1
|
Fan X, Sun AR, Young RSE, Afara IO, Hamilton BR, Ong LJY, Crawford R, Prasadam I. Spatial analysis of the osteoarthritis microenvironment: techniques, insights, and applications. Bone Res 2024; 12:7. [PMID: 38311627 PMCID: PMC10838951 DOI: 10.1038/s41413-023-00304-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 02/06/2024] Open
Abstract
Osteoarthritis (OA) is a debilitating degenerative disease affecting multiple joint tissues, including cartilage, bone, synovium, and adipose tissues. OA presents diverse clinical phenotypes and distinct molecular endotypes, including inflammatory, metabolic, mechanical, genetic, and synovial variants. Consequently, innovative technologies are needed to support the development of effective diagnostic and precision therapeutic approaches. Traditional analysis of bulk OA tissue extracts has limitations due to technical constraints, causing challenges in the differentiation between various physiological and pathological phenotypes in joint tissues. This issue has led to standardization difficulties and hindered the success of clinical trials. Gaining insights into the spatial variations of the cellular and molecular structures in OA tissues, encompassing DNA, RNA, metabolites, and proteins, as well as their chemical properties, elemental composition, and mechanical attributes, can contribute to a more comprehensive understanding of the disease subtypes. Spatially resolved biology enables biologists to investigate cells within the context of their tissue microenvironment, providing a more holistic view of cellular function. Recent advances in innovative spatial biology techniques now allow intact tissue sections to be examined using various -omics lenses, such as genomics, transcriptomics, proteomics, and metabolomics, with spatial data. This fusion of approaches provides researchers with critical insights into the molecular composition and functions of the cells and tissues at precise spatial coordinates. Furthermore, advanced imaging techniques, including high-resolution microscopy, hyperspectral imaging, and mass spectrometry imaging, enable the visualization and analysis of the spatial distribution of biomolecules, cells, and tissues. Linking these molecular imaging outputs to conventional tissue histology can facilitate a more comprehensive characterization of disease phenotypes. This review summarizes the recent advancements in the molecular imaging modalities and methodologies for in-depth spatial analysis. It explores their applications, challenges, and potential opportunities in the field of OA. Additionally, this review provides a perspective on the potential research directions for these contemporary approaches that can meet the requirements of clinical diagnoses and the establishment of therapeutic targets for OA.
Collapse
Affiliation(s)
- Xiwei Fan
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Antonia Rujia Sun
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Reuben S E Young
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Isaac O Afara
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- School of Electrical Engineering and Computer Science, Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane, QLD, Australia
| | - Brett R Hamilton
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD, Australia
| | - Louis Jun Ye Ong
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Ross Crawford
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
- The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Indira Prasadam
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia.
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
2
|
Cykowska A, Danalache M, Bonnaire FC, Feierabend M, Hofmann UK. Detecting early osteoarthritis through changes in biomechanical properties - A review of recent advances in indentation technologies in a clinical arthroscopic setup. J Biomech 2022; 132:110955. [PMID: 35042088 DOI: 10.1016/j.jbiomech.2022.110955] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/29/2021] [Accepted: 01/07/2022] [Indexed: 11/19/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease currently affecting half of all women and one-third of all men aged over 65 and it is predicted to even increase in the next decades. In the variety of causes leading to OA, the first common denominator are changes in the extracellular matrix of the cartilage. In later stages, OA affects the whole joint spreading to higher levels of tissue architecture causing irreversible functional and structural damage. To date, the diagnosis of OA is only formulated in the late stages of the disease. This is also, where most present therapies apply. Since a precise diagnosis is a prerequisite for targeted therapy, tools to diagnose early OA, monitor its progression, and accurately stage the disease are wanted. This review article focuses on recent advances in indentation technologies to diagnose early OA through describing biomechanical cartilage characteristics. We provide an overview of microindentation instruments, indentation-type Atomic Force Microscopy, ultrasound, and water-jet ultrasound indentation, Optical Coherence Tomography-based air-jet indentation, as well as fiber Bragg grating.
Collapse
Affiliation(s)
- Anna Cykowska
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, D-72072 Tübingen, Germany.
| | - Marina Danalache
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, D-72072 Tübingen, Germany.
| | - Florian Christof Bonnaire
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, D-72072 Tübingen, Germany; Department of Orthopaedic Surgery, University Hospital of Tübingen, D-72076 Tübingen, Germany.
| | - Martina Feierabend
- Department of Computational Systems Biology, Faculty of Science of the University of Tübingen, D-72076 Tübingen, Germany.
| | - Ulf Krister Hofmann
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, D-72072 Tübingen, Germany; Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany.
| |
Collapse
|
3
|
Tschaikowsky M, Selig M, Brander S, Balzer BN, Hugel T, Rolauffs B. Proof-of-concept for the detection of early osteoarthritis pathology by clinically applicable endomicroscopy and quantitative AI-supported optical biopsy. Osteoarthritis Cartilage 2021; 29:269-279. [PMID: 33220445 DOI: 10.1016/j.joca.2020.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 09/30/2020] [Accepted: 10/14/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Clinical trials for osteoarthritis (OA), the leading cause of global disability, are unable to pinpoint the early, potentially reversible disease with clinical technology. Hence, disease-modifying drug candidates cannot be tested early in the disease. To overcome this obstacle, we asked whether early OA-pathology detection is possible with current clinical technology. METHODS We determined the relationship between two sensitive early OA markers, atomic force microscopy (AFM)-measured human articular cartilage (AC) surface stiffness, and location-matched superficial zone chondrocyte spatial organizations (SCSOs), asking whether a significant loss of surface stiffness can be detected in early OA SCSO stages. We then tested whether current clinical technology can visualize and accurately diagnose the SCSOs using an approved probe-based confocal laser-endomicroscope and a random forest (RF) model. RESULTS We demonstrated a correlation between AC surface stiffness and the SCSO (rrm = -0.91; 95%CI: -0.97, -0.73), and an extensive loss of surface stiffness specifically in those ACs with early OA-typical SCSO (95%CIs: string SCSO: 269-173 kPa, double string SCSO: 77-46 kPa). This established the SCSO as a visualizable, functionally relevant surrogate marker of early OA AC surface pathology. Moreover, SCSO-based stiffness discrimination worked well in each patient's AC. We then demonstrated feasibility of visualizing the SCSO by clinical laser-endomicroscopy and, importantly, accurate SCSO diagnosis using RF. CONCLUSION We present the proof-of-concept of early OA-pathology detection with available clinical technology, introducing a future-oriented, AI-supported, non-destructive quantitative optical biopsy for early disease detection. Operationalizing SCSO recognition, this approach allows testing for correlations between local tissue architectures with other experimental and clinical read-outs, but needs clinical validation and a larger sample size for defining diagnostic thresholds.
Collapse
Affiliation(s)
- M Tschaikowsky
- Institute of Physical Chemistry, Albert-Ludwigs-University Freiburg, Albertstr. 21, 79104, Freiburg, Germany; G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany
| | - M Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany
| | - S Brander
- Institute of Physical Chemistry, Albert-Ludwigs-University Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - B N Balzer
- Institute of Physical Chemistry, Albert-Ludwigs-University Freiburg, Albertstr. 21, 79104, Freiburg, Germany; Cluster of Excellence LivMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, Freiburg, Germany
| | - T Hugel
- Institute of Physical Chemistry, Albert-Ludwigs-University Freiburg, Albertstr. 21, 79104, Freiburg, Germany; Cluster of Excellence LivMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, Freiburg, Germany.
| | - B Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany.
| |
Collapse
|
4
|
Hartmann B, Marchi G, Alberton P, Farkas Z, Aszodi A, Roths J, Clausen-Schaumann H. Early Detection of Cartilage Degeneration: A Comparison of Histology, Fiber Bragg Grating-Based Micro-Indentation, and Atomic Force Microscopy-Based Nano-Indentation. Int J Mol Sci 2020; 21:ijms21197384. [PMID: 33036285 PMCID: PMC7582717 DOI: 10.3390/ijms21197384] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 12/27/2022] Open
Abstract
We have determined the sensitivity and detection limit of a new fiber Bragg grating (FBG)-based optoelectronic micro-indenter for biomechanical testing of cartilage and compared the results to indentation-type atomic force microscopy (IT-AFM) and histological staining. As test samples, we used bovine articular cartilage, which was enzymatically degraded ex vivo for five minutes using different concentrations of collagenase (5, 50, 100 and 500 µg/mL) to mimic moderate extracellular matrix deterioration seen in early-stage osteoarthritis (OA). Picrosirius Red staining and polarization microscopy demonstrated gradual, concentration-dependent disorganization of the collagen fibrillar network in the superficial zone of the explants. Osteoarthritis Research Society International (OARSI) grading of histopathological changes did not discriminate between undigested and enzymatically degraded explants. IT-AFM was the most sensitive method for detecting minute changes in cartilage biomechanics induced by the lowest collagenase concentration, however, it did not distinguish different levels of cartilage degeneration for collagenase concentrations higher than 5 µg/mL. The FBG micro-indenter provided a better and more precise assessment of the level of cartilage degeneration than the OARSI histological grading system but it was less sensitive at detecting mechanical changes than IT-AFM. The FBG-sensor allowed us to observe differences in cartilage biomechanics for collagenase concentrations of 100 and 500 µg/mL. Our results confirm that the FBG sensor is capable of detecting small changes in articular cartilage stiffness, which may be associated with initial cartilage degeneration caused by early OA.
Collapse
Affiliation(s)
- Bastian Hartmann
- Center for Applied Tissue Engineering and Regenerative Medicine–CANTER, Munich University of Applied Sciences, 80335 Munich, Germany; (B.H.); (A.A.)
- Laboratory of Experimental Surgery and Regenerative Medicine (ExperiMed), Clinic for General, Trauma and Reconstructive Surgery, University of Munich, 82152 Planegg, Germany; (P.A.); (Z.F.)
- Center for Nanoscience (CeNS), University of Munich, 80331 Munich, Germany
| | - Gabriele Marchi
- Photonics Laboratory, Department of Applied Sciences and Mechatronics, Munich University of Applied Sciences, 80335 Munich, Germany; (G.M.); (J.R.)
| | - Paolo Alberton
- Laboratory of Experimental Surgery and Regenerative Medicine (ExperiMed), Clinic for General, Trauma and Reconstructive Surgery, University of Munich, 82152 Planegg, Germany; (P.A.); (Z.F.)
| | - Zsuzsanna Farkas
- Laboratory of Experimental Surgery and Regenerative Medicine (ExperiMed), Clinic for General, Trauma and Reconstructive Surgery, University of Munich, 82152 Planegg, Germany; (P.A.); (Z.F.)
| | - Attila Aszodi
- Center for Applied Tissue Engineering and Regenerative Medicine–CANTER, Munich University of Applied Sciences, 80335 Munich, Germany; (B.H.); (A.A.)
- Laboratory of Experimental Surgery and Regenerative Medicine (ExperiMed), Clinic for General, Trauma and Reconstructive Surgery, University of Munich, 82152 Planegg, Germany; (P.A.); (Z.F.)
| | - Johannes Roths
- Photonics Laboratory, Department of Applied Sciences and Mechatronics, Munich University of Applied Sciences, 80335 Munich, Germany; (G.M.); (J.R.)
| | - Hauke Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine–CANTER, Munich University of Applied Sciences, 80335 Munich, Germany; (B.H.); (A.A.)
- Center for Nanoscience (CeNS), University of Munich, 80331 Munich, Germany
- Correspondence: ; Tel.: +49-89-1265-1682
| |
Collapse
|
5
|
Mieloch AA, Richter M, Trzeciak T, Giersig M, Rybka JD. Osteoarthritis Severely Decreases the Elasticity and Hardness of Knee Joint Cartilage: A Nanoindentation Study. J Clin Med 2019; 8:jcm8111865. [PMID: 31684201 PMCID: PMC6912408 DOI: 10.3390/jcm8111865] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 01/19/2023] Open
Abstract
The nanoindentation method was applied to determine the elastic modulus and hardness of knee articular cartilage. Cartilage samples from both high weight bearing (HWB) and low weight bearing (LWB) femoral condyles were collected from patients diagnosed with osteoarthritis (OA). The mean elastic modulus of HWB cartilage was 4.46 ± 4.44 MPa in comparison to that of the LWB region (9.81 ± 8.88 MPa, p < 0.001). Similarly, the hardness was significantly lower in HWB tissue (0.317 ± 0.397 MPa) than in LWB cartilage (0.455 ± 0.434 MPa, p < 0.001). When adjusted to patients’ ages, the mean elastic modulus and hardness were both significantly lower in the age group over 70 years (p < 0.001). A statistically significant difference in mechanical parameters was also found in grade 3 and 4 OA. This study provides an insight into the nanomechanical properties of the knee articular cartilage and provides a starting point for personalized cartilage grafts that are compatible with the mechanical properties of the native tissue.
Collapse
Affiliation(s)
- Adam Aron Mieloch
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 10 Street, 61-614 Poznan, Poland.
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznan, Poland.
| | - Magdalena Richter
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 10 Street, 61-614 Poznan, Poland.
| | - Tomasz Trzeciak
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, 28 czerwca 1956r. Street No. 135/147, 61-545 Poznan, Poland.
| | - Michael Giersig
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 10 Street, 61-614 Poznan, Poland.
- Department of Physics, Institute of Experimental Physics, Freie Universität, Arnimallee 14, 14195 Berlin, Germany.
| | - Jakub Dalibor Rybka
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 10 Street, 61-614 Poznan, Poland.
| |
Collapse
|