1
|
Zhong B, Qin X, Xu H, Liu L, Li L, Li Z, Cao L, Lou Z, Jackman JA, Cho NJ, Wang L. Interindividual- and blood-correlated sweat phenylalanine multimodal analytical biochips for tracking exercise metabolism. Nat Commun 2024; 15:624. [PMID: 38245507 PMCID: PMC10799919 DOI: 10.1038/s41467-024-44751-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
In situ monitoring of endogenous amino acid loss through sweat can provide physiological insights into health and metabolism. However, existing amino acid biosensors are unable to quantitatively assess metabolic status during exercise and are rarely used to establish blood-sweat correlations because they only detect a single concentration indicator and disregard sweat rate. Here, we present a wearable multimodal biochip integrated with advanced electrochemical electrodes and multipurpose microfluidic channels that enables simultaneous quantification of multiple sweat indicators, including phenylalanine and chloride, as well as sweat rate. This combined measurement approach reveals a negative correlation between sweat phenylalanine levels and sweat rates among individuals, which further enables identification of individuals at high metabolic risk. By tracking phenylalanine fluctuations induced by protein intake during exercise and normalizing the concentration indicator by sweat rates to reduce interindividual variability, we demonstrate a reliable method to correlate and analyze sweat-blood phenylalanine levels for personal health monitoring.
Collapse
Affiliation(s)
- Bowen Zhong
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaokun Qin
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Xu
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingchen Liu
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linlin Li
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhexin Li
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Limin Cao
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zheng Lou
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Joshua A Jackman
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 637553, Singapore, Singapore
| | - Lili Wang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China.
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Yuan X, Ouaskioud O, Yin X, Li C, Ma P, Yang Y, Yang PF, Xie L, Ren L. Epidermal Wearable Biosensors for the Continuous Monitoring of Biomarkers of Chronic Disease in Interstitial Fluid. MICROMACHINES 2023; 14:1452. [PMID: 37512763 PMCID: PMC10385734 DOI: 10.3390/mi14071452] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Healthcare technology has allowed individuals to monitor and track various physiological and biological parameters. With the growing trend of the use of the internet of things and big data, wearable biosensors have shown great potential in gaining access to the human body, and providing additional functionality to analyze physiological and biochemical information, which has led to a better personalized and more efficient healthcare. In this review, we summarize the biomarkers in interstitial fluid, introduce and explain the extraction methods for interstitial fluid, and discuss the application of epidermal wearable biosensors for the continuous monitoring of markers in clinical biology. In addition, the current needs, development prospects and challenges are briefly discussed.
Collapse
Affiliation(s)
- Xichen Yuan
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- MOE Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Oumaima Ouaskioud
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xu Yin
- MOE Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Chen Li
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Pengyi Ma
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yang Yang
- Ministry of Education Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400030, China
| | - Peng-Fei Yang
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Li Xie
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Li Ren
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
3
|
Zheng H, Pu Z, Wu H, Li C, Zhang X, Li D. Reverse iontophoresis with the development of flexible electronics: A review. Biosens Bioelectron 2023; 223:115036. [PMID: 36580817 DOI: 10.1016/j.bios.2022.115036] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Skin-centric diagnosis techniques, such as epidermal physiological parameter monitoring, have developed rapidly in recent years. The analysis of interstitial fluid (ISF), a body liquid with abundant physiological information, is a promising method to obtain health status because ISF is easily assessed by implanted or percutaneous measurements. Reverse iontophoresis extracts ISF by applying an electric field onto the skin, and it is a promising method to noninvasively obtain ISF, which, in turn, enables noninvasive epidermal physiological parameter monitoring. However, the development of reverse iontophoresis was relatively slow around the 2010s due to the rigidity and low biocompatibility of the applied devices. With the rapid development of flexible electronic technology in recent years, new progress has been made in the field of reverse iontophoresis, especially in the field of blood glucose monitoring and drug monitoring. This review summarizes the recent advances and discusses the challenges and opportunities of reverse iontophoresis.
Collapse
Affiliation(s)
- Hao Zheng
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Zhihua Pu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China.
| | - Hao Wu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Chengcheng Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Xingguo Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Dachao Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
4
|
Corrie SR, Coffey JW, Islam J, Markey KA, Kendall MAF. Blood, sweat, and tears: developing clinically relevant protein biosensors for integrated body fluid analysis. Analyst 2016; 140:4350-64. [PMID: 25909342 DOI: 10.1039/c5an00464k] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biosensors are being developed to provide rapid, quantitative, diagnostic information to clinicians in order to help guide patient treatment, without the need for centralised laboratory assays. The success of glucose monitoring is a key example of where technology innovation has met a clinical need at multiple levels – from the pathology laboratory all the way to the patient's home. However, few other biosensor devices are currently in routine use. Here we review the challenges and opportunities regarding the integration of biosensor techniques into body fluid sampling approaches, with emphasis on the point-of-care setting.
Collapse
Affiliation(s)
- S R Corrie
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, Delivery of Drugs and Genes Group (D2G2), St Lucia, Queensland 4072, Australia.
| | | | | | | | | |
Collapse
|
5
|
New Strategies for the Treatment of Phenylketonuria (PKU). Metabolites 2014; 4:1007-17. [PMID: 25375236 PMCID: PMC4279156 DOI: 10.3390/metabo4041007] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 10/27/2014] [Accepted: 10/30/2014] [Indexed: 12/19/2022] Open
Abstract
Phenylketonuria (PKU) was the first inherited metabolic disease in which dietary treatment was found to prevent the disease's clinical features. Treatment of phenylketonuria remains difficult due to progressive decrease in adherence to diet and the presence of neurocognitive defects despite therapy. This review aims to summarize the current literature on new treatment strategies. Additions to treatment include new, more palatable foods based on glycomacropeptide that contains very limited amount of aromatic amino acids, the administration of large neutral amino acids to prevent phenylalanine entry into the brain or tetrahydropterina cofactor capable of increasing residual activity of phenylalanine hydroxylase. Moreover, human trials have recently been performed with subcutaneous administration of phenylalanine ammonia-lyase, and further efforts are underway to develop an oral therapy containing phenylanine ammonia-lyase. Gene therapy also seems to be a promising approach in the near future.
Collapse
|
6
|
Paliwal S, Hwang BH, Tsai KY, Mitragotri S. Diagnostic opportunities based on skin biomarkers. Eur J Pharm Sci 2013; 50:546-56. [DOI: 10.1016/j.ejps.2012.10.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 10/14/2012] [Accepted: 10/17/2012] [Indexed: 12/20/2022]
|
7
|
|
8
|
Reverse Iontophoresis of Amino Acids: Identification and Separation of Stratum Corneum and Subdermal Sources In Vitro. Pharm Res 2009; 26:2630-8. [DOI: 10.1007/s11095-009-9978-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 09/14/2009] [Indexed: 11/25/2022]
|
9
|
|
10
|
Delgado-Charro M. Recent advances on transdermal iontophoretic drug delivery and non-invasive sampling. J Drug Deliv Sci Technol 2009. [DOI: 10.1016/s1773-2247(09)50015-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Sieg A, Jeanneret F, Fathi M, Hochstrasser D, Rudaz S, Veuthey JL, Guy RH, Delgado-Charro MB. Extraction of amino acids by reverse iontophoresis: Simulation of therapeutic monitoring in vitro. Eur J Pharm Biopharm 2008; 70:908-13. [DOI: 10.1016/j.ejpb.2008.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 06/30/2008] [Accepted: 07/09/2008] [Indexed: 10/21/2022]
|