G. Properties and Applications of PDMS for Biomedical Engineering: A Review. J Funct Biomater 2021; 13:2. [PMID: 35076525 PMCID: PMC8788510 DOI: 10.3390/jfb13010002] [Citation(s) in RCA: 225] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/14/2022] Open
Abstract
Polydimethylsiloxane (PDMS) is an elastomer with excellent optical, electrical and mechanical properties, which makes it well-suited for several engineering applications. Due to its biocompatibility, PDMS is widely used for biomedical purposes. This widespread use has also led to the massification of the soft-lithography technique, introduced for facilitating the rapid prototyping of micro and nanostructures using elastomeric materials, most notably PDMS. This technique has allowed advances in microfluidic, electronic and biomedical fields. In this review, an overview of the properties of PDMS and some of its commonly used treatments, aiming at the suitability to those fields' needs, are presented. Applications such as microchips in the biomedical field, replication of cardiovascular flow and medical implants are also reviewed.
Collapse
Affiliation(s)
- Inês Miranda
- Center for MicroElectromechanical Systems (CMEMS-UMinho), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (I.M.); (P.S.); (G.M.)
| | - Andrews Souza
- MEtRICs, Mechanical Engineering Department, Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal;
| | - Paulo Sousa
- Center for MicroElectromechanical Systems (CMEMS-UMinho), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (I.M.); (P.S.); (G.M.)
| | - João Ribeiro
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolónia, Instituto Politécnico de Bragança, 5300-253 Braganca, Portugal;
| | - Elisabete M. S. Castanheira
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal;
| | - Rui Lima
- MEtRICs, Mechanical Engineering Department, Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal;
- CEFT, Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Roberto Frias, 4200-465 Porto, Portugal
| | - Graça Minas
- Center for MicroElectromechanical Systems (CMEMS-UMinho), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (I.M.); (P.S.); (G.M.)
| |
Collapse
|
6
|
Sadek SH, Rubio M, Lima R, Vega EJ. Blood Particulate Analogue Fluids: A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2451. [PMID: 34065125 PMCID: PMC8126041 DOI: 10.3390/ma14092451] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 11/16/2022]
Abstract
Microfluidics has proven to be an extraordinary working platform to mimic and study blood flow phenomena and the dynamics of components of the human microcirculatory system. However, the use of real blood increases the complexity to perform these kinds of in vitro blood experiments due to diverse problems such as coagulation, sample storage, and handling problems. For this reason, interest in the development of fluids with rheological properties similar to those of real blood has grown over the last years. The inclusion of microparticles in blood analogue fluids is essential to reproduce multiphase effects taking place in a microcirculatory system, such as the cell-free layer (CFL) and Fähraeus-Lindqvist effect. In this review, we summarize the progress made in the last twenty years. Size, shape, mechanical properties, and even biological functionalities of microparticles produced/used to mimic red blood cells (RBCs) are critically exposed and analyzed. The methods developed to fabricate these RBC templates are also shown. The dynamic flow/rheology of blood particulate analogue fluids proposed in the literature (with different particle concentrations, in most of the cases, relatively low) is shown and discussed in-depth. Although there have been many advances, the development of a reliable blood particulate analogue fluid, with around 45% by volume of microparticles, continues to be a big challenge.
Collapse
Affiliation(s)
- Samir Hassan Sadek
- Departamento de Ingeniería Mecánica, Energética y de los Materiales and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06006 Badajoz, Spain; (S.H.S.); (M.R.)
| | - Manuel Rubio
- Departamento de Ingeniería Mecánica, Energética y de los Materiales and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06006 Badajoz, Spain; (S.H.S.); (M.R.)
| | - Rui Lima
- MEtRICs, Mechanical Engineering Department, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
- Transport Phenomena Research Center, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Emilio José Vega
- Departamento de Ingeniería Mecánica, Energética y de los Materiales and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06006 Badajoz, Spain; (S.H.S.); (M.R.)
| |
Collapse
|
7
|
Numerical Study of Single Taylor Bubble Movement Through a Microchannel Using Different CFD Packages. Processes (Basel) 2020. [DOI: 10.3390/pr8111418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A Computation Fluid Dynamics (CFD) study for micro-scale gas–liquid flow was performed by using two different software packages: OpenFOAM® and ANSYS Fluent®. The numerical results were compared to assess the capability of both options to accurately predict the hydrodynamics of this kind of system. The focus was to test different methods to solve the gas–liquid interface, namely the Volume of Fluid (VOF) + Piecewise Linear Interface Calculation (PLIC) (ANSYS Fluent®) and MULES/isoAdvector (OpenFOAM®). For that, a single Taylor bubble flowing in a circular tube was studied for different co-current flow conditions (0.01 < CaB < 2.0 and 0.01 < ReB < 700), creating representative cases that exemplify the different sub-patterns already identified in micro-scale slug flow. The results show that for systems with high Capillary numbers (CaB > 0.8) each software correctly predicts the main characteristics of the flow. However, for small Capillary numbers (CaB < 0.03), spurious currents appear along the interface for the cases solved using OpenFOAM®. The results of this work suggest that ANSYS Fluent® VOF+PLIC is indeed a good option to solve biphasic flows at a micro-scale for a wide range of scenarios becoming more relevant for cases with low Capillary numbers where the use of the solvers from OpenFoam® are not the best option. Alternatively, improvements and/or extra functionalities should be implemented in the OpenFOAM® solvers available in the installation package.
Collapse
|
8
|
Bento D, Lopes S, Maia I, Lima R, Miranda JM. Bubbles Moving in Blood Flow in a Microchannel Network: The Effect on the Local Hematocrit. MICROMACHINES 2020; 11:mi11040344. [PMID: 32224993 PMCID: PMC7230880 DOI: 10.3390/mi11040344] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 01/07/2023]
Abstract
Air inside of blood vessels is a phenomenon known as gas embolism. During the past years, studies have been performed to assess the influence of air bubbles in microcirculation. In this study, we investigated the flow of bubbles in a microchannel network with several bifurcations, mimicking part of a capillary system. Thus, two working fluids were used, composed by sheep red blood cells (RBCs) suspended in a Dextran 40 solution with different hematocrits (5% and 10%). The experiments were carried out in a polydimethylsiloxane (PDMS) microchannel network fabricated by a soft lithography. A high-speed video microscopy system was used to obtain the results for a blood flow rate of 10 µL/min. This system enables the visualization of bubble formation and flow along the network. The results showed that the passage of air bubbles strongly influences the cell's local concentration, since a higher concentration of cells was observed upstream of the bubble, whereas a lower local hematocrit was visualized at the region downstream of the bubble. In bifurcations, bubbles may split asymmetrically, leading to an uneven distribution of RBCs between the outflow branches.
Collapse
Affiliation(s)
- David Bento
- CEFT, Faculdade de Engenharia da Universidade do Porto (FEUP) Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (D.B.); (R.L.)
- Polytechnic Institute of Bragança, ESTiG/IPB, C. Sta. Apolónia, 5300-857 Bragança, Portugal;
| | - Sara Lopes
- Polytechnic Institute of Bragança, ESTiG/IPB, C. Sta. Apolónia, 5300-857 Bragança, Portugal;
| | - Inês Maia
- Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Rui Lima
- CEFT, Faculdade de Engenharia da Universidade do Porto (FEUP) Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (D.B.); (R.L.)
- MEtRICS, Mechanical Eng. Dep., University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - João M. Miranda
- CEFT, Faculdade de Engenharia da Universidade do Porto (FEUP) Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (D.B.); (R.L.)
- Correspondence:
| |
Collapse
|
9
|
Isolated Taylor Bubbles in Co-Current with Shear Thinning CMC Solutions in Microchannels—A Numerical Study. Processes (Basel) 2020. [DOI: 10.3390/pr8020242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Slug flow is a multiphase flow pattern characterized by the occurrence of long gas bubbles (Taylor bubbles) separated by liquid slugs. This multiphase flow regime is present in many and diversified natural and industrial processes, at macro and microscales, such as in eruption of volcanic magmas, oil recovery from pre-salt regions, micro heat exchangers, and small-sized refrigerating systems. Previous studies in the literature have been mostly focused on tubular gas bubbles flowing in Newtonian liquids. In this work, results from several numerical simulations of tubular gas bubbles flowing in a shear thinning liquid in microchannels are reported. To simulate the shear thinning behavior, carboxymethylcellulose (CMC) solutions with different concentrations were considered. The results are compared with data from bubbles flowing in Newtonian liquids in identical geometric and dynamic conditions. The numerical work was carried out in computational fluid dynamics (CFD) package Ansys Fluent (release 16.2.0) employing the volume of fluid (VOF) methodology to track the volume fraction of each phase and the continuum surface force (CSF) model to insert the surface tension effects. The flow patterns, the viscosity distribution in the liquid, the liquid film thickness between the bubble and the wall, and the bubbles shape are analyzed for a wide range of shear rates. In general, the flow patterns are similar to those in Newtonian liquids, but in the film, where a high viscosity region is observed, the thickness is smaller. Bubble velocities are smaller for the non-Newtonian cases.
Collapse
|
10
|
Review on Microbubbles and Microdroplets Flowing through Microfluidic Geometrical Elements. MICROMACHINES 2020; 11:mi11020201. [PMID: 32075302 PMCID: PMC7074625 DOI: 10.3390/mi11020201] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 12/14/2022]
Abstract
Two-phase flows are found in several industrial systems/applications, including boilers and condensers, which are used in power generation or refrigeration, steam generators, oil/gas extraction wells and refineries, flame stabilizers, safety valves, among many others. The structure of these flows is complex, and it is largely governed by the extent of interphase interactions. In the last two decades, due to a large development of microfabrication technologies, many microstructured devices involving several elements (constrictions, contractions, expansions, obstacles, or T-junctions) have been designed and manufactured. The pursuit for innovation in two-phase flows in these elements require an understanding and control of the behaviour of bubble/droplet flow. The need to systematize the most relevant studies that involve these issues constitutes the motivation for this review. In the present work, literature addressing gas-liquid and liquid-liquid flows, with Newtonian and non-Newtonian fluids, and covering theoretical, experimental, and numerical approaches, is reviewed. Particular focus is given to the deformation, coalescence, and breakup mechanisms when bubbles and droplets pass through the aforementioned microfluidic elements.
Collapse
|
11
|
Catarino SO, Rodrigues RO, Pinho D, Miranda JM, Minas G, Lima R. Blood Cells Separation and Sorting Techniques of Passive Microfluidic Devices: From Fabrication to Applications. MICROMACHINES 2019; 10:mi10090593. [PMID: 31510012 PMCID: PMC6780402 DOI: 10.3390/mi10090593] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 01/23/2023]
Abstract
Since the first microfluidic device was developed more than three decades ago, microfluidics is seen as a technology that exhibits unique features to provide a significant change in the way that modern biology is performed. Blood and blood cells are recognized as important biomarkers of many diseases. Taken advantage of microfluidics assets, changes on blood cell physicochemical properties can be used for fast and accurate clinical diagnosis. In this review, an overview of the microfabrication techniques is given, especially for biomedical applications, as well as a synopsis of some design considerations regarding microfluidic devices. The blood cells separation and sorting techniques were also reviewed, highlighting the main achievements and breakthroughs in the last decades.
Collapse
Affiliation(s)
- Susana O Catarino
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Raquel O Rodrigues
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Diana Pinho
- Research Centre in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- CEFT, Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Roberto Frias, 4200-465 Porto, Portugal
| | - João M Miranda
- CEFT, Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Roberto Frias, 4200-465 Porto, Portugal
| | - Graça Minas
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Rui Lima
- CEFT, Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Roberto Frias, 4200-465 Porto, Portugal.
- MEtRICs, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal.
| |
Collapse
|
12
|
Chao C, Jin X, Teng L, Stokes AA, Fan X. Bubble Dislodgment in a Capillary Network with Microscopic Multichannels and Multibifurcation Features. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3194-3203. [PMID: 30721065 DOI: 10.1021/acs.langmuir.8b03323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bubble lodgment in a complex capillary network is a common issue in many industrial and biological processes. Research work reported in the literature only investigated bubble dislodgment in single channels and did not consider the effect of network complexity on the dislodgment. This paper focuses on the pressure required to dislodge single bubbles from a microscopic capillary network and investigates the factors affecting the dislodging pressure to facilitate the precise control of bubble flows in porous media. A capillary network with multibifurcation and a smoothly changed diameter is designed to closely mimic the structure of the physiological vascular networks. Over 600 bubble dislodgment experiments have been conducted to understand the effect of the network structure, channel dimensions, and bubble length on the dislodging pressure. The results indicate that the network structure is a dominant factor affecting the dislodging pressure that increases with the increase in network complexity. The effect of bubble length on the dislodging pressure depends on the bubble length. When the bubble length is less than a certain value, which is around 2 mm in this study, the dislodging pressure increases significantly with the decrease of bubble length. When the bubble length is larger than 2 mm, the dislodging pressure is independent of the bubble length. A model has been proposed to explain the bubble dislodgment in complex capillary networks. The impact of the network structure on the bubble dislodging pressure is characterized by a parameter c j. The model indicates that the dislodging pressure is the function of bubble length, channel dimension, and network structure. The analysis of model parameters NB j and MA j shows that parameter c j, rather than the channel size, dominates the dislodging pressure for bubbles with a length greater than 2 mm, and the increase rate of the dislodging pressure is significantly affected by both channel size and parameter c j.
Collapse
Affiliation(s)
- Cong Chao
- Institute for Materials and Processes, School of Engineering , The University of Edinburgh , The King's Buildings, Robert Stevenson Road , Edinburgh EH9 3FB , U.K
| | - Xiaoqiang Jin
- Institute for Materials and Processes, School of Engineering , The University of Edinburgh , The King's Buildings, Robert Stevenson Road , Edinburgh EH9 3FB , U.K
| | - Lijun Teng
- Institute for Integrated Micro and Nano Systems, School of Engineering , The University of Edinburgh , The King's Buildings, Alexander Crum Brown Road , Edinburgh EH9 3FB , U.K
| | - Adam A Stokes
- Institute for Integrated Micro and Nano Systems, School of Engineering , The University of Edinburgh , The King's Buildings, Alexander Crum Brown Road , Edinburgh EH9 3FB , U.K
| | - Xianfeng Fan
- Institute for Materials and Processes, School of Engineering , The University of Edinburgh , The King's Buildings, Robert Stevenson Road , Edinburgh EH9 3FB , U.K
| |
Collapse
|
13
|
Kang YJ, Kim BJ. Multiple and Periodic Measurement of RBC Aggregation and ESR in Parallel Microfluidic Channels under On-Off Blood Flow Control. MICROMACHINES 2018; 9:mi9070318. [PMID: 30424251 PMCID: PMC6082273 DOI: 10.3390/mi9070318] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/13/2018] [Accepted: 06/21/2018] [Indexed: 01/25/2023]
Abstract
Red blood cell (RBC) aggregation causes to alter hemodynamic behaviors at low flow-rate regions of post-capillary venules. Additionally, it is significantly elevated in inflammatory or pathophysiological conditions. In this study, multiple and periodic measurements of RBC aggregation and erythrocyte sedimentation rate (ESR) are suggested by sucking blood from a pipette tip into parallel microfluidic channels, and quantifying image intensity, especially through single experiment. Here, a microfluidic device was prepared from a master mold using the xurography technique rather than micro-electro-mechanical-system fabrication techniques. In order to consider variations of RBC aggregation in microfluidic channels due to continuous ESR in the conical pipette tip, two indices (aggregation index (AI) and erythrocyte-sedimentation-rate aggregation index (EAI)) are evaluated by using temporal variations of microscopic, image-based intensity. The proposed method is employed to evaluate the effect of hematocrit and dextran solution on RBC aggregation under continuous ESR in the conical pipette tip. As a result, EAI displays a significantly linear relationship with modified conventional ESR measurement obtained by quantifying time constants. In addition, EAI varies linearly within a specific concentration of dextran solution. In conclusion, the proposed method is able to measure RBC aggregation under continuous ESR in the conical pipette tip. Furthermore, the method provides multiple data of RBC aggregation and ESR through a single experiment. A future study will involve employing the proposed method to evaluate biophysical properties of blood samples collected from cardiovascular diseases.
Collapse
Affiliation(s)
- Yang Jun Kang
- Department of Mechanical Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea.
| | - Byung Jun Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea.
| |
Collapse
|
14
|
Bento D, Rodrigues RO, Faustino V, Pinho D, Fernandes CS, Pereira AI, Garcia V, Miranda JM, Lima R. Deformation of Red Blood Cells, Air Bubbles, and Droplets in Microfluidic Devices: Flow Visualizations and Measurements. MICROMACHINES 2018; 9:E151. [PMID: 30424085 PMCID: PMC6187860 DOI: 10.3390/mi9040151] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 12/30/2022]
Abstract
Techniques, such as micropipette aspiration and optical tweezers, are widely used to measure cell mechanical properties, but are generally labor-intensive and time-consuming, typically involving a difficult process of manipulation. In the past two decades, a large number of microfluidic devices have been developed due to the advantages they offer over other techniques, including transparency for direct optical access, lower cost, reduced space and labor, precise control, and easy manipulation of a small volume of blood samples. This review presents recent advances in the development of microfluidic devices to evaluate the mechanical response of individual red blood cells (RBCs) and microbubbles flowing in constriction microchannels. Visualizations and measurements of the deformation of RBCs flowing through hyperbolic, smooth, and sudden-contraction microchannels were evaluated and compared. In particular, we show the potential of using hyperbolic-shaped microchannels to precisely control and assess small changes in RBC deformability in both physiological and pathological situations. Moreover, deformations of air microbubbles and droplets flowing through a microfluidic constriction were also compared with RBCs deformability.
Collapse
Affiliation(s)
- David Bento
- Instituto Politécnico de Bragança, ESTiG/IPB, C. Sta. Apolónia, 5301-857 Bragança, Portugal.
- CEFT, Faculdade de Engenharia da Universidade do Porto (FEUP) Rua Roberto Frias, 4800-058 Porto, Portugal.
| | - Raquel O Rodrigues
- Instituto Politécnico de Bragança, ESTiG/IPB, C. Sta. Apolónia, 5301-857 Bragança, Portugal.
- LCM-Laboratory of Catalysis and Materials-Associate Laboratory LSRE/LCM, Faculdade de Engenharia da Universidade do Porto (FEUP) Rua Roberto Frias, 4800-058 Porto, Portugal.
| | - Vera Faustino
- MEMS-UMinho Research Unit, Universidade do Minho, DEI, Campus de Azurém, 4800-058 Guimarães, Portugal.
| | - Diana Pinho
- Instituto Politécnico de Bragança, ESTiG/IPB, C. Sta. Apolónia, 5301-857 Bragança, Portugal.
- CEFT, Faculdade de Engenharia da Universidade do Porto (FEUP) Rua Roberto Frias, 4800-058 Porto, Portugal.
- Centro de Investigação em Digitalização e Robótica Inteligente (CeDRI), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Carla S Fernandes
- Instituto Politécnico de Bragança, ESTiG/IPB, C. Sta. Apolónia, 5301-857 Bragança, Portugal.
| | - Ana I Pereira
- Instituto Politécnico de Bragança, ESTiG/IPB, C. Sta. Apolónia, 5301-857 Bragança, Portugal.
- Centro de Investigação em Digitalização e Robótica Inteligente (CeDRI), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Algoritmi R&D Centre, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal.
| | - Valdemar Garcia
- Instituto Politécnico de Bragança, ESTiG/IPB, C. Sta. Apolónia, 5301-857 Bragança, Portugal.
| | - João M Miranda
- CEFT, Faculdade de Engenharia da Universidade do Porto (FEUP) Rua Roberto Frias, 4800-058 Porto, Portugal.
| | - Rui Lima
- CEFT, Faculdade de Engenharia da Universidade do Porto (FEUP) Rua Roberto Frias, 4800-058 Porto, Portugal.
- MEtRiCS, Mechanical Engineering Department, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal.
| |
Collapse
|
15
|
Afzal MJ, Ashraf MW, Tayyaba S, Hossain MK, Afzulpurkar N. Sinusoidal Microchannel with Descending Curves for Varicose Veins Implantation. MICROMACHINES 2018; 9:E59. [PMID: 30393335 PMCID: PMC6187514 DOI: 10.3390/mi9020059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/22/2018] [Accepted: 01/25/2018] [Indexed: 11/16/2022]
Abstract
Approximately 26% of adult people, mostly females, are affected by varicose veins in old age. It is a common reason for distress, loss of efficiency, and worsening living conditions. Several traditional treatment techniques (sclerotherapy and foam sclerotherapy of large veins, laser surgeries and radiofrequency ablation, vein ligation and stripping, ambulatory phlebectomy, and endoscopic vein surgery) have failed to handle this disease effectively. Herein, authors have presented an alternative varicose vein implant method-the descending sinusoidal microchannel (DSMC). DSMC was simulated by Fuzzy logic MATLAB (The MathWorks, Natick, MA, USA) and ANSYS (ANSYS 18.2, perpetual license purchased by Ibadat Education Trust, The University of Lahore, Pakistan) with real and actual conditions. After simulations of DSMC, fabrication and testing were performed. The silver DSMC was manufactured by utilizing a micromachining procedure. The length, width, and depth of the silver substrate were 51 mm, 25 mm, and 1.1 mm, respectively. The measurements of the DSMC channel in the silver wafer substrate were 0.9 mm in width and 0.9 mm in depth. The three descending curves of the DSMC were 7 mm, 6 mm, and 5 mm in height. For pressure, actual conditions were carefully taken as 1.0 kPa to 1.5 kPa for varicose veins. For velocity, actual conditions were carefully taken as 0.02 m/s to 0.07 m/s for these veins. These are real and standard values used in simulations and experiments. At Reynolds number 323, the flow rate and velocity were determined as 1001.0 (0.1 nL/s), 11.4 cm/s and 1015.3 (0.1 nL/s), 12.19 cm/s by MATLAB (The MathWorks, Natick, MA, USA) and ANSYS simulations, respectively. The flow rate and velocity were determined to be 995.3 (0.1 nL/s) and 12.2 cm/s, respectively, at the same Reynolds number (323) in the experiment. Moreover, the Dean number was also calculated to observe Dean vortices. All simulated and experimental results were in close agreement. Consequently, DSMC can be implanted in varicose veins as a new treatment to preserve excellent blood flow in human legs from the original place to avoid tissue damage and other problems.
Collapse
Affiliation(s)
| | | | - Shahzadi Tayyaba
- Department of Computer Engineering, The University of Lahore, Lahore 54000, Pakistan.
| | - M Khalid Hossain
- Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh.
| | - Nitin Afzulpurkar
- Department of Mechanical Engineering Technology (MCET), Higher Colleges of Technology (HCT), Ras al-Khaimah P.O. Box 4793, UAE.
| |
Collapse
|
16
|
Bento D, Pereira AI, Lima J, Miranda JM, Lima R. Cell-free layer measurements ofin vitroblood flow in a microfluidic network: an automatic and manual approach. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION 2017. [DOI: 10.1080/21681163.2017.1329029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- D. Bento
- School of Technology and Management (ESTiG), Polytechnic Institute of Bragança (IPB), Bragança, Portugal
- CEFT, Faculdade de Engenharia da Universidade do Porto (FEUP), Porto, Portugal
| | - A. I. Pereira
- School of Technology and Management (ESTiG), Polytechnic Institute of Bragança (IPB), Bragança, Portugal
- Algoritmi R & D Centre, University of Minho, Braga, Portugal
| | - J. Lima
- School of Technology and Management (ESTiG), Polytechnic Institute of Bragança (IPB), Bragança, Portugal
- INESC TEC – Centre for Robotics in Industry and Intelligent Systems, Porto, Portugal
| | - J. M. Miranda
- CEFT, Faculdade de Engenharia da Universidade do Porto (FEUP), Porto, Portugal
| | - R. Lima
- School of Technology and Management (ESTiG), Polytechnic Institute of Bragança (IPB), Bragança, Portugal
- MEtRiCS, Mechanical Engineering Department, University of Minho, Guimarães, Portugal
| |
Collapse
|
17
|
Rocha LAM, Miranda JM, Campos JBLM. Wide Range Simulation Study of Taylor Bubbles in Circular Milli and Microchannels. MICROMACHINES 2017. [PMCID: PMC6189802 DOI: 10.3390/mi8050154] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A deep knowledge of the hydrodynamics of two-phase flow in millichannels and microchannels is relevant to the design and control of micro structured equipment. While there is plenty of work published in this area, there is a lack of studies over a wide range of dimensionless numbers and some factors have not been properly addressed, such as the role of the Reynolds number, the features of recirculation regions in the liquid slug and the liquid film development length. Therefore, a wide range parametric study of isolated gas Taylor bubbles flowing in co-current with liquid in circular milli- and microchannels is presented, in a wide range of Capillary (CaB) (0.01–2) and Reynolds numbers (ReB) (0.01–700). The shape and velocity of the bubbles are, together with the flow patterns in the flowing liquid, analyzed and compared with numerical and experimental correlations available in the literature. For low values of CaB, the streamlines (moving reference frame (MRF)) in the liquid slug show semi-infinite recirculations occupying a large portion of the cross-section of the channel. The mean velocity of the fluid moving inside the external envelope of the semi-infinite streamlines is equal to the bubble velocity. For high values of CaB, there are no recirculations and the bubble is moving faster or at least at the velocity of the liquid in the center of the tube; this flow pattern is often called bypass flow. The results also indicate that the liquid film surrounding the bubbles is for low CaB and ReB numbers almost stagnant, and its thickness accurately estimated with existing correlations. The stagnant film hypothesis developed provides an accurate approach to estimate the velocity of the bubble, in particular for low values of CaB. The asymptotic behavior of the studied parameters enables the extrapolation of data for CaB lower than 0.01. In addition to the simulations of isolated bubbles, simulations with two consecutive bubbles were also carried out; coalescence was only observed in very specific conditions. The results obtained in this study are directly applicable to co-current slug flow in milli- and microchannels for 0.1 < ReB < 1000 and 0.02 < CaB < 2.
Collapse
|