1
|
Wang P, Zhou D, Hu L, Ge P, Cen Z, Hu Z, He Q, Zhou K, Wu B, Huang X. Metabolic profiles and prediction of failure to thrive of citrin deficiency with normal liver function based on metabolomics and machine learning. Nutr Metab (Lond) 2025; 22:42. [PMID: 40355928 PMCID: PMC12070541 DOI: 10.1186/s12986-025-00928-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
PURPOSE This study aimed to explore metabolite pathways and identify residual metabolites during the post-neonatal intrahepatic cholestasis caused by citrin deficiency (post-NICCD) phase, while developing a predictive model for failure to thrive (FTT) using selected metabolites. METHOD A case-control study was conducted from October 2020 to July 2024, including 16 NICCD patients, 31 NICCD-matched controls, 34 post-NICCD patients, and 70 post-NICCD-matched controls. Post-NICCD patients were further stratified into two groups based on growth outcomes. Biomarkers for FTT were identified using Lasso regression and random forest analysis. A non-invasive predictive model was developed, visualized as a nomogram, and internally validated using the enhanced bootstrap method. The model's performance was evaluated with receiver operating characteristic curves and calibration curves. Metabolite concentrations (amino acids, acylcarnitines, organic acids, and free fatty acids) were measured using liquid chromatography or ultra-performance liquid chromatography-tandem mass spectrometry. RESULTS The biosynthesis of unsaturated fatty acids was identified as the most significantly altered pathway in post-NICCD patients. Twelve residual metabolites altered during both NICCD and post-NICCD phases were identified, including: 2-hydroxyisovaleric acid, alpha-ketoisovaleric acid, C5:1, 3-methyl-2-oxovaleric acid, C18:1OH, C20:4, myristic acid, eicosapentaenoic acid, carnosine, hydroxylysine, phenylpyruvic acid, and 2-methylcitric acid. Lasso regression and random forest analysis identified kynurenine, arginine, alanine, and aspartate as the optimal biomarkers for predicting FTT in post-NICCD patients. The predictive model constructed with these four biomarkers demonstrated an AUC of 0.947. CONCLUSION While post-NICCD patients recover clinically and biochemically, their metabolic profiles remain incompletely restored. The predictive model based on kynurenine, arginine, alanine, and aspartate provides robust diagnostic performance for detecting FTT in post-NICCD patients.
Collapse
Affiliation(s)
- Peiyao Wang
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou City, Zhejiang Province, 310052, China
| | - Duo Zhou
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou City, Zhejiang Province, 310052, China
| | - Lingwei Hu
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou City, Zhejiang Province, 310052, China
| | - Pingping Ge
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou City, Zhejiang Province, 310052, China
| | - Ziyan Cen
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou City, Zhejiang Province, 310052, China
| | - Zhenzhen Hu
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou City, Zhejiang Province, 310052, China
| | - Qimin He
- School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
- Suzhou Bohe Intelligent Information Technology Co., Ltd., Suzhou, 215100, China.
| | - Kejun Zhou
- Human Metabolomics Institute, Inc., Shenzhen, Guangdong, 518109, China.
| | - Benqing Wu
- Children's Medical Center, Shenzhen Guangming District People's Hospital, Shenzhen, Guangdong, 518106, China.
- Children's Medical Center, University of the Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, Guangdong, China.
| | - Xinwen Huang
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou City, Zhejiang Province, 310052, China.
| |
Collapse
|
2
|
Kido J, Sugawara K, Tavoulari S, Makris G, Rüfenacht V, Nakamura K, Kunji ERS, Häberle J. Deciphering the Mutational Background in Citrin Deficiency Through a Nationwide Study in Japan and Literature Review. Hum Mutat 2025; 2025:9326326. [PMID: 40309478 PMCID: PMC12041640 DOI: 10.1155/humu/9326326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/24/2024] [Accepted: 03/26/2025] [Indexed: 05/02/2025]
Abstract
Citrin deficiency (CD) is an autosomal recessive disorder caused by the absence or dysfunction of the mitochondrial transporter citrin, resulting from mutations in SLC25A13. The disease presents with age-dependent clinical manifestations: neonatal intrahepatic cholestasis caused by CD (NICCD), failure to thrive and dyslipidemia by CD (FTTDCD), and an adult-onset form (formerly called Type II citrullinemia, CTLN2, recently renamed to "adolescent and adult citrin deficiency," AACD). We performed this study to compile known genotypes found in CD patients and investigate their impact on the clinical course. Through a nationwide survey in Japan as well as a literature review, we collected information regarding 68 genetic variants of a total of 345 patients with CD (285 NICCD, 19 post-NICCD, and 41 AACD). In this cohort, the pathogenic variants, arising from nonsense, insertion/deletion, and splice site mutations, are expected to have severe functional or biogenesis defects. Of 82 alleles in patients with AACD, the two most common variants, c.852_855del and c.1177+1G>A, accounted for 25 alleles (30.5%) and 15 alleles (18.3%), respectively. The c.852_855del variant, even when present as part of compound heterozygosity, often presented with hyperammonemia (≥ 180 μmol/L), cognitive impairment, short stature (< -2SD), liver cirrhosis, and pancreatitis, with some patients requiring liver transplantation. In conclusion, certain SLC25A13 genotypes are particularly frequent, especially those that result in severely truncated citrin proteins with often a significant impact on the clinical outcome of the patient. The most prevalent variant is c.852_855del, which was found in 42% (128/304) of NICCD/post-NICCD cases and 49% (20/41) of AACD patients.
Collapse
Affiliation(s)
- Jun Kido
- University Children's Hospital Zurich and Children's Research Centre, University of Zurich, Zurich, Switzerland
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Keishin Sugawara
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Sotiria Tavoulari
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Georgios Makris
- University Children's Hospital Zurich and Children's Research Centre, University of Zurich, Zurich, Switzerland
| | - Véronique Rüfenacht
- University Children's Hospital Zurich and Children's Research Centre, University of Zurich, Zurich, Switzerland
| | - Kimitoshi Nakamura
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Edmund R. S. Kunji
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Johannes Häberle
- University Children's Hospital Zurich and Children's Research Centre, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Wang P, Hu L, Chen Y, Zhou D, Zhu S, Zhang T, Cen Z, He Q, Wu B, Huang X. Enhancing newborn screening sensitivity and specificity for missed NICCD using selected amino acids and acylcarnitines. Orphanet J Rare Dis 2025; 20:17. [PMID: 39799340 PMCID: PMC11724517 DOI: 10.1186/s13023-025-03532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/27/2024] [Indexed: 01/15/2025] Open
Abstract
PURPOSE To enhance the detection rate of Neonatal Intrahepatic Cholestasis caused by Citrin Deficiency (NICCD) through newborn screening (NBS), we analyzed the metabolic profiles of missed patients and proposed a more reliable method for early diagnosis. METHODS In this retrospective study, NICCD patients were classified into "Newborn Screening" (64 individuals) and "Missed Screening" (52 individuals) groups. Metabolic profiles were analyzed using the non-derivatized MS/MS Kit, and genetic mutations were identified via next-generation sequencing and confirmed by Sanger sequencing. Receiver Operating Characteristic (ROC) analysis evaluated the predictive value of amino acids and acylcarnitines in dried blood spots (DBS) for identifying missed patients including 40 missed patients and 17,269 healthy individuals, with additional validation using 12 missed patients and 454 healthy controls. RESULTS The age of diagnosis was significantly higher in the "Missed Screening" group compared to the "Newborn Screening" group (74.50 vs. 18.00 days, P < 0.001). ROC analysis revealed that citrulline had excellent diagnostic accuracy for missed patients, with an AUC of 0.970 and a cut-off value of 17.57 µmol/L. Additionally, glycine, phenylalanine, ornithine, and C8 were significant markers, each with an AUC greater than 0.70. A combination of these markers achieved an AUC of 0.996 with a cut-off value of 0.00195. Validation demonstrated a true positive rate of 91.67% and a true negative rate of 96.48%. Common SLC25A13 mutations in both groups were c.852_855del, IVS16ins3kb, and c.615 + 5G > A. CONCLUSIONS Combining multiple metabolic markers during NBS significantly improves sensitivity and specificity for detecting missed NICCD cases. However, the relationship between genetic mutations and missed cases remains unclear.
Collapse
Affiliation(s)
- Peiyao Wang
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Lingwei Hu
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Yuhe Chen
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Duo Zhou
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Shasha Zhu
- Department of Pediatric Health, Taizhou Women and Children's Hospital, Taizhou, 318000, Zhejiang, China
| | - Ting Zhang
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Ziyan Cen
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Qimin He
- School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu, China.
| | - Benqing Wu
- Children's Medical Center, University of the Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, 518106, Guangdong, China.
| | - Xinwen Huang
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
4
|
Kido J, Makris G, Santra S, Häberle J. Clinical landscape of citrin deficiency: A global perspective on a multifaceted condition. J Inherit Metab Dis 2024; 47:1144-1156. [PMID: 38503330 PMCID: PMC11586594 DOI: 10.1002/jimd.12722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 03/21/2024]
Abstract
Citrin deficiency is an autosomal recessive disorder caused by a defect of citrin resulting from mutations in SLC25A13. The clinical manifestation is very variable and comprises three types: neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD: OMIM 605814), post-NICCD including failure to thrive and dyslipidemia caused by citrin deficiency, and adult-onset type II citrullinemia (CTLN2: OMIM 603471). Frequently, NICCD can run with a mild clinical course and manifestations may resolve in the post-NICCD. However, a subset of patients may develop CTLN2 when they become more than 18 years old, and this condition is potentially life-threatening. Since a combination of diet with low-carbohydrate and high-fat content supplemented with medium-chain triglycerides is expected to ameliorate most manifestations and to prevent the progression to CTLN2, early detection and intervention are important and may improve long-term outcome in patients. Moreover, infusion of high sugar solution and/or glycerol may be life-threatening in patients with citrin deficiency, particularly CTLN2. The disease is highly prevalent in East Asian countries but is more and more recognized as a global entity. Since newborn screening for citrin deficiency has only been introduced in a few countries, the diagnosis still mainly relies on clinical suspicion followed by genetic testing or selective metabolic screening. This paper aims at describing (1) the different stages of the disease focusing on clinical aspects; (2) the current published clinical situation in East Asia, Europe, and North America; (3) current efforts in increasing awareness by establishing management guidelines and patient registries, hereby illustrating the ongoing development of a global network for this rare disease.
Collapse
Affiliation(s)
- Jun Kido
- University Children's Hospital Zurich and Children's Research CentreZurichSwitzerland
- Department of Pediatrics, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
- Department of PediatricsKumamoto University HospitalKumamotoJapan
| | - Georgios Makris
- University Children's Hospital Zurich and Children's Research CentreZurichSwitzerland
| | - Saikat Santra
- Department of Clinical Inherited Metabolic DisordersBirmingham Children's HospitalBirminghamUK
| | - Johannes Häberle
- University Children's Hospital Zurich and Children's Research CentreZurichSwitzerland
| |
Collapse
|
5
|
Inui A, Ko JS, Chongsrisawat V, Sibal A, Hardikar W, Chang MH, Treepongkaruna S, Arai K, Kim KM, Chen HL. Update on the diagnosis and management of neonatal intrahepatic cholestasis caused by citrin deficiency: Expert review on behalf of the Asian Pan-Pacific Society for Pediatric Gastroenterology, Hepatology, and Nutrition. J Pediatr Gastroenterol Nutr 2024; 78:178-187. [PMID: 38374571 DOI: 10.1002/jpn3.12042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 02/21/2024]
Abstract
Citrin deficiency is an autosomal recessive metabolic liver disease caused by mutations in the SLC25A13 gene. The disease typically presents with cholestasis, elevated liver enzymes, hyperammonemia, hypercitrullinemia, and fatty liver in young infants, resulting in a phenotype known as "neonatal intrahepatic cholestasis caused by citrin deficiency" (NICCD). The diagnosis relies on clinical manifestation, biochemical evidence of hypercitrullinemia, and identifying mutations in the SLC25A13 gene. Several common mutations have been found in patients of East Asian background. The mainstay treatment is nutritional therapy in early infancy utilizing a lactose-free and medium-chain triglyceride formula. This approach leads to the majority of patients recovering liver function by 1 year of age. Some patients may remain asymptomatic or undiagnosed, but a small proportion of cases can progress to cirrhosis and liver failure, necessitating liver transplantation. Recently, advancements in newborn screening methods have improved the age of diagnosis. Early diagnosis and timely management improve patient outcomes. Further studies are needed to elucidate the long-term follow-up of NICCD patients into adolescence and adulthood.
Collapse
Affiliation(s)
- Ayano Inui
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohamshi Tobu Hospital, Yokohama, Japan
| | - Jae Sung Ko
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Voranush Chongsrisawat
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | | | - Winita Hardikar
- Department of Gastroenterology, Royal Children's Hospital, Melbourne, Australia
| | - Mei-Hwei Chang
- Department of Pediatrics, National Taiwan University College of Medicine and Children's Hospital, Taipei, Taiwan
| | - Suporn Treepongkaruna
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Katsuhiro Arai
- Division of Gastroenterology, National Center for Child Health and Development, Tokyo, Japan
| | - Kyung Mo Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Huey-Ling Chen
- Department of Pediatrics, National Taiwan University College of Medicine and Children's Hospital, Taipei, Taiwan
- Department and Graduate Institute of Medical Education and Bioethics, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| |
Collapse
|
6
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:122-294. [DOI: 10.1016/b978-0-7020-8228-3.00003-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
7
|
Chen CY, Chang MH, Chen HL, Chien YH, Wu JF. The prognosis of citrin deficiency differs between early-identified newborn and later-onset symptomatic infants. Pediatr Res 2023; 94:1151-1157. [PMID: 37029238 DOI: 10.1038/s41390-023-02585-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/13/2023] [Accepted: 03/20/2023] [Indexed: 04/09/2023]
Abstract
BACKGROUND The prognosis for patients with citrin deficiency is not always benign. This study examined the differences between patients identified early by newborn screening and patients identified later with cholestasis/hepatitis. MATERIALS AND METHODS This retrospective study included 42 patients with genetically confirmed SLC25A13 mutations who were born between May 1996 and August 2019. Fifteen patients were identified during newborn screening (NBS group) and 27 patients were identified through the onset of cholestasis/hepatitis in infancy (clinical group). RESULTS Overall, 90% of the patients presented with cholestasis, among whom 86% (31/36) recovered at a median age of 174 days. Compared with patients in the clinical group, patients in the NBS group were significantly younger at diagnosis and at cholestasis-free achievement; they also had significantly lower levels of peak direct bilirubin and liver enzymes. At the median follow-up age of 11.8 years, 21% of the patients had dyslipidemia, whereas 36% of the patients had failure to thrive. The overall mortality rate was 2.4%. Variant c.851_854del was the most frequent, constituting 44% of the mutant alleles. CONCLUSION Patients identified early by NBS had a better prognosis, demonstrating the importance of a timely diagnosis of NICCD and the need for careful follow-up. IMPACT Some cases of neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) are not benign. Compared with patients identified later based on the presence of cholestasis/hepatitis, patients identified early by newborn screening have less severe cholestasis and are cholestasis-free at a significantly younger age. A timely diagnosis is needed, along with follow-up examinations that assess metabolic profile and body weight, to improve the long-term prognosis of NICCD patients.
Collapse
Affiliation(s)
- Cheng-Yu Chen
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Mei-Hwei Chang
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Huey-Ling Chen
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Yin-Hsiu Chien
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan.
- Department of Medical Genetics, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan.
| | - Jia-Feng Wu
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
8
|
Nguyen MHT, Nguyen AHP, Ngo DN, Nguyen PMT, Tang HS, Giang H, Lu YT, Nguyen HN, Tran MD. The mutation spectrum of SLC25A13 gene in citrin deficiency: identification of novel mutations in Vietnamese pediatric cohort with neonatal intrahepatic cholestasis. J Hum Genet 2023; 68:305-312. [PMID: 36599957 DOI: 10.1038/s10038-022-01112-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/29/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Citrin deficiency (CD), a disorder caused by mutations in the SLC25A13 gene, may result in neonatal intrahepatic cholestasis. This study was purposely to explore the mutation spectrum of SLC25A13 gene in Vietnamese CD patients. METHODS The 292 unrelated CD patients were first screened for four high-frequency mutations by PCR/PCR-RFLP. Then, Sanger sequencing was performed directly for heterozygous or undetected patients. Novel mutations identified would need to be confirmed by their parents. RESULTS 12 pathogenic SLC25A13 mutations were identified in all probands, including three deletions c.851_854del (p.R284Rfs*3), c.70-63_133del (p.Y24_72Ifs*10), and c.[1956C>A;1962del] (p.[N652K;F654Lfs*45]), two splice-site mutations (IVS6+5G>A and IVS11+1G>A), one nonsense mutations c.1399C>T (p.R467*), one duplication mutation c.1638_1660dup (p.A554fs*570), one insertion IVSl6ins3kb (p.A584fs*585), and four missense mutation c.2T>C (p.M1T), c.1231G>A (p.V411M), c.1763G>A (p.R588Q), and c.135G>C (p.L45F). Among them, c.851_854del (mut I) was the most identified mutant allele (91.78%) with a total of 247 homozygous and 42 heterozygous genotypes of carriers. Interestingly, two novel mutations were identified: c.70-63_133del (p.Y24_72Ifs*10) and c.[1956C>A;1962del] (p.[N652K;F654Lfs*45]). CONCLUSION The SLC25A13 mutation spectrum related to intrahepatic cholestasis infants in Vietnam revealed a quite similar pattern to Asian countries' reports. This finding supports the use of targeted SLC25A13 mutation for CD screening in Vietnam and contributed to the SLC25A13 mutation spectra worldwide. It also helps emphasize the role of DNA analysis in treatment, genetic counseling, and prenatal diagnosis.
Collapse
Affiliation(s)
| | | | - Diem-Ngoc Ngo
- Human Genetics Department, National Children's Hospital, Hanoi, Vietnam
| | | | - Hung-Sang Tang
- Gene Solutions, Ho Chi Minh City, Vietnam.,Medical Genetics Institutes, Ho Chi Minh City, Vietnam
| | - Hoa Giang
- Gene Solutions, Ho Chi Minh City, Vietnam.,Medical Genetics Institutes, Ho Chi Minh City, Vietnam
| | - Y-Thanh Lu
- Medical Genetics Institutes, Ho Chi Minh City, Vietnam
| | - Hoai-Nghia Nguyen
- Medical Genetics Institutes, Ho Chi Minh City, Vietnam.,University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Minh-Dien Tran
- Human Genetics Department, National Children's Hospital, Hanoi, Vietnam.,Hepatology Department, National Children's Hospital, Hanoi, Vietnam
| |
Collapse
|
9
|
Zhang T, Zhu S, Miao H, Yang J, Shi Y, Yue Y, Zhang Y, Yang R, Wu B, Huang X. Dynamic changes of metabolic characteristics in neonatal intrahepatic cholestasis caused by citrin deficiency. Front Mol Biosci 2022; 9:939837. [PMID: 36090036 PMCID: PMC9449879 DOI: 10.3389/fmolb.2022.939837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) is a pan-ethnic complicated inborn error of metabolism but the specific mechanism is not fully understood.Methods: A total of 169 patients with NICCD who have biallelic pathogenic SLC25A13 variants detected by targeted next-generation sequencing were collected. They were divided into the “Newborn-screen Group” and “Clinical diagnosed Group” depending on the newborn screening results. Amino acid and acylcarnitine profiles were measured by MS/MS. The total bile acids, blood amino acids and acylcarnitines, general biochemistry, blood count, and coagulation parameters were monitored every 2–3 months. We compared the differences in metabolic indices and their dynamic changes between these two groups. The Mann–Whitney test and orthogonal partial least squares discrimination analysis (OPLS-DA) were used for statistical analysis.Results: At the onset of NICCD, we found that the “Clinical diagnosed Group” had higher levels of intermediate products of the urea cycle, free carnitine, and short-chain and long-chain acylcarnitines than those in the “Newborn-screen Group,” but the levels of ketogenic/glucogenic amino acids and several medium-chain acylcarnitines were lower. Furthermore, concentrations of direct bilirubin, total bile acid, lactate, prothrombin time, and several liver enzymes were significantly higher while total protein, amylase, and hemoglobin were lower in the “Clinical diagnosed Group” than in the “Newborn-screen Group.” Dynamic change analysis showed that direct bilirubin, albumin, arginine, and citrulline were the earliest metabolic derangements to reach peak levels in NICCD groups, followed by acylcarnitine profiles, and finally with the elevation of liver enzymes. All abnormal characteristic metabolic indicators in the “Newborn-screen Group” came back to normal levels at earlier ages than the “Clinical diagnosed Group.” c.852_855del (41.2%), IVS16ins3kb (17.6%), c.615 + 5G>A (9.6%), 1638_1660dup (4.4%), and c.1177 + 1G>A (3.7%) accounted for 76.5% of all the mutated SLC25A13 alleles in our population.Conclusion: Argininosuccinate synthesis, gluconeogenesis, ketogenesis, fatty acid oxidation, liver function, and cholestasis were more severely affected in the “Clinical diagnosed Group.” The “Newborn-screen Group” had a better prognosis which highlighted the importance of newborn screening of NICCD.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Genetics and Metabolism, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Shasha Zhu
- Department of Genetics and Metabolism, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Haixia Miao
- Department of Genetics and Metabolism, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jianbin Yang
- Department of Genetics and Metabolism, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yezhen Shi
- Department of Technical Support, Zhejiang Biosan Biochemical Technologies Co. Ltd., Hangzhou, China
| | - Yuwei Yue
- Department of Technical Support, Zhejiang Biosan Biochemical Technologies Co. Ltd., Hangzhou, China
| | - Yu Zhang
- Department of Technical Support, Zhejiang Biosan Biochemical Technologies Co. Ltd., Hangzhou, China
| | - Rulai Yang
- Department of Genetics and Metabolism, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Benqing Wu
- Department of Neonatology, Children’s Medical Center, University of Chinese Academy of Science-Shenzhen Hospital, Shenzhen, China
- *Correspondence: Benqing Wu, ; Xinwen Huang,
| | - Xinwen Huang
- Department of Genetics and Metabolism, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Benqing Wu, ; Xinwen Huang,
| |
Collapse
|
10
|
Mention K, Joncquel Chevalier Curt M, Dessein AF, Douillard C, Dobbelaere D, Vamecq J. Citrin deficiency: Does the reactivation of liver aralar-1 come into play and promote HCC development? Biochimie 2021; 190:20-23. [PMID: 34228977 DOI: 10.1016/j.biochi.2021.06.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 12/30/2022]
Abstract
Hepatocellular carcinoma (HCC) is a longstanding issue in clinical practice and metabolic research. New clues in better understanding the pathogenesis of HCC might relate to the metabolic context in patients with citrin (aspartate-glutamate carrier 1) deficiency (CD). Because citrin-deficient liver (CDL) is subject to HCC, it represents a unique metabolic model to highlight the mechanisms of HCC promotion, offering different angles of study than the classical metabolic syndrome/obesity/non-alcoholic fatty liver disease (NAFLD)/HCC study axis. In turn, the metabolic features of HCC could shed light on the pathogenesis of CDL. Among these, HCC-induced re-activation of aralar-1 (aspartate-glutamate carrier 2), physiologically not expressed in the adult liver, might take place in CDL, so gene redundancy for mitochondrial aspartate-glutamate carriers would be exploited by the CDL. This proposed (aralar-1 re-activation) and known (citrate/malate cycle) adaptive mechanisms may substitute for the impaired function in CD and are consistent with the clinical remission stage of CD and CD improvement by medium-chain triglycerides (MCT). However, these metabolic adaptive benefits could also promote HCC development. In CD, as a result of PPARα down-regulation, liver mitochondrial fatty acid-derived acetyl-CoA would, like glucose-derived acetyl-CoA, be used for lipid anabolism and fuel nuclear acetylation events which might trigger aralar-1 re-activation as seen in non-CD HCC. A brief account of these metabolic events which might lead to aralar-1 re-activation in CDL is here given. Consistency of this account for CDL events further relies on the protective roles of PPARα and inhibition of mitochondrial and plasma membrane citrate transporters in non-CD HCC.
Collapse
Affiliation(s)
- Karine Mention
- Univ. Lille, RADEME - Maladies RAres Du Développement et Du Métabolisme: Du Phénotype au Génotype et à La Fonction, Lille, EA, 7364, France; Medical Reference Center for Inherited Metabolic Diseases, Jeanne de Flandre Hospital, CHRU, Lille, France
| | - Marie Joncquel Chevalier Curt
- CHU Lille, Centre de Biologie Pathologie Génétique, UF Métabolisme Général et Maladies Rares, F-59000, Lille, France
| | - Anne-Frédérique Dessein
- CHU Lille, Centre de Biologie Pathologie Génétique, UF Métabolisme Général et Maladies Rares, F-59000, Lille, France
| | - Claire Douillard
- Endocrinology-Diabetology-Metabolism Department and Medical Reference Center for Inherited Metabolic Diseases Jeanne de Flandre Hospital, CHRU Lille, Lille, France
| | - Dries Dobbelaere
- Univ. Lille, RADEME - Maladies RAres Du Développement et Du Métabolisme: Du Phénotype au Génotype et à La Fonction, Lille, EA, 7364, France; Medical Reference Center for Inherited Metabolic Diseases, Jeanne de Flandre Hospital, CHRU, Lille, France
| | - Joseph Vamecq
- Inserm, Univ. Lille EA 7364 RADEME, CHU Lille, Centre de Biologie Pathologie Génétique, UF Métabolisme Général et Maladies Rares, F-59000, Lille, France.
| |
Collapse
|
11
|
Lin SH, Lee IH, Tsai HC, Chi MH, Chang WH, Chen PS, Chen KC, Yang YK. The association between plasma cholesterol and the effect of tryptophan depletion on heart rate variability. Kaohsiung J Med Sci 2019; 35:440-445. [PMID: 30972948 DOI: 10.1002/kjm2.12067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/25/2019] [Indexed: 11/11/2022] Open
Abstract
Studies on the cholesterol-serotonin hypothesis and its link to mood disorders are scarce. In addition, little is known about the association between cholesterol and the effects of tryptophan depletion (TD). The aim of the present study was to investigate the association between plasma cholesterol and changes in heart rate variability (HRV), an important marker of depression and anxiety, after TD. The plasma cholesterol levels of 28 healthy participants were noted, and their HRVs were measured by spectrum analysis. TD was carried out on testing day, and participants provided blood samples just before and 5 hours for tryptophan level after TD. HRV was measured again after TD. An association was found between plasma cholesterol levels and the change in HRV. Decreased high frequency HRV was marginally associated with lower levels of high-density lipoprotein cholesterol, while increased low frequency HRV was significantly associated with lower levels of total and low-density lipoprotein cholesterol. Our findings indicate that low cholesterol levels may play parts of role in the mechanism of the deactivation of parasympathetic, and activation of sympathetic, functions induced by altered serotonergic function.
Collapse
Affiliation(s)
- Shih-Hsien Lin
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I Hui Lee
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsin Chun Tsai
- Department of Psychiatry, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan
| | - Mei Hung Chi
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei Hung Chang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kao Chin Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen Kuang Yang
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Psychiatry, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan
| |
Collapse
|
12
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2018:111-274. [DOI: 10.1016/b978-0-7020-6697-9.00003-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
13
|
Hsiao CY, Tsai HC, Chi MH, Chen KC, Chen PS, Lee IH, Yeh TL, Yang YK. The Association between Baseline Subjective Anxiety Rating and Changes in Cardiac Autonomic Nervous Activity in Response to Tryptophan Depletion in Healthy Volunteers. Medicine (Baltimore) 2016; 95:e3498. [PMID: 27175645 PMCID: PMC4902487 DOI: 10.1097/md.0000000000003498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The aim of this study was to investigate the influence of serotonin on anxiety and autonomic nervous system (ANS) function; the correlation between subjective anxiety rating and changes of ANS function following tryptophan depletion (TD) in healthy volunteers was examined. Twenty-eight healthy participants, consisting of 15 females and 13 males, with an average age of 33.3 years, were recruited.Baseline Chinese Symptom Checklist-90-Revised and ANS function measurements were taken. TD was carried out on the testing day, and participants provided blood samples right before and 5 hours after TD. ANS function, somatic symptoms, and Visual Analogue Scales (VASs) were determined after TD. Wilcoxon signed rank test and Spearman ρ correlation were adapted for analyses of the results.The TD procedure reduced total and free plasma tryptophan effectively. After TD, the sympathetic nervous activity increased and parasympathetic nervous activity decreased. Baseline anxiety ratings positively correlated with post-TD changes in sympathetic nervous activity, VAS ratings, and physical symptoms. However, a negative correlation with post-TD changes in parasympathetic nervous activity was found.The change in ANS function after TD was associated with the severity of anxiety in healthy volunteers. This supports the fact that the effect of anxiety on heart rate variability is related to serotonin vulnerability. Furthermore, it also shows that the subjective anxiety rating has a biological basis related to serotonin.
Collapse
Affiliation(s)
- Chih Yin Hsiao
- From the Department of Psychiatry, National Cheng Kung University Hospital (CYH, HCT, MHC, KCC, PSC, IHL, TLY, YKY), College of Medicine; Addiction Research Center (CYH, KCC, PSC, IHL, TLY, YKY), National Cheng Kung University, Tainan; Department of Psychiatry (HCT, KCC, YKY), National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin; and Institute of Behavioral Medicine (YKY), College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Joffin N, Jaubert AM, Durant S, Bastin J, De Bandt JP, Cynober L, Moinard C, Forest C, Noirez P. Citrulline induces fatty acid release selectively in visceral adipose tissue from old rats. Mol Nutr Food Res 2014; 58:1765-75. [DOI: 10.1002/mnfr.201400053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/11/2014] [Accepted: 04/14/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Nolwenn Joffin
- Université Paris Descartes; Sorbonne Paris Cité France
- Institut National de la Santé et de la Recherche Médicale UMR-S 1124; Faculté des Sciences Fondamentales et Biomédicales; Pharmacologie Toxicologie et Signalisation Cellulaire; Paris France
| | - Anne-Marie Jaubert
- Institut National de la Santé et de la Recherche Médicale UMR-S 1124; Faculté des Sciences Fondamentales et Biomédicales; Pharmacologie Toxicologie et Signalisation Cellulaire; Paris France
- Département de Biochimie et de Biologie Moléculaire; Faculté de Médecine Paris-Ile de France-Ouest; Université de Versailles Saint-Quentin en Yvelines; Versailles France
| | - Sylvie Durant
- Université Paris Descartes; Sorbonne Paris Cité France
- Institut National de la Santé et de la Recherche Médicale UMR-S 1124; Faculté des Sciences Fondamentales et Biomédicales; Pharmacologie Toxicologie et Signalisation Cellulaire; Paris France
| | - Jean Bastin
- Université Paris Descartes; Sorbonne Paris Cité France
- Institut National de la Santé et de la Recherche Médicale UMR-S 1124; Faculté des Sciences Fondamentales et Biomédicales; Pharmacologie Toxicologie et Signalisation Cellulaire; Paris France
| | - Jean-Pascal De Bandt
- Université Paris Descartes; Sorbonne Paris Cité France
- Laboratoire de Biologie de la Nutrition; Faculté des Sciences Pharmaceutiques et Biologiques; Paris France
- Service de Biochimie, Hôpital Cochin; Assistance Publique Hôpitaux de Paris; Paris France
| | - Luc Cynober
- Université Paris Descartes; Sorbonne Paris Cité France
- Laboratoire de Biologie de la Nutrition; Faculté des Sciences Pharmaceutiques et Biologiques; Paris France
- Service de Biochimie, Hôpital Cochin; Assistance Publique Hôpitaux de Paris; Paris France
| | - Christophe Moinard
- Université Paris Descartes; Sorbonne Paris Cité France
- Laboratoire de Biologie de la Nutrition; Faculté des Sciences Pharmaceutiques et Biologiques; Paris France
| | - Claude Forest
- Université Paris Descartes; Sorbonne Paris Cité France
- Institut National de la Santé et de la Recherche Médicale UMR-S 1124; Faculté des Sciences Fondamentales et Biomédicales; Pharmacologie Toxicologie et Signalisation Cellulaire; Paris France
| | - Philippe Noirez
- Université Paris Descartes; Sorbonne Paris Cité France
- Institut de Recherche Biomédicale et d’Epidémiologie du Sport; Paris France
- UFR des Sciences et Techniques des Activités Physiques et Sportives; Paris France
| |
Collapse
|
15
|
Hartley JL, Gissen P, Kelly DA. Alagille syndrome and other hereditary causes of cholestasis. Clin Liver Dis 2013; 17:279-300. [PMID: 23540503 DOI: 10.1016/j.cld.2012.12.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neonatal conjugated jaundice is a common presentation of hereditary liver diseases, which, although rare, are important to recognize early. Developments in molecular genetic techniques have enabled the identification of causative genes, which has improved diagnostic accuracy for patients and has led to a greater understanding of the molecular pathways involved in liver biology and pathogenesis of liver diseases. This review provides an update of the current understanding of clinical and molecular features of the inherited liver diseases that cause neonatal conjugated jaundice.
Collapse
Affiliation(s)
- Jane L Hartley
- Liver Unit, Birmingham Children's Hospital, Steelhouse Lane, Birmingham B4 6NH, UK
| | | | | |
Collapse
|
16
|
Mudd SH. Hypermethioninemias of genetic and non-genetic origin: A review. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2011; 157C:3-32. [PMID: 21308989 DOI: 10.1002/ajmg.c.30293] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review covers briefly the major conditions, genetic and non-genetic, sometimes leading to abnormally elevated methionine, with emphasis on recent developments. A major aim is to assist in the differential diagnosis of hypermethioninemia. The genetic conditions are: (1) Homocystinuria due to cystathionine β-synthase (CBS) deficiency. At least 150 different mutations in the CBS gene have been identified since this deficiency was established in 1964. Hypermethioninemia is due chiefly to remethylation of the accumulated homocysteine. (2) Deficient activity of methionine adenosyltransferases I and III (MAT I/III), the isoenzymes the catalytic subunit of which are encoded by MAT1A. Methionine accumulates because its conversion to S-adenosylmethionine (AdoMet) is impaired. (3) Glycine N-methyltrasferase (GNMT) deficiency. Disruption of a quantitatively major pathway for AdoMet disposal leads to AdoMet accumulation with secondary down-regulation of methionine flux into AdoMet. (4) S-adenosylhomocysteine (AdoHcy) hydrolase (AHCY) deficiency. Not being catabolized normally, AdoHcy accumulates and inhibits many AdoMet-dependent methyltransferases, producing accumulation of AdoMet and, thereby, hypermethioninemia. (5) Citrin deficiency, found chiefly in Asian countries. Lack of this mitochondrial aspartate-glutamate transporter may produce (usually transient) hypermethioninemia, the immediate cause of which remains uncertain. (6) Fumarylacetoacetate hydrolase (FAH) deficiency (tyrosinemia type I) may lead to hypermethioninemia secondary either to liver damage and/or to accumulation of fumarylacetoacetate, an inhibitor of the high K(m) MAT. Additional possible genetic causes of hypermethioninemia accompanied by elevations of plasma AdoMet include mitochondrial disorders (the specificity and frequency of which remain to be elucidated). Non-genetic conditions include: (a) Liver disease, which may cause hypermethioninemia, mild, or severe. (b) Low-birth-weight and/or prematurity which may cause transient hypermethioninemia. (c) Ingestion of relatively large amounts of methionine which, even in full-term, normal-birth-weight babies may cause hypermethioninemia.
Collapse
Affiliation(s)
- S Harvey Mudd
- Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
17
|
High resolution melting analysis for the detection of SLC25A13 gene mutations in Taiwan. Clin Chim Acta 2010; 412:460-5. [PMID: 21134364 DOI: 10.1016/j.cca.2010.11.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 11/06/2010] [Accepted: 11/20/2010] [Indexed: 11/24/2022]
Abstract
BACKGROUND Citrin, encoded by SLC25A13 gene, is a mitochondrial solute transporter with a crucial role in urea, nucleotide and protein synthesis. SLC25A13 mutations cause two phenotypes, adult-onset type II citrullinemia and neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD). This study aimed to develop a high resolution melting (HRM) analysis for SLC25A13 mutation scanning and determine the carrier rate in Taiwan. METHODS DNAs from healthy subjects (n=479), and patients with hepatocellular carcinoma (HCC, n=100) and NICCD (n=5) were scanned in exons 6, 9, 11, 16, and 17 and parts of introns of SLC25A13 using HRM analysis. All mutations detected by HRM analysis were further confirmed by TaqMan method and/or direct sequencing. RESULTS In healthy subjects, seventeen carriers with mutants c.851_854del (n=10), c.1638_1660dup, c.615+5G>A (n=4), and two novel mutants, c.475C>T and c.1658G>A, were detected. The frequency of carriers was about 1/28. In patients with HCC, there were only 2 carriers with c.851_854del mutant. Patients with NICCD (n=5) diagnosed during 2007 and 2008, harbored compound heterozygous mutations c.851_854del/c.1177+1G>A, c.851_854del/c.1638_1660dup (n=2), c.851_854del/c.615+5G>A, and c.1638_1660dup/c.615+5G>A. CONCLUSIONS HRM analysis is a simple, rapid and robust method for detecting SLC25A13 mutations in clinical laboratories. SLC25A13 mutations may not be a major contributor to the pathogenesis of HCC in Taiwan.
Collapse
|
18
|
Song YZ, Li BX, Chen FP, Liu SR, Sheng JS, Ushikai M, Zhang CH, Zhang T, Wang ZN, Kobayashi K, Saheki T, Zheng XY. Neonatal intrahepatic cholestasis caused by citrin deficiency: clinical and laboratory investigation of 13 subjects in mainland of China. Dig Liver Dis 2009; 41:683-9. [PMID: 19185551 DOI: 10.1016/j.dld.2008.11.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Revised: 11/13/2008] [Accepted: 11/13/2008] [Indexed: 12/11/2022]
Abstract
BACKGROUND Neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) is a novel inborn error of metabolism due to dysfunction of citrin protein, and much more information about this new disease is still needed for its clinical management. AIMS To investigate in detail the clinical and laboratory features of NICCD. PATIENTS 13 NICCD subjects in mainland of China diagnosed in our department since 2006. METHODS The anthropometric parameters of the patients at birth were compared with controls, representative biochemical changes and metabolome findings were investigated cross-sectionally, and mutations in the causative gene SLC25A13 were analyzed by protocols established previously. RESULTS The patients showed reduced birth weight, length and ponderal index. Main clinical manifestations consisted of jaundice, hepato/hepatosplenomegaly and steatohepatosis on ultrasonography. Biochemical analysis revealed intrahepatic cholestasis, delayed switch of AFP to albumin, and elevated triglyceride, total cholesterol and LDL-cholesterol together with reduced HDL-cholesterol. Metabolome findings included co-existence of markers for galactosemia and tyrosinemia in urine, and elevated Cit, Met, Thr, Tyr, Lys, Arg and Orn in blood. Mutations of 851-854del, IVS6+5G>A, 1638-1660dup, A541D, IVS16ins3kb, R319X and G333D were detected in the gene SLC25A13. CONCLUSIONS The diagnosis of NICCD cannot be established based just on the numerous but non-specific clinical manifestations and biochemical changes. The relatively specific metabolome features provide valuable tools for its screening and diagnosis, while SLC25A13 mutation analysis should be taken as one of the reliable tools for the definitive diagnosis. The body proportionality at birth, steatohepatosis on ultrasonography, delayed switch of AFP to albumin, dyslipidemia pattern, urinary metabolome features and the novel mutation G333D expanded the clinical spectrum of NICCD.
Collapse
Affiliation(s)
- Y-Z Song
- Department of Pediatrics, First Affiliated Hospital, Jinan University, Guangzhou 510630, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chubby face and the biochemical parameters for the early diagnosis of neonatal intrahepatic cholestasis caused by citrin deficiency. J Pediatr Gastroenterol Nutr 2008; 47:187-92. [PMID: 18664871 DOI: 10.1097/mpg.0b013e318162d96d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVES To identify facial and biochemical characteristics as early clinical features of neonatal intrahepatic cholestasis due to citrin deficiency (NICCD). PATIENTS AND METHODS Ten patients with diagnoses of NICCD by SLC25A13 mutation analysis in Taiwan were recruited. A "Chubby Index" was developed for objective measurement of their facial characteristics. Liver function profiles were analyzed and compared with data on neonatal hepatitis and biliary atresia. RESULTS Chubby face was observed in early infancy in all 5 patients whose serial photographs were taken. A significant difference in the Chubby Index was seen between NICCD infants and healthy infants (1.331 +/- 0.07 vs 1.068 +/- 0.059; P < 0.05). NICCD is characterized by an aspartate aminotransferase-to-alanine aminotransferase ratio of 2 or greater, a direct bilirubin-to-total bilirubin ratio under 0.67, and a standard deviation score for alpha-fetoprotein of 4 or greater, with respect to neonatal hepatitis and biliary atresia. Although chubby face, abnormal liver function profiles, and multiple amino acidemia gradually disappeared after age 1 year, an increase in hepatic echogenicity was observed in most patients in long-term follow-up. CONCLUSIONS Our Chubby Index is an informative measurement of the facial characteristics of infants with NICCD. The chubby face features, along with an aspartate aminotransferase-to-alanine aminotransferase ratio of 2 or greater, a direct bilirubin-to-total bilirubin ratio under 0.67, and a standard deviation score for alpha-fetoprotein of 4 or greater, may serve as useful clinical indicators for diagnosing NICCD early in infancy.
Collapse
|
20
|
Tabata A, Sheng JS, Ushikai M, Song YZ, Gao HZ, Lu YB, Okumura F, Iijima M, Mutoh K, Kishida S, Saheki T, Kobayashi K. Identification of 13 novel mutations including a retrotransposal insertion in SLC25A13 gene and frequency of 30 mutations found in patients with citrin deficiency. J Hum Genet 2008; 53:534-545. [PMID: 18392553 DOI: 10.1007/s10038-008-0282-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 03/09/2008] [Indexed: 12/20/2022]
Abstract
Deficiency of citrin, liver-type mitochondrial aspartate-glutamate carrier, is an autosomal recessive disorder caused by mutations of the SLC25A13 gene on chromosome 7q21.3 and has two phenotypes: neonatal intrahepatic cholestatic hepatitis (NICCD) and adult-onset type II citrullinemia (CTLN2). So far, we have described 19 SLC25A13 mutations. Here, we report 13 novel SLC25A13 mutations (one insertion, two deletion, three splice site, two nonsense, and five missense) in patients with citrin deficiency from Japan, Israel, UK, and Czech Republic. Only R360X was detected in both Japanese and Caucasian. IVS16ins3kb identified in a Japanese CTLN2 family seems to be a retrotransposal insertion, as the inserted sequence (2,667-nt) showed an antisense strand of processed complementary DNA (cDNA) from a gene on chromosome 6 (C6orf68), and the repetitive sequence (17-nt) derived from SLC25A13 was found at both ends of the insert. All together, 30 different mutations found in 334 Japanese, 47 Chinese, 11 Korean, four Vietnamese and seven non-East Asian families have been summarized. In Japan, IVS16ins3kb was relatively frequent in 22 families, in addition to known mutations IVS11 + 1G > A, 851del4, IVS13 + 1G > A, and S225X in 189, 173, 48 and 30 families, respectively; 851del4 and IVS16ins3kb were found in all East Asian patients tested, suggesting that these mutations may have occurred very early in some area of East Asia.
Collapse
Affiliation(s)
- Ayako Tabata
- Department of Molecular Metabolism and Biochemical Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Jian-Sheng Sheng
- Department of Molecular Metabolism and Biochemical Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Miharu Ushikai
- Department of Molecular Metabolism and Biochemical Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Yuan-Zong Song
- Department of Molecular Metabolism and Biochemical Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.,Department of Pediatrics, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Hong-Zhi Gao
- Department of Molecular Metabolism and Biochemical Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.,Department of Brain Surgery, The Second Clinical College of Fujian Medical University, Quanzhou, 362000, China
| | - Yao-Bang Lu
- Department of Molecular Metabolism and Biochemical Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.,Department of Biochemistry, Pharmacy College, Hunan University of Traditional Chinese Medicine, Changsha, 410007, China
| | - Fumihiko Okumura
- Department of Molecular Metabolism and Biochemical Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Mikio Iijima
- Department of Molecular Metabolism and Biochemical Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Kozo Mutoh
- Department of Pediatrics, Shimada Municipal Hospital, Shizuoka, 427-8502, Japan
| | - Shosei Kishida
- Department of Molecular Metabolism and Biochemical Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Takeyori Saheki
- Department of Molecular Metabolism and Biochemical Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.,Institute for Health Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Keiko Kobayashi
- Department of Molecular Metabolism and Biochemical Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| |
Collapse
|