1
|
Bohec P, Dupuy F, Tishkova V, de Noray VS, Valignat MP, Theodoly O. Microvalve-based gradient generators to control flow-free, time zero and long-term conditions. LAB ON A CHIP 2025; 25:2043-2052. [PMID: 40070238 DOI: 10.1039/d4lc00901k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Experiments with gradients of soluble bioactive species have significantly advanced with microfluidic developments that enable cell observation and stringent control of environmental conditions. While some methodologies rely on flow to establish gradients, others opt for flow-free conditions, which is particularly beneficial for studying non-adherent and/or shear-sensitive cells. In flow-free devices, bioactive species diffuse either through resistive microchannels in microchannel-based devices, through a porous membrane in membrane-based devices, or through a hydrogel in gel-based devices. However, despite significant advancements over traditional methods such as Boyden chambers, these technologies have not been widely disseminated in biological laboratories, arguably due to entrenched practices and the intricate skills required for conducting microfluidic assays. Here, we developed microfluidic platforms integrating barriers with Quake-type pneumatic microvalves in place of microgrooves, membranes, or gels. One set of microvalves is used to maintain flow-free conditions and another set to regulate diffusion between a central channel housing the specimen of interest and sink/source reservoirs. This configuration enables stringent control over residual flows, precise spatial-temporal regulation of gradient formation, and exceptional gradient stability, maintained over extended periods via automated refilling of source and sink reservoirs. The gradient establishment was validated using fluorescent tracers with molar masses of 0.3-40 kDa, while cellular assays demonstrated the chemotactic response of primary human neutrophils swimming toward FMLP. The fabrication of microfluidic devices remains standardly demanding, but experimentation can be fully automated thanks to microvalves, making it accessible to non-expert users. This work presents a robust microfluidic approach for generating tunable gradients with stringent control over flow-free, time-zero, and long-term conditions and its automation and accessibility may promote adoption in academic and biomedical settings especially for non-adherent specimens.
Collapse
Affiliation(s)
- Pierre Bohec
- LAI, CNRS, INSERM, Turing Center for Living Systems, Aix Marseille Univ, Marseille, France
| | - Florian Dupuy
- LAI, CNRS, INSERM, Turing Center for Living Systems, Aix Marseille Univ, Marseille, France
| | | | | | - Marie-Pierre Valignat
- LAI, CNRS, INSERM, Turing Center for Living Systems, Aix Marseille Univ, Marseille, France
| | - Olivier Theodoly
- LAI, CNRS, INSERM, Turing Center for Living Systems, Aix Marseille Univ, Marseille, France
| |
Collapse
|
2
|
Parittotokkaporn S. Smartphone generated electrical fields induce axon regrowth within microchannels following injury. Med Eng Phys 2022; 105:103815. [DOI: 10.1016/j.medengphy.2022.103815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
|
3
|
Micro/nanofluidic devices for drug delivery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 187:9-39. [PMID: 35094782 DOI: 10.1016/bs.pmbts.2021.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Micro/nanofluidic drug delivery systems have attracted significant attention as they offer unique advantages in targeted and controlled drug delivery. Based on the desired application, these systems can be categorized into three different groups: in vitro, in situ and in vivo microfluidic drug delivery platforms. In vitro microfluidic drug delivery platforms are closely linked with the emerging concept of lab-on-a-chip for cell culture studies. These systems can be used to administer drugs or therapeutic agents, mostly at the cellular or tissue level, to find the therapeutic index and can potentially be used for personalized medicine. In situ and in vivo microfluidic drug delivery platforms are still at the developmental stage and can be used for drug delivery at tissue or organ levels. A famous example of these systems are microneedles that can be used for painless and controllable delivery of drugs or vaccines through human skin. This chapter presents the cutting edge advances in the design and fabrication of in vitro microfluidic drug delivery systems that can be used for both cellular and tissue drug delivery. It also briefly discusses the in situ drug delivery platforms using microneedles.
Collapse
|
4
|
Parittotokkaporn S, Dravid A, Raos BJ, Rosset S, Svirskis D, O'Carroll SJ. Stretchable microchannel-on-a-chip: A simple model for evaluating the effects of uniaxial strain on neuronal injury. J Neurosci Methods 2021; 362:109302. [PMID: 34343573 DOI: 10.1016/j.jneumeth.2021.109302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 07/14/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Axonal injury is a major component of traumatic spinal cord injury (SCI), associated with rapid deformation of spinal tissue and axonal projections. In vitro models enable us to examine these effects and screen potential therapies in a controlled, reproducible manner. NEW METHOD A customized, stretchable microchannel system was developed using polydimethylsiloxane microchannels. Cortical and spinal embryonic rat neurons were cultured within the microchannel structures, allowing a uniaxial strain to be applied to isolated axonal processes. Global strains of up to 52% were applied to the stretchable microchannel-on-a-chip platform leading to local strains of up to 12% being experienced by axons isolated in the microchannels. RESULTS Individual axons exposed to local strains between 3.2% and 8.7% developed beading within 30-minutes of injury. At higher local strains of 9.8% and 12% individual axons ruptured within 30-minutes of injury. Axon bundles, or fascicles, were more resistant to rupture at each strain level, compared to individual axons. At lower local strain of 3.2%, axon bundles inside microchannels and neuronal cells near entrances of them progressively swelled and degenerated over a period of 7 days after injury. COMPARISON WITH EXISTING METHOD(S) This method is simple, reliable and reproducible with good control and measurement of injury tolerance and morphological deformations using standard laboratory equipment. By measuring local strains, we observed that axonal injuries occur at a lower strain magnitude and a lower strain rate than previous methods reporting global strains, which may not accurately reflect the true axonal strain. CONCLUSIONS We describe a novel stretchable microchannel-on-a-chip platform to study the effect of varying local strain on morphological characteristics of neuronal injury.
Collapse
Affiliation(s)
- Sam Parittotokkaporn
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences and The Centre for Brain Research, University of Auckland, New Zealand
| | - Anusha Dravid
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Brad J Raos
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Samuel Rosset
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Simon J O'Carroll
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences and The Centre for Brain Research, University of Auckland, New Zealand.
| |
Collapse
|
5
|
Baldwin SA, Van Bruggen SM, Koelbl JM, Appalabhotla R, Bear JE, Haugh JM. Microfluidic devices fitted with "flowver" paper pumps generate steady, tunable gradients for extended observation of chemotactic cell migration. BIOMICROFLUIDICS 2021; 15:044101. [PMID: 34290842 PMCID: PMC8282348 DOI: 10.1063/5.0054764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/19/2021] [Indexed: 05/11/2023]
Abstract
Microfluidics approaches have gained popularity in the field of directed cell migration, enabling control of the extracellular environment and integration with live-cell microscopy; however, technical hurdles remain. Among the challenges are the stability and predictability of the environment, which are especially critical for the observation of fibroblasts and other slow-moving cells. Such experiments require several hours and are typically plagued by the introduction of bubbles and other disturbances that naturally arise in standard microfluidics protocols. Here, we report on the development of a passive pumping strategy, driven by the high capillary pressure and evaporative capacity of paper, and its application to study fibroblast chemotaxis. The paper pumps-flowvers (flow + clover)-are inexpensive, compact, and scalable, and they allow nearly bubble-free operation, with a predictable volumetric flow rate on the order of μl/min, for several hours. To demonstrate the utility of this approach, we combined the flowver pumping strategy with a Y-junction microfluidic device to generate a chemoattractant gradient landscape that is both stable (6+ h) and predictable (by finite-element modeling calculations). Integrated with fluorescence microscopy, we were able to recapitulate previous, live-cell imaging studies of fibroblast chemotaxis to platelet derived growth factor (PDGF), with an order-of-magnitude gain in throughput. The increased throughput of single-cell analysis allowed us to more precisely define PDGF gradient conditions conducive for chemotaxis; we were also able to interpret how the orientation of signaling through the phosphoinositide 3-kinase pathway affects the cells' sensing of and response to conducive gradients.
Collapse
Affiliation(s)
- Scott A. Baldwin
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, North Carolina 27695, USA
| | - Shawn M. Van Bruggen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, North Carolina 27695, USA
| | - Joseph M. Koelbl
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, North Carolina 27695, USA
| | - Ravikanth Appalabhotla
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, North Carolina 27695, USA
| | - James E. Bear
- Department of Cell Biology and Physiology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Jason M. Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, North Carolina 27695, USA
| |
Collapse
|
6
|
Ramadan Q, Zourob M. Organ-on-a-chip engineering: Toward bridging the gap between lab and industry. BIOMICROFLUIDICS 2020; 14:041501. [PMID: 32699563 PMCID: PMC7367691 DOI: 10.1063/5.0011583] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/22/2020] [Indexed: 05/03/2023]
Abstract
Organ-on-a-chip (OOC) is a very ambitious emerging technology with a high potential to revolutionize many medical and industrial sectors, particularly in preclinical-to-clinical translation in the pharmaceutical arena. In vivo, the function of the organ(s) is orchestrated by a complex cellular structure and physiochemical factors within the extracellular matrix and secreted by various types of cells. The trend in in vitro modeling is to simplify the complex anatomy of the human organ(s) to the minimal essential cellular structure "micro-anatomy" instead of recapitulating the full cellular milieu that enables studying the absorption, metabolism, as well as the mechanistic investigation of drug compounds in a "systemic manner." However, in order to reflect the human physiology in vitro and hence to be able to bridge the gap between the in vivo and in vitro data, simplification should not compromise the physiological relevance. Engineering principles have long been applied to solve medical challenges, and at this stage of organ-on-a-chip technology development, the work of biomedical engineers, focusing on device engineering, is more important than ever to accelerate the technology transfer from the academic lab bench to specialized product development institutions and to the increasingly demanding market. In this paper, instead of presenting a narrative review of the literature, we systemically present a synthesis of the best available organ-on-a-chip technology from what is found, what has been achieved, and what yet needs to be done. We emphasized mainly on the requirements of a "good in vitro model that meets the industrial need" in terms of the structure (micro-anatomy), functions (micro-physiology), and characteristics of the device that hosts the biological model. Finally, we discuss the biological model-device integration supported by an example and the major challenges that delay the OOC technology transfer to the industry and recommended possible options to realize a functional organ-on-a-chip system.
Collapse
Affiliation(s)
- Qasem Ramadan
- Alfaisal University, Al Zahrawi Street, Riyadh 11533, Kingdom of Saudi Arabia
| | - Mohammed Zourob
- Alfaisal University, Al Zahrawi Street, Riyadh 11533, Kingdom of Saudi Arabia
| |
Collapse
|
7
|
Carrell CS, McCord CP, Wydallis RM, Henry CS. Sealing 3D-printed parts to poly(dimethylsiloxane) for simple fabrication of Microfluidic devices. Anal Chim Acta 2020; 1124:78-84. [PMID: 32534678 DOI: 10.1016/j.aca.2020.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/24/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022]
Abstract
Microfluidics has revolutionized the fields of bioanalytical chemistry, cellular biology, and molecular biology. Advancements in microfluidic technologies, however, are often limited by labor, time, and resource-intensive fabrication methods, most commonly a form of photolithography. The advent of 3D printing has helped researchers fabricate proof-of-concept microfluidics more rapidly and at lower costs but suffers from poor resolution and tedious post-processing to remove uncured resin from enclosed channels. Additionally, custom resins and printers are often needed to create entirely enclosed channels, which increases cost and complexity of fabrication. In this work we demonstrate the ability to create microfluidic devices by covalently sealing 3D-printed parts with open-faced channels to polydimethylsiloxane (PDMS). Open-faced channels are easier to print than fully enclosed channels and can be printed using an inexpensive and commercially available stereolithography 3D printer and resin. The 3D-printed parts are sealed to PDMS, a common substrate used in traditional microfluidic fabrication, using two different techniques. The first involves coating the part with a commercially available silicone spray before sealing to PDMS via plasma treatment. In the second technique, the cured methacrylate resin is silanized with (3-Aminopropyl)triethoxysilane (APTES) before binding to PDMS with plasma treatment. Both methods create a strong seal between the two substrates, which is demonstrated with several types of microfluidic devices including droplet and gradient generators.
Collapse
Affiliation(s)
- Cody S Carrell
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, United States
| | - Cynthia P McCord
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, United States
| | - Rachel M Wydallis
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, United States
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, United States.
| |
Collapse
|
8
|
Garcia-Seyda N, Aoun L, Tishkova V, Seveau V, Biarnes-Pelicot M, Bajénoff M, Valignat MP, Theodoly O. Microfluidic device to study flow-free chemotaxis of swimming cells. LAB ON A CHIP 2020; 20:1639-1647. [PMID: 32249280 DOI: 10.1039/d0lc00045k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microfluidic devices have been used in the last two decades to study in vitro cell chemotaxis, but few existing devices generate gradients in flow-free conditions. Flow can bias cell directionality of adherent cells and precludes the study of swimming cells like naïve T lymphocytes, which only migrate in a non-adherent fashion. We developed two devices that create stable, flow-free, diffusion-based gradients and are adapted for adherent and swimming cells. The flow-free environment is achieved by using agarose gel barriers between a central channel with cells and side channels with chemoattractants. These barriers insulate cells from injection/rinsing cycles of chemoattractants, they dampen residual drift across the device, and they allow co-culture of cells without physical interaction, to study contactless paracrine communication. Our devices were used here to investigate neutrophil and naïve T lymphocyte chemotaxis.
Collapse
Affiliation(s)
- Nicolas Garcia-Seyda
- Aix Marseille Univ, Inserm, CNRS, Turing Center for Living Systems, LAI, Marseille, France.
| | - Laurene Aoun
- Aix Marseille Univ, Inserm, CNRS, Turing Center for Living Systems, LAI, Marseille, France.
| | | | - Valentine Seveau
- Aix Marseille Univ, Inserm, CNRS, Turing Center for Living Systems, LAI, Marseille, France.
| | | | - Marc Bajénoff
- Aix Marseille Univ, Inserm, CNRS, CIML, Marseille, France
| | - Marie-Pierre Valignat
- Aix Marseille Univ, Inserm, CNRS, Turing Center for Living Systems, LAI, Marseille, France.
| | - Olivier Theodoly
- Aix Marseille Univ, Inserm, CNRS, Turing Center for Living Systems, LAI, Marseille, France.
| |
Collapse
|