1
|
Grigore M, Gresita A, Hermann DM, Doeppner TR, Gheorman V, Glavan D, Popa-Wagner A. Regulation of circadian gene activity in fibroblasts from ADHD patients through Rosiglitazone: a pilot study. J Neural Transm (Vienna) 2025; 132:709-721. [PMID: 39884973 DOI: 10.1007/s00702-025-02883-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a frequently observed condition, with about 70% of individuals diagnosed with ADHD experiencing irregular sleep-wake patterns. Beyond the primary symptoms of ADHD, there is a significant overlap with sleep-related issues, indicating that disrupted sleep patterns may exacerbate ADHD symptoms. ADHD-related sleep problems can be traced to a delayed circadian rhythm and a later onset of melatonin production. Therefore, normalizing circadian rhythms has been proposed as a potential therapeutic target for psychiatric disorders. Recent animal studies have provided compelling evidence linking peroxisome proliferator-activated receptor gamma (PPARγ), a key regulator of energy metabolism, to the regulation of physiological and behavioral rhythms. In this study, we hypothesized that treating fibroblasts from ADHD patients, which exhibit disturbances in circadian rhythmicity that are replicated in peripheral fibroblasts, with rosiglitazone may restore their circadian rhythmicity to that of the controls. To this end, we used cultures of fibroblasts obtained from skin biopsy explants of ADHD patients and controls and investigated the temporal patterns of clock gene expression over a period of 24 h. We report that the administration of the PPARγ agonist, rosiglitazone significantly realigns the chronobiological patterns of ADHD patient samples and control groups by inducing phase shifts in the expression of the BMAL1, PER3, and CRY1 clock genes. Nevertheless, rosiglitazone showed limited impact on the amplitude and phase of CLOCK1, NPAS2, and PER1. No notable changes were observed in PER2 and PER3 gene expression. The data from cultured human dermal fibroblasts indicate that PPARγ-agonists may help regulate circadian molecular mechanisms. Given the shared genetic pathways between ADHD and obesity, future studies could investigate the potential of RSG as a treatment for circadian rhythm disorders, particularly in obese patients with ADHD.
Collapse
Affiliation(s)
- Monica Grigore
- Department of Psychiatry, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania
| | - Andrei Gresita
- Department of Psychiatry, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania
| | - D M Hermann
- Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, Essen University Medical School, University of Duisburg-Essen, 45147, Essen, Germany
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Göttingen, 37075, Göttingen, Germany
- Department of Neurology, University of Giessen Medical School, 35392, Giessen, Germany
| | - Victor Gheorman
- Department of Psychiatry, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania
| | - Daniela Glavan
- Department of Psychiatry, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania.
| | - Aurel Popa-Wagner
- Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, Essen University Medical School, University of Duisburg-Essen, 45147, Essen, Germany.
| |
Collapse
|
2
|
Jaspers YRJ, Yska HAF, Bergner CG, Dijkstra IME, Huffnagel IC, Voermans MMC, Wever E, Salomons GS, Vaz FM, Jongejan A, Hermans J, Tryon RK, Lund TC, Köhler W, Engelen M, Kemp S. Lipidomic biomarkers in plasma correlate with disease severity in adrenoleukodystrophy. COMMUNICATIONS MEDICINE 2024; 4:175. [PMID: 39256476 PMCID: PMC11387402 DOI: 10.1038/s43856-024-00605-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND X-linked adrenoleukodystrophy (ALD) is a neurometabolic disorder caused by pathogenic variants in ABCD1 resulting very long-chain fatty acids (VLCFA) accumulation in plasma and tissues. Males can present with various clinical manifestations, including adrenal insufficiency, spinal cord disease, and leukodystrophy. Female patients typically develop spinal cord disease and peripheral neuropathy. Predicting the clinical outcome of an individual patient remains impossible due to the lack of genotype-phenotype correlation and predictive biomarkers. METHODS The availability of a large prospective cohort of well-characterized patients and associated biobank samples allowed us to investigate the relationship between lipidome and disease severity in ALD. We performed a lipidomic analysis of plasma samples from 24 healthy controls, 92 male and 65 female ALD patients. RESULTS Here we show that VLCFA are incorporated into different lipid classes, including lysophosphatidylcholines, phosphatidylcholines, triglycerides, and sphingomyelins. Our results show a strong association between higher levels of VLCFA-containing lipids and the presence of leukodystrophy, adrenal insufficiency, and severe spinal cord disease in male ALD patients. In female ALD patients, VLCFA-lipid levels correlate with X-inactivation patterns in blood mononuclear cells, and higher levels are associated with more severe disease manifestations. Finally, hematopoietic stem cell transplantation significantly reduces, but does not normalize, plasma C26:0-lysophosphatidylcholine levels in male ALD patients. Our findings are supported by the concordance of C26:0-lysophosphatidylcholine and total VLCFA analysis with the lipidomics results. CONCLUSIONS This study reveals the profound impact of ALD on the lipidome and provides potential biomarkers for predicting clinical outcomes in ALD patients.
Collapse
Affiliation(s)
- Yorrick R J Jaspers
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Hemmo A F Yska
- Department of Pediatric Neurology, Amsterdam UMC location University of Amsterdam, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Caroline G Bergner
- Department of Neurology, Leukodystrophy Outpatient Clinic, Leipzig University Medical Center, Leipzig, Germany
| | - Inge M E Dijkstra
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Irene C Huffnagel
- Department of Pediatric Neurology, Amsterdam UMC location University of Amsterdam, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Marije M C Voermans
- Department of Pediatric Neurology, Amsterdam UMC location University of Amsterdam, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Eric Wever
- Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Gajja S Salomons
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Department of Pediatrics, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Aldo Jongejan
- Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Jill Hermans
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Rebecca K Tryon
- Department of Pediatrics, Division of Bone Marrow Transplantation, University of Minnesota Children's Hospital, Minneapolis, MN, USA
| | - Troy C Lund
- Department of Pediatrics, Division of Bone Marrow Transplantation, University of Minnesota Children's Hospital, Minneapolis, MN, USA
| | - Wolfgang Köhler
- Department of Neurology, Leukodystrophy Outpatient Clinic, Leipzig University Medical Center, Leipzig, Germany
| | - Marc Engelen
- Department of Pediatric Neurology, Amsterdam UMC location University of Amsterdam, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Stephan Kemp
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Jaspers YRJ, Meyer SW, Pras-Raves ML, Dijkstra IME, Wever EJM, Dane AD, van Klinken JB, Salomons GS, Houtkooper RH, Engelen M, Kemp S, Van Weeghel M, Vaz FM. Four-dimensional lipidomics profiling in X-linked adrenoleukodystrophy using trapped ion mobility mass spectrometry. J Lipid Res 2024; 65:100567. [PMID: 38795862 PMCID: PMC11234049 DOI: 10.1016/j.jlr.2024.100567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/28/2024] Open
Abstract
Lipids play pivotal roles in an extensive range of metabolic and physiological processes. In recent years, the convergence of trapped ion mobility spectrometry and MS has enabled 4D-lipidomics, a highly promising technology for comprehensive lipid analysis. 4D-lipidomics assesses lipid annotations across four distinct dimensions-retention time, collisional cross section, m/z (mass-to-charge ratio), and MS/MS spectra-providing a heightened level of confidence in lipid annotation. These advantages prove particularly valuable when investigating complex disorders involving lipid metabolism, such as adrenoleukodystrophy (ALD). ALD is characterized by the accumulation of very-long-chain fatty acids (VLCFAs) due to pathogenic variants in the ABCD1 gene. A comprehensive 4D-lipidomics strategy of ALD fibroblasts demonstrated significant elevations of various lipids from multiple classes. This indicates that the changes observed in ALD are not confined to a single lipid class and likely impacts a broad spectrum of lipid-mediated physiological processes. Our findings highlight the incorporation of mainly saturated and monounsaturated VLCFA variants into a range of lipid classes, encompassing phosphatidylcholines, triacylglycerols, and cholesterol esters. These include ultra-long-chain fatty acids with a length of up to thirty carbon atoms. Lipid species containing C26:0 and C26:1 were the most frequently detected VLCFA lipids in our study. Furthermore, we report a panel of 121 new candidate biomarkers in fibroblasts, exhibiting significant differentiation between controls and individuals with ALD. In summary, this study demonstrates the capabilities of a 4D-lipid profiling workflow in unraveling novel insights into the intricate lipid modifications associated with metabolic disorders like ALD.
Collapse
Affiliation(s)
- Yorrick R J Jaspers
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism Institute, Amsterdam, The Netherlands; Amsterdam Neuroscience institute, Amsterdam, The Netherlands
| | | | - Mia L Pras-Raves
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Inge M E Dijkstra
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Eric J M Wever
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Adrie D Dane
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Jan-Bert van Klinken
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Gajja S Salomons
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism Institute, Amsterdam, The Netherlands; Emma Center for Personalized Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Marc Engelen
- Amsterdam Neuroscience institute, Amsterdam, The Netherlands; Department of Pediatric Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Stephan Kemp
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism Institute, Amsterdam, The Netherlands; Amsterdam Neuroscience institute, Amsterdam, The Netherlands.
| | - Michel Van Weeghel
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism Institute, Amsterdam, The Netherlands; Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism Institute, Amsterdam, The Netherlands; Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Chung HL, Ye Q, Park YJ, Zuo Z, Mok JW, Kanca O, Tattikota SG, Lu S, Perrimon N, Lee HK, Bellen HJ. Very-long-chain fatty acids induce glial-derived sphingosine-1-phosphate synthesis, secretion, and neuroinflammation. Cell Metab 2023; 35:855-874.e5. [PMID: 37084732 PMCID: PMC10160010 DOI: 10.1016/j.cmet.2023.03.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/10/2023] [Accepted: 03/29/2023] [Indexed: 04/23/2023]
Abstract
VLCFAs (very-long-chain fatty acids) are the most abundant fatty acids in myelin. Hence, during demyelination or aging, glia are exposed to higher levels of VLCFA than normal. We report that glia convert these VLCFA into sphingosine-1-phosphate (S1P) via a glial-specific S1P pathway. Excess S1P causes neuroinflammation, NF-κB activation, and macrophage infiltration into the CNS. Suppressing the function of S1P in fly glia or neurons, or administration of Fingolimod, an S1P receptor antagonist, strongly attenuates the phenotypes caused by excess VLCFAs. In contrast, elevating the VLCFA levels in glia and immune cells exacerbates these phenotypes. Elevated VLCFA and S1P are also toxic in vertebrates based on a mouse model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). Indeed, reducing VLCFA with bezafibrate ameliorates the phenotypes. Moreover, simultaneous use of bezafibrate and fingolimod synergizes to improve EAE, suggesting that lowering VLCFA and S1P is a treatment avenue for MS.
Collapse
Affiliation(s)
- Hyung-Lok Chung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Qi Ye
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ye-Jin Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jung-Wan Mok
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | | | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Nobert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute and Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Hyun Kyoung Lee
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Siddiqui AJ, Jahan S, Chaturvedi S, Siddiqui MA, Alshahrani MM, Abdelgadir A, Hamadou WS, Saxena J, Sundararaj BK, Snoussi M, Badraoui R, Adnan M. Therapeutic Role of ELOVL in Neurological Diseases. ACS OMEGA 2023; 8:9764-9774. [PMID: 36969404 PMCID: PMC10034982 DOI: 10.1021/acsomega.3c00056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Fatty acids play an important role in controlling the energy balance of mammals. De novo lipogenesis also generates a significant amount of lipids that are endogenously produced in addition to their ingestion. Fatty acid elongation beyond 16 carbons (palmitic acid), which can lead to the production of very long chain fatty acids (VLCFA), can be caused by the rate-limiting condensation process. Seven elongases, ELOVL1-7, have been identified in mammals and each has a unique substrate specificity. Researchers have recently developed a keen interest in the elongation of very long chain fatty acids protein 1 (ELOVL1) enzyme as a potential treatment for a variety of diseases. A number of neurological disorders directly or indirectly related to ELOVL1 involve the elongation of monounsaturated (C20:1 and C22:1) and saturated (C18:0-C26:0) acyl-CoAs. VLCFAs and ELOVL1 have a direct impact on the neurological disease. Other neurological symptoms such as ichthyotic keratoderma, spasticity, and hypomyelination have also been linked to the major enzyme (ELOVL1). Recently, ELOVL1 has also been heavily used to treat a number of diseases. The current review focuses on in-depth unique insights regarding the role of ELOVL1 as a therapeutic target and associated neurological disorders.
Collapse
Affiliation(s)
- Arif Jamal Siddiqui
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Sadaf Jahan
- Department
of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Swati Chaturvedi
- Department
of Pharmaceutics and Pharmacokinetics, Pre-Clinical North, Lab-106, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Maqsood Ahmed Siddiqui
- Department
of Zoology, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Mohammed Merae Alshahrani
- Department
of Clinical Laboratory Sciences, Faculty of Applied Medial Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Abdelmushin Abdelgadir
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Walid Sabri Hamadou
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Juhi Saxena
- Department
of Biotechnology, University Institute of Biotechnology, Chandigarh University, Gharuan, NH-95, Chandigarh State Hwy, Ludhiana, Punjab 140413, India
| | - Bharath K. Sundararaj
- School
of Dental Medicine, Department of Cellular and Molecular Biology, Boston University, Medical Campus Boston, Boston, Massachusetts 02215, United States
| | - Mejdi Snoussi
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Riadh Badraoui
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Mohd Adnan
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| |
Collapse
|
6
|
Hong SA, Seo JH, Wi S, Jung ES, Yu J, Hwang GH, Yu JH, Baek A, Park S, Bae S, Cho SR. In vivo gene editing via homology-independent targeted integration for adrenoleukodystrophy treatment. Mol Ther 2022; 30:119-129. [PMID: 34058389 PMCID: PMC8753287 DOI: 10.1016/j.ymthe.2021.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/26/2021] [Accepted: 05/20/2021] [Indexed: 01/07/2023] Open
Abstract
Adrenoleukodystrophy (ALD) is caused by various pathogenic mutations in the X-linked ABCD1 gene, which lead to metabolically abnormal accumulations of very long-chain fatty acids in many organs. However, curative treatment of ALD has not yet been achieved. To treat ALD, we applied two different gene-editing strategies, base editing and homology-independent targeted integration (HITI), in ALD patient-derived fibroblasts. Next, we performed in vivo HITI-mediated gene editing using AAV9 vectors delivered via intravenous administration in the ALD model mice. We found that the ABCD1 mRNA level was significantly increased in HITI-treated mice, and the plasma levels of C24:0-LysoPC (lysophosphatidylcholine) and C26:0-LysoPC, sensitive diagnostic markers for ALD, were significantly reduced. These results suggest that HITI-mediated mutant gene rescue could be a promising therapeutic strategy for human ALD treatment.
Collapse
Affiliation(s)
- Sung-Ah Hong
- Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04673, South Korea
| | - Jung Hwa Seo
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Soohyun Wi
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea; Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Eul Sik Jung
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, South Korea; JES Clinic, Incheon 21550, South Korea
| | - Jihyeon Yu
- Division of Life Science, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Gue-Ho Hwang
- Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04673, South Korea
| | - Ji Hea Yu
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Ahreum Baek
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, South Korea; Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, South Korea
| | - Soeon Park
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea; Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Sangsu Bae
- Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04673, South Korea.
| | - Sung-Rae Cho
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea; Graduate Program of Nano Science and Technology, Yonsei University, Seoul 03722, South Korea; Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul 03722, Korea.
| |
Collapse
|
7
|
Symeonidou V, Jakobczyk H, Bashanfer S, Malouf C, Fotopoulou F, Kotecha RS, Anderson RA, Finch AJ, Ottersbach K. Defining the fetal origin of MLL-AF4 infant leukemia highlights specific fatty acid requirements. Cell Rep 2021; 37:109900. [PMID: 34706236 PMCID: PMC8567312 DOI: 10.1016/j.celrep.2021.109900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/01/2021] [Accepted: 10/06/2021] [Indexed: 11/28/2022] Open
Abstract
Infant MLL-AF4-driven acute lymphoblastic leukemia (ALL) is a devastating disease with dismal prognosis. A lack of understanding of the unique biology of this disease, particularly its prenatal origin, has hindered improvement of survival. We perform multiple RNA sequencing experiments on fetal, neonatal, and adult hematopoietic stem and progenitor cells from human and mouse. This allows definition of a conserved fetal transcriptional signature characterized by a prominent proliferative and oncogenic nature that persists in infant ALL blasts. From this signature, we identify a number of genes in functional validation studies that are critical for survival of MLL-AF4+ ALL cells. Of particular interest are PLK1 because of the readily available inhibitor and ELOVL1, which highlights altered fatty acid metabolism as a feature of infant ALL. We identify which aspects of the disease are residues of its fetal origin and potential disease vulnerabilities.
Collapse
Affiliation(s)
- Vasiliki Symeonidou
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Hélène Jakobczyk
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Salem Bashanfer
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Camille Malouf
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Foteini Fotopoulou
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Rishi S Kotecha
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| | - Richard A Anderson
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Andrew J Finch
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Katrin Ottersbach
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
8
|
Tieu JH, Sahasrabudhe SA, Orchard PJ, Cloyd JC, Kartha RV. Translational and clinical pharmacology considerations in drug repurposing for X-linked adrenoleukodystrophy-A rare peroxisomal disorder. Br J Clin Pharmacol 2021; 88:2552-2563. [PMID: 34558098 DOI: 10.1111/bcp.15090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/28/2022] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD) is an inherited, neurodegenerative rare disease that can result in devastating symptoms of blindness, gait disturbances and spastic quadriparesis due to progressive demyelination. Typically, the disease progresses rapidly, causing death within the first decade of life. With limited treatments available, efforts to determine an effective therapy that can alter disease progression or mitigate symptoms have been undertaken for many years, particularly through drug repurposing. Repurposing has generally been guided through clinical experience and small trials. At this time, none of the drug candidates have been approved for use, which may be due, in part, to the lack of pharmacokinetic/pharmacodynamic information on the repurposed medications in the target patient population. Greater consideration for the disease pathophysiology, drug pharmacology and potential drug-target interactions, specifically at the site of action, would improve drug repurposing and facilitate drug development. Incorporating advanced translational and clinical pharmacological approaches in preclinical studies and early-stage clinical trials will improve the success of repurposed drugs for X-ALD as well as other rare diseases.
Collapse
Affiliation(s)
- Julianne H Tieu
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Siddhee A Sahasrabudhe
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Paul J Orchard
- Division of Pediatric Blood and Marrow Transplantation, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - James C Cloyd
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Reena V Kartha
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
9
|
Moser AB, Liu Y, Shi X, Schrifl U, Hiebler S, Fatemi A, Braverman NE, Steinberg SJ, Watkins PA. Drug discovery for X-linked adrenoleukodystrophy: An unbiased screen for compounds that lower very long-chain fatty acids. J Cell Biochem 2021; 122:1337-1349. [PMID: 34056752 DOI: 10.1002/jcb.30014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/23/2021] [Accepted: 05/04/2021] [Indexed: 01/14/2023]
Abstract
X-linked adrenoleukodystrophy (XALD) is a genetic neurologic disorder with multiple phenotypic presentations and limited therapeutic options. The childhood cerebral phenotype (CCALD), a fatal demyelinating disorder affecting about 35% of patients, and the adult-onset adrenomyeloneuropathy (AMN), a peripheral neuropathy affecting 40%-45% of patients, are both caused by mutations in the ABCD1 gene. Both phenotypes are characterized biochemically by elevated tissue and plasma levels of saturated very long-chain fatty acids (VLCFA), and an increase in plasma cerotic acid (C26:0), along with the clinical presentation, is diagnostic. Administration of oils containing monounsaturated fatty acids, for example, Lorenzo's oil, lowers patient VLCFA levels and reduced the frequency of development of CCALD in presymptomatic boys. However, this therapy is not currently available. Hematopoietic stem cell transplant and gene therapy remain viable therapies for boys with early progressive cerebral disease. We asked whether any existing approved drugs can lower VLCFA and thus open new therapeutic possibilities for XALD. Using SV40-transformed and telomerase-immortalized skin fibroblasts from an XALD patient, we conducted an unbiased screen of a library of approved drugs and natural products for their ability to decrease VLCFA, using measurement of C26:0 in lysophosphatidyl choline (C26-LPC) by tandem mass spectrometry as the readout. While several candidate drugs were initially identified, further testing in primary fibroblast cell lines from multiple CCALD and AMN patients narrowed the list to one drug, the anti-hypertensive drug irbesartan. In addition to lowering C26-LPC, levels of C26:0 and C28:0 in total fibroblast lipids were reduced. The effect of irbesartan was dose dependent between 2 and 10 μM. When male XALD mice received orally administered irbesartan at a dose of 10 mg/kg/day, there was no reduction in plasma C26-LPC. However, irbesartan failed to lower mouse fibroblast C26-LPC consistently. The results of these studies indicate a potential therapeutic benefit of irbesartan in XALD that should be validated by further study.
Collapse
Affiliation(s)
- Ann B Moser
- Department of Neurogenetics, Hugo W. Moser Research Institute at Kennedy Krieger, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yanqiu Liu
- Department of Neurogenetics, Hugo W. Moser Research Institute at Kennedy Krieger, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Xiaohai Shi
- Department of Neurogenetics, Hugo W. Moser Research Institute at Kennedy Krieger, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Ulrike Schrifl
- Department of Neurogenetics, Hugo W. Moser Research Institute at Kennedy Krieger, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Shandi Hiebler
- Department of Neurogenetics, Hugo W. Moser Research Institute at Kennedy Krieger, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Ali Fatemi
- Department of Neurogenetics, Hugo W. Moser Research Institute at Kennedy Krieger, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nancy E Braverman
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Pediatrics, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Steven J Steinberg
- Department of Neurogenetics, Hugo W. Moser Research Institute at Kennedy Krieger, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Paul A Watkins
- Department of Neurogenetics, Hugo W. Moser Research Institute at Kennedy Krieger, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
10
|
Montoro R, Heine VM, Kemp S, Engelen M. Evolution of adrenoleukodystrophy model systems. J Inherit Metab Dis 2021; 44:544-553. [PMID: 33373044 PMCID: PMC8248356 DOI: 10.1002/jimd.12357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 01/09/2023]
Abstract
X-linked adrenoleukodystrophy (ALD) is a neurometabolic disorder affecting the adrenal glands, testes, spinal cord and brain. The disease is caused by mutations in the ABCD1 gene resulting in a defect in peroxisomal degradation of very long-chain fatty acids and their accumulation in plasma and tissues. Males with ALD have a near 100% life-time risk to develop myelopathy. The life-time prevalence to develop progressive cerebral white matter lesions (known as cerebral ALD) is about 60%. Adrenal insufficiency occurs in about 80% of male patients. In adulthood, 80% of women with ALD also develop myelopathy, but adrenal insufficiency or cerebral ALD are very rare. The complex clinical presentation and the absence of a genotype-phenotype correlation are complicating our understanding of the disease. In an attempt to understand the pathophysiology of ALD various model systems have been developed. While these model systems share the basic genetics and biochemistry of ALD they fail to fully recapitulate the complex neurodegenerative etiology of ALD. Each model system recapitulates certain aspects of the disorder. This exposes the complexity of ALD and therefore the challenge to create a comprehensive model system to fully understand ALD. In this review, we provide an overview of the different ALD modeling strategies from single-celled to multicellular organisms and from in vitro to in vivo approaches, and introduce how emerging iPSC-derived technologies could improve the understanding of this highly complex disorder.
Collapse
Affiliation(s)
- Roberto Montoro
- Department of Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Amsterdam Leukodystrophy Center, Amsterdam NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Vivi M. Heine
- Department of Child and Youth Psychiatry, Amsterdam UMC, Amsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Department of Complex Trait Genetics, Centre for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Stephan Kemp
- Department of Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Amsterdam Leukodystrophy Center, Amsterdam NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam Gastroenterology & MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
| | - Marc Engelen
- Department of Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Amsterdam Leukodystrophy Center, Amsterdam NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
11
|
Raas Q, van de Beek MC, Forss-Petter S, Dijkstra IM, Deschiffart A, Freshner BC, Stevenson TJ, Jaspers YR, Nagtzaam L, Wanders RJ, van Weeghel M, Engelen-Lee JY, Engelen M, Eichler F, Berger J, Bonkowsky JL, Kemp S. Metabolic rerouting via SCD1 induction impacts X-linked adrenoleukodystrophy. J Clin Invest 2021; 131:142500. [PMID: 33690217 DOI: 10.1172/jci142500] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/03/2021] [Indexed: 12/18/2022] Open
Abstract
X-linked adrenoleukodystrophy (ALD) is a progressive neurodegenerative disease caused by mutations in ABCD1, the peroxisomal very long-chain fatty acid (VLCFA) transporter. ABCD1 deficiency results in accumulation of saturated VLCFAs. A drug screen using a phenotypic motor assay in a zebrafish ALD model identified chloroquine as the top hit. Chloroquine increased expression of stearoyl-CoA desaturase-1 (scd1), the enzyme mediating fatty acid saturation status, suggesting that a shift toward monounsaturated fatty acids relieved toxicity. In human ALD fibroblasts, chloroquine also increased SCD1 levels and reduced saturated VLCFAs. Conversely, pharmacological inhibition of SCD1 expression led to an increase in saturated VLCFAs, and CRISPR knockout of scd1 in zebrafish mimicked the motor phenotype of ALD zebrafish. Importantly, saturated VLCFAs caused ER stress in ALD fibroblasts, whereas monounsaturated VLCFA did not. In parallel, we used liver X receptor (LXR) agonists to increase SCD1 expression, causing a shift from saturated toward monounsaturated VLCFA and normalizing phospholipid profiles. Finally, Abcd1-/y mice receiving LXR agonist in their diet had VLCFA reductions in ALD-relevant tissues. These results suggest that metabolic rerouting of saturated to monounsaturated VLCFAs may alleviate lipid toxicity, a strategy that may be beneficial in ALD and other peroxisomal diseases in which VLCFAs play a key role.
Collapse
Affiliation(s)
- Quentin Raas
- Department of Pediatrics, University of Utah, Brain and Spine Center, Primary Children's Hospital, Salt Lake City, Utah, USA
| | - Malu-Clair van de Beek
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, Amsterdam Gastroenterology & Metabolism, University of Amsterdam, Amsterdam, Netherlands
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Inge Me Dijkstra
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, Amsterdam Gastroenterology & Metabolism, University of Amsterdam, Amsterdam, Netherlands
| | - Abigail Deschiffart
- Department of Pediatrics, University of Utah, Brain and Spine Center, Primary Children's Hospital, Salt Lake City, Utah, USA
| | - Briana C Freshner
- Department of Pediatrics, University of Utah, Brain and Spine Center, Primary Children's Hospital, Salt Lake City, Utah, USA
| | - Tamara J Stevenson
- Department of Pediatrics, University of Utah, Brain and Spine Center, Primary Children's Hospital, Salt Lake City, Utah, USA
| | - Yorrick Rj Jaspers
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, Amsterdam Gastroenterology & Metabolism, University of Amsterdam, Amsterdam, Netherlands
| | - Liselotte Nagtzaam
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, Amsterdam Gastroenterology & Metabolism, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald Ja Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, Amsterdam Gastroenterology & Metabolism, University of Amsterdam, Amsterdam, Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, Amsterdam Gastroenterology & Metabolism, University of Amsterdam, Amsterdam, Netherlands
| | - Joo-Yeon Engelen-Lee
- Department of Neurology, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| | - Marc Engelen
- Department of Pediatric Neurology, Amsterdam UMC, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| | - Florian Eichler
- Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Joshua L Bonkowsky
- Department of Pediatrics, University of Utah, Brain and Spine Center, Primary Children's Hospital, Salt Lake City, Utah, USA
| | - Stephan Kemp
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, Amsterdam Gastroenterology & Metabolism, University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Neurology, Amsterdam UMC, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
12
|
Mental disorders in neurological diseases. Can symptoms of bipolar disorder be the first manifestation of X-linked adenoleukodystrophy? A case report. CURRENT PROBLEMS OF PSYCHIATRY 2020. [DOI: 10.2478/cpp-2020-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Background: X-linked adrenoleukodystrophy (X-ALD) is an inherited metabolic disease which causes demyelination of the white matter of the brain. The symptoms include mental impairment, progressive paresis, impaired motor coordination, and epileptic seizures. Diagnosis is established mainly by genetic testing. Currently, the recommended treatment is haematopoietic stem cell transplantation (HSCT).
Goal: The aim of the study was to present the case of a patient suffering from X-ALD, who developed symptoms of bipolar disorder in the initial phase of the disease prior to the onset of characteristic neurological symptoms.
Case presentation: In 2015, a 33-year-old patient was admitted to a psychiatric department due to aggressive behaviour he showed towards his wife and other family members. He had been treated for a depressive episode in 2005, and for a manic episode without psychotic symptoms earlier in 2015. During the successive psychiatric hospitalizations, in addition to psychopathological symptoms, the patient had been observed to have neurological symptoms, which included progressive paraparesis and ataxia. In 2018, based on imaging and genetic tests, the patient was diagnosed with X-ALD. The patient’s condition gradually deteriorated; with time, he was unable to move on his own. During a hospital stay in 2019, he was transferred to an internal medicine department due to a progressive urinary tract infection, which, however, could not be controlled, and the patient died.
Conclusions:
1. X-ALD is a rare metabolic illness. In the early stages of the disease, various psychopathological symptoms, including affective disorders, are observed.
2. Early initiation of adequate treatment increases the chances of extending the patient’s life.
3. In the present case, the patient did not die due to the underlying disease, but due to causes typical of bed-bound patients, i.e. complications of progressing infection.
Collapse
|
13
|
Chung HL, Wangler MF, Marcogliese PC, Jo J, Ravenscroft TA, Zuo Z, Duraine L, Sadeghzadeh S, Li-Kroeger D, Schmidt RE, Pestronk A, Rosenfeld JA, Burrage L, Herndon MJ, Chen S, Shillington A, Vawter-Lee M, Hopkin R, Rodriguez-Smith J, Henrickson M, Lee B, Moser AB, Jones RO, Watkins P, Yoo T, Mar S, Choi M, Bucelli RC, Yamamoto S, Lee HK, Prada CE, Chae JH, Vogel TP, Bellen HJ. Loss- or Gain-of-Function Mutations in ACOX1 Cause Axonal Loss via Different Mechanisms. Neuron 2020; 106:589-606.e6. [PMID: 32169171 PMCID: PMC7289150 DOI: 10.1016/j.neuron.2020.02.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/03/2020] [Accepted: 02/13/2020] [Indexed: 12/01/2022]
Abstract
ACOX1 (acyl-CoA oxidase 1) encodes the first and rate-limiting enzyme of the very-long-chain fatty acid (VLCFA) β-oxidation pathway in peroxisomes and leads to H2O2 production. Unexpectedly, Drosophila (d) ACOX1 is mostly expressed and required in glia, and loss of ACOX1 leads to developmental delay, pupal death, reduced lifespan, impaired synaptic transmission, and glial and axonal loss. Patients who carry a previously unidentified, de novo, dominant variant in ACOX1 (p.N237S) also exhibit glial loss. However, this mutation causes increased levels of ACOX1 protein and function resulting in elevated levels of reactive oxygen species in glia in flies and murine Schwann cells. ACOX1 (p.N237S) patients exhibit a severe loss of Schwann cells and neurons. However, treatment of flies and primary Schwann cells with an antioxidant suppressed the p.N237S-induced neurodegeneration. In summary, both loss and gain of ACOX1 lead to glial and neuronal loss, but different mechanisms are at play and require different treatments.
Collapse
Affiliation(s)
- Hyung-Lok Chung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul C Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Juyeon Jo
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Thomas A Ravenscroft
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Lita Duraine
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sina Sadeghzadeh
- Department of Psychology, Harvard University, Cambridge, MA 02138, USA
| | - David Li-Kroeger
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Robert E Schmidt
- Department of Pathology and Immunology, Division of Neuropathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alan Pestronk
- Department of Pathology and Immunology, Division of Neuropathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lindsay Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mitchell J Herndon
- Department of Pathology and Immunology, Division of Neuropathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shan Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Amelle Shillington
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Marissa Vawter-Lee
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Robert Hopkin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Jackeline Rodriguez-Smith
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Michael Henrickson
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ann B Moser
- Division of Neurogenetics, Kennedy Krieger Institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Richard O Jones
- Division of Neurogenetics, Kennedy Krieger Institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Paul Watkins
- Division of Neurogenetics, Kennedy Krieger Institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Taekyeong Yoo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soe Mar
- Department of Neurology, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Robert C Bucelli
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hyun Kyoung Lee
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Carlos E Prada
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Jong-Hee Chae
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tiphanie P Vogel
- Department of Pediatrics, Section of Rheumatology, Baylor College of Medicine, Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
14
|
Wang L, Guo J, Xi Y, Ma S, Li Y, He H, Wang J, Han C, Bai L, Mustafa A, Liu H, Li L. Understanding the Genetic Domestication History of the Jianchang Duck by Genotyping and Sequencing of Genomic Genes Under Selection. G3 (BETHESDA, MD.) 2020; 10:1469-1476. [PMID: 32165372 PMCID: PMC7202016 DOI: 10.1534/g3.119.400893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/01/2020] [Indexed: 12/11/2022]
Abstract
The Jianchang duck is mainly distributed in Southwest China, and has the characteristics of fast growth rate and strong abilities in lipid deposition in the liver. In order to investigate the effects of domestication process on formation of the unique characteristics of Jianchang duck, the whole genome of sixteen individuals and three pooling of Jianchang duck were re-sequenced, and genome data of 70 mallards and 83 domestic ducks from thirteen different places in China were obtained from NCBI. The population stratification and evolution analysis showed gene exchanges existed between the Jianchang and other domestic duck populations, as well as Jianchang ducks and mallards. Genomic comparison between mallards and Jianchang ducks showed genes, including CNTN1, CHRNA9, and SHANK2, which is involved in brain and nerve development, experienced strong positive selection in the process of Jianchang duck domestication. The genomic comparison between Jianchang and domestic duck populations showed that HSD17B12 and ESM1, which affect lipid metabolism, experienced strong positive selection during the domestication process. FST analysis among populations of Jianchang duck with different plumage colors indicated that MITF was related to the phenotype of a white feather, while MC1R was related to the phenotype of hemp feather. Our results provided a base for the domestication process of Jianchang duck and the genomic genes for unique traits.
Collapse
Affiliation(s)
- Lei Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| | - Yang Xi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| | - Shengchao Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| | - Yanying Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| | - Lili Bai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| | - Ahsan Mustafa
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, P.R. China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P.R. China
| |
Collapse
|
15
|
Turk BR, Theda C, Fatemi A, Moser AB. X-linked adrenoleukodystrophy: Pathology, pathophysiology, diagnostic testing, newborn screening and therapies. Int J Dev Neurosci 2020; 80:52-72. [PMID: 31909500 PMCID: PMC7041623 DOI: 10.1002/jdn.10003] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
Adrenoleukodystrophy (ALD) is a rare X-linked disease caused by a mutation of the peroxisomal ABCD1 gene. This review summarizes our current understanding of the pathogenic cell- and tissue-specific roles of lipid species in the context of experimental therapeutic strategies and provides an overview of critical historical developments, therapeutic trials and the advent of newborn screening in the USA. In ALD, very long-chain fatty acid (VLCFA) chain length-dependent dysregulation of endoplasmic reticulum stress and mitochondrial radical generating systems inducing cell death pathways has been shown, providing the rationale for therapeutic moiety-specific VLCFA reduction and antioxidant strategies. The continuing increase in newborn screening programs and promising results from ongoing and recent therapeutic investigations provide hope for ALD.
Collapse
Affiliation(s)
- Bela R. Turk
- Hugo W Moser Research InstituteKennedy Krieger InstituteBaltimoreMDUSA
| | - Christiane Theda
- Neonatal ServicesRoyal Women's HospitalMurdoch Children's Research Institute and University of MelbourneMelbourneVICAustralia
| | - Ali Fatemi
- Hugo W Moser Research InstituteKennedy Krieger InstituteBaltimoreMDUSA
| | - Ann B. Moser
- Hugo W Moser Research InstituteKennedy Krieger InstituteBaltimoreMDUSA
| |
Collapse
|
16
|
Turk BR, Theda C, Fatemi A, Moser AB. X-linked Adrenoleukodystrophy: Pathology, Pathophysiology, Diagnostic Testing, Newborn Screening, and Therapies. Int J Dev Neurosci 2019:S0736-5748(19)30133-9. [PMID: 31778737 DOI: 10.1016/j.ijdevneu.2019.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/21/2019] [Accepted: 11/21/2019] [Indexed: 01/22/2023] Open
Abstract
Adrenoleukodystrophy (ALD) is a rare X-linked disease caused by a mutation of the peroxisomal ABCD1 gene. This review summarizes our current understanding of the pathogenic cell- and tissue-specific role of lipid species in the context of experimental therapeutic strategies and provides an overview of critical historical developments, therapeutic trials, and the advent of newborn screening in the United States. In ALD, very long chain fatty acid (VLCFA) chain-length-dependent dysregulation of endoplasmic reticulum stress and mitochondrial radical generating systems inducing cell death pathways has been shown, providing the rationale for therapeutic moiety-specific VLCFA reduction and antioxidant strategies. The continuing increase in newborn screening programs and promising results from ongoing and recent therapeutic investigations provide hope for ALD.
Collapse
Affiliation(s)
- Bela R Turk
- Hugo W Moser Research Institute, Kennedy Krieger Institute, 707 N. Broadway, Baltimore, MD, USA.
| | - Christiane Theda
- Neonatal Services, Royal Women's Hospital, Murdoch Children's Research Institute and University of Melbourne, 20 Flemington Road, Parkville, VIC, 3052, Melbourne, Australia.
| | - Ali Fatemi
- Hugo W Moser Research Institute, Kennedy Krieger Institute, 707 N. Broadway, Baltimore, MD, USA.
| | - Ann B Moser
- Hugo W Moser Research Institute, Kennedy Krieger Institute, 707 N. Broadway, Baltimore, MD, USA.
| |
Collapse
|
17
|
Oh HYP, Visvalingam V, Wahli W. The PPAR-microbiota-metabolic organ trilogy to fine-tune physiology. FASEB J 2019; 33:9706-9730. [PMID: 31237779 DOI: 10.1096/fj.201802681rr] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The human gut is colonized by commensal microorganisms, predominately bacteria that have coevolved in symbiosis with their host. The gut microbiota has been extensively studied in recent years, and many important findings on how it can regulate host metabolism have been unraveled. In healthy individuals, feeding timing and type of food can influence not only the composition but also the circadian oscillation of the gut microbiota. Host feeding habits thus influence the type of microbe-derived metabolites produced and their concentrations throughout the day. These microbe-derived metabolites influence many aspects of host physiology, including energy metabolism and circadian rhythm. Peroxisome proliferator-activated receptors (PPARs) are a group of ligand-activated transcription factors that regulate various metabolic processes such as fatty acid metabolism. Similar to the gut microbiota, PPAR expression in various organs oscillates diurnally, and studies have shown that the gut microbiota can influence PPAR activities in various metabolic organs. For example, short-chain fatty acids, the most abundant type of metabolites produced by anaerobic fermentation of dietary fibers by the gut microbiota, are PPAR agonists. In this review, we highlight how the gut microbiota can regulate PPARs in key metabolic organs, namely, in the intestines, liver, and muscle. Knowing that the gut microbiota impacts metabolism and is altered in individuals with metabolic diseases might allow treatment of these patients using noninvasive procedures such as gut microbiota manipulation.-Oh, H. Y. P., Visvalingam, V., Wahli, W. The PPAR-microbiota-metabolic organ trilogy to fine-tune physiology.
Collapse
Affiliation(s)
- Hui Yun Penny Oh
- Interdisciplinary Graduate School, Institute for Health Technologies, Nanyang Technological University, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Vivegan Visvalingam
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Unité Mixte de Recherche (UMR) 1331, Institut National de la Recherche Agronomique (INRA)-ToxAlim, Toulouse, France.,Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
Bezafibrate In Vivo Administration Prevents 3-Methylglutaric Acid-Induced Impairment of Redox Status, Mitochondrial Biogenesis, and Neural Injury in Brain of Developing Rats. Neurotox Res 2019; 35:809-822. [DOI: 10.1007/s12640-019-00019-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 12/18/2022]
|
19
|
Abstract
Primary adrenal insufficiency (PAI) is a life-threatening disorder of adrenal cortex which is characterized by deficient biosynthesis of glucocorticoids, with or without deficiency in mineralocorticoids and adrenal androgens. Typical manifestations of primary adrenal insufficiency include hyperpigmentation, hypotension, hypoglycaemia, hyponatremia with or without hyperkalemia that are generally preceded by nonspecific symptoms at the onset. Recessively inherited monogenic disorders constitute the largest group of primary adrenal insufficiency in children. The diagnostic process of primary adrenal insufficiency includes demonstration of low cortisol concentrations along with high plasma ACTH and identifying the cause of the disorder. Specific molecular diagnosis is achieved in more than 80% of children with PAI by detailed clinical and biochemical characterization integrated with advanced molecular tools. Hormone replacement therapy determined on the type and the severity of deficient adrenocortical hormones is the mainstay of treatment. Optimized methods of steroid hormone delivery, improved monitoring of hormone replacement along with intensive education of patients and families on the rules during intercurrent illness and stress will significantly reduce the morbidity and mortality associated with primary adrenal insufficiency.
Collapse
Affiliation(s)
- Tarik Kirkgoz
- Marmara University School of Medicine, Department of Paediatric Endocrinology and Diabetes, Istanbul, Turkey.
| | - Tulay Guran
- Marmara University School of Medicine, Department of Paediatric Endocrinology and Diabetes, Istanbul, Turkey.
| |
Collapse
|
20
|
Wanders RJA. Peroxisomal disorders: Improved laboratory diagnosis, new defects and the complicated route to treatment. Mol Cell Probes 2018; 40:60-69. [PMID: 29438773 DOI: 10.1016/j.mcp.2018.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 12/15/2022]
Abstract
Peroxisomes catalyze a number of essential metabolic functions of which fatty acid alpha- and beta-oxidation, ether phospholipid biosynthesis, glyoxylate detoxification and bile acid synthesis are the most important. The key role of peroxisomes in humans is exemplified by the existence of a group of peroxisomal disorders, caused by mutations in > 30 different genes which code for proteins with a role in either peroxisome biogenesis or one of the metabolic pathways in peroxisomes. Technological advances in laboratory methods at the metabolite-, enzyme-, and molecular level have not only allowed the identification of new peroxisomal disorders but also new phenotypes associated with already identified genetic defects thus extending the clinical spectrum. Unfortunately, progress in the field of pathogenesis and treatment has lagged behind although there are certainly new and hopeful developments with respect to X-linked adrenoleukodystrophy and hyperoxaluria type 1.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Department of Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Mashima R, Maekawa M. Lipid biomarkers for the peroxisomal and lysosomal disorders: their formation, metabolism and measurement. Biomark Med 2018; 12:83-95. [DOI: 10.2217/bmm-2017-0225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Lipid biomarkers play important roles in the diagnosis of and monitoring of treatment in peroxisomal disorders and lysosomal storage disorders. Today, a variety of lipids, including very long chain fatty acids, glycolipids, bile acids and the oxidation products of cholesterol, have been considered as biomarkers for these disorders. In this brief review, the authors summarized the recent advances regarding these lipid biomarkers in terms of their formation, metabolism and measurement in these disorders. An understanding of these biomarkers will offer a key to the development of novel diagnoses and help create more effective therapies in the future.
Collapse
Affiliation(s)
- Ryuichi Mashima
- Department of Clinical Laboratory Medicine, National Center for Child Health & Development, 2–10–1 Okura, Setagaya-ku, Tokyo 157–8535, Japan
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1–1 Seiryo-machi, Aoba-ku, Sendai 980–8574, Japan
| |
Collapse
|
22
|
Hartley MD, Kirkemo LL, Banerji T, Scanlan TS. A Thyroid Hormone-Based Strategy for Correcting the Biochemical Abnormality in X-Linked Adrenoleukodystrophy. Endocrinology 2017; 158:1328-1338. [PMID: 28200172 PMCID: PMC5460829 DOI: 10.1210/en.2016-1842] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/09/2017] [Indexed: 02/05/2023]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a rare, genetic disorder characterized by adrenal insufficiency and central nervous system (CNS) demyelination. All patients with X-ALD have the biochemical abnormality of elevated blood and tissue levels of very long chain fatty acids (VLCFAs), saturated fatty acids with 24 to 26 carbons. X-ALD results from loss of function mutations in the gene encoding the peroxisomal transporter ABCD1, which is responsible for uptake of VLCFAs into peroxisomes for degradation by oxidation. One proposed therapeutic strategy for genetic complementation of ABCD1 is pharmacologic upregulation of ABCD2, a gene encoding a homologous peroxisomal transporter. Here, we show that thyroid hormone or sobetirome, a clinical-stage selective thyroid hormone receptor agonist, increases cerebral Abcd2 and lowers VLCFAs in blood, peripheral organs, and brains of mice with defective Abcd1. These results support an approach to treating X-ALD that involves a thyromimetic agent that reactivates VLCFA disposal both in the periphery and the CNS.
Collapse
Affiliation(s)
- Meredith D. Hartley
- Department of Physiology and Pharmacology and Program in Chemical Biology, Oregon Health & Science University, Portland, Oregon 92739
| | - Lisa L. Kirkemo
- Department of Physiology and Pharmacology and Program in Chemical Biology, Oregon Health & Science University, Portland, Oregon 92739
| | - Tapasree Banerji
- Department of Physiology and Pharmacology and Program in Chemical Biology, Oregon Health & Science University, Portland, Oregon 92739
| | - Thomas S. Scanlan
- Department of Physiology and Pharmacology and Program in Chemical Biology, Oregon Health & Science University, Portland, Oregon 92739
| |
Collapse
|
23
|
Milanesi A, Brent GA. Beam Me In: Thyroid Hormone Analog Targets Alternative Transporter in Mouse Model of X-Linked Adrenoleukodystrophy. Endocrinology 2017; 158:1116-1119. [PMID: 28609836 PMCID: PMC5460838 DOI: 10.1210/en.2017-00206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 02/25/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Anna Milanesi
- Department of Medicine, Veterans Affairs Greater Los Angeles Healthcare System, and Endocrinology Division, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90073
| | - Gregory A Brent
- Department of Medicine, Veterans Affairs Greater Los Angeles Healthcare System, and Endocrinology Division, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90073
| |
Collapse
|
24
|
Kemp S, Huffnagel IC, Linthorst GE, Wanders RJ, Engelen M. Adrenoleukodystrophy - neuroendocrine pathogenesis and redefinition of natural history. Nat Rev Endocrinol 2016; 12:606-15. [PMID: 27312864 DOI: 10.1038/nrendo.2016.90] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
X-Linked adrenoleukodystrophy (ALD) is a peroxisomal metabolic disorder with a highly complex clinical presentation. ALD is caused by mutations in the ABCD1 gene, which leads to the accumulation of very long-chain fatty acids in plasma and tissues. Virtually all men with ALD develop adrenal insufficiency and myelopathy. Approximately 60% of men develop progressive cerebral white matter lesions (known as cerebral ALD). However, one cannot identify these individuals until the early changes are seen using brain imaging. Women with ALD also develop myelopathy, but generally at a later age than men and adrenal insufficiency or cerebral ALD are very rare. Owing to the multisystem symptomatology of the disease, patients can be assessed by the paediatrician, general practitioner, endocrinologist or a neurologist. This Review describes current knowledge on the clinical presentation, diagnosis and treatment of ALD, and highlights gaps in our knowledge of the natural history of the disease owing to an absence of large-scale prospective cohort studies. Such studies are necessary for the identification of new prognostic biomarkers to improve care for patients with ALD, which is particularly relevant now that newborn screening for ALD is being introduced.
Collapse
Affiliation(s)
- Stephan Kemp
- Department of Pediatrics, Academisch Medisch Centrum, University of Amsterdam Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Genetic Metabolic Diseases, Academisch Medisch Centrum, University of Amsterdam Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Irene C Huffnagel
- Department of Pediatrics, Academisch Medisch Centrum, University of Amsterdam Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Pediatric Neurology, Academisch Medisch Centrum, University of Amsterdam Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Gabor E Linthorst
- Endocrinology and Metabolism, Academisch Medisch Centrum, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Ronald J Wanders
- Department of Pediatrics, Academisch Medisch Centrum, University of Amsterdam Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Genetic Metabolic Diseases, Academisch Medisch Centrum, University of Amsterdam Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Marc Engelen
- Department of Pediatrics, Academisch Medisch Centrum, University of Amsterdam Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Pediatric Neurology, Academisch Medisch Centrum, University of Amsterdam Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
25
|
정을식, 강훈철, 고아라. X-linked adrenoleukodystrophy; Recent Advances in Classification, Diagnosis and Management. ACTA ACUST UNITED AC 2016. [DOI: 10.26815/jkcns.2016.24.3.71] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Baarine M, Khan M, Singh A, Singh I. Functional Characterization of IPSC-Derived Brain Cells as a Model for X-Linked Adrenoleukodystrophy. PLoS One 2015; 10:e0143238. [PMID: 26581106 PMCID: PMC4651558 DOI: 10.1371/journal.pone.0143238] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 11/01/2015] [Indexed: 01/12/2023] Open
Abstract
X-ALD is an inherited neurodegenerative disorder where mutations in the ABCD1 gene result in clinically diverse phenotypes: the fatal disorder of cerebral childhood ALD (cALD) or a milder disorder of adrenomyeloneuropathy (AMN). The various models used to study the pathobiology of X-ALD disease lack the appropriate presentation for different phenotypes of cALD vs AMN. This study demonstrates that induced pluripotent stem cells (IPSC) derived brain cells astrocytes (Ast), neurons and oligodendrocytes (OLs) express morphological and functional activities of the respective brain cell types. The excessive accumulation of saturated VLCFA, a "hallmark" of X-ALD, was observed in both AMN OLs and cALD OLs with higher levels observed in cALD OLs than AMN OLs. The levels of ELOVL1 (ELOVL Fatty Acid Elongase 1) mRNA parallel the VLCFA load in AMN and cALD OLs. Furthermore, cALD Ast expressed higher levels of proinflammatory cytokines than AMN Ast and control Ast with or without stimulation with lipopolysaccharide. These results document that IPSC-derived Ast and OLs from cALD and AMN fibroblasts mimic the respective biochemical disease phenotypes and thus provide an ideal platform to investigate the mechanism of VLCFA load in cALD OLs and VLCFA-induced inflammatory disease mechanisms of cALD Ast and thus for testing of new therapeutics for AMN and cALD disease of X-ALD.
Collapse
Affiliation(s)
- Mauhamad Baarine
- Department of Pediatrics, Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Mushfiquddin Khan
- Department of Pediatrics, Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Avtar Singh
- Department of Pediatrics, Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Inderjit Singh
- Department of Pediatrics, Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
27
|
Farr RL, Lismont C, Terlecky SR, Fransen M. Peroxisome biogenesis in mammalian cells: The impact of genes and environment. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1049-60. [PMID: 26305119 DOI: 10.1016/j.bbamcr.2015.08.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/13/2015] [Accepted: 08/18/2015] [Indexed: 01/16/2023]
Abstract
The initiation and progression of many human diseases are mediated by a complex interplay of genetic, epigenetic, and environmental factors. As all diseases begin with an imbalance at the cellular level, it is essential to understand how various types of molecular aberrations, metabolic changes, and environmental stressors function as switching points in essential communication networks. In recent years, peroxisomes have emerged as important intracellular hubs for redox-, lipid-, inflammatory-, and nucleic acid-mediated signaling pathways. In this review, we focus on how nature and nurture modulate peroxisome biogenesis and function in mammalian cells. First, we review emerging evidence that changes in peroxisome activity can be linked to the epigenetic regulation of cell function. Next, we outline how defects in peroxisome biogenesis may directly impact cellular pathways involved in the development of disease. In addition, we discuss how changes in the cellular microenvironment can modulate peroxisome biogenesis and function. Finally, given the importance of peroxisome function in multiple aspects of health, disease, and aging, we highlight the need for more research in this still understudied field.
Collapse
Affiliation(s)
- Rebecca L Farr
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven-University of Leuven, Herestraat 49 box 601, B-3000 Leuven, Belgium; Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield Ave., Detroit, MI 48201, USA
| | - Celien Lismont
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven-University of Leuven, Herestraat 49 box 601, B-3000 Leuven, Belgium
| | - Stanley R Terlecky
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield Ave., Detroit, MI 48201, USA
| | - Marc Fransen
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven-University of Leuven, Herestraat 49 box 601, B-3000 Leuven, Belgium.
| |
Collapse
|
28
|
Schackmann MJ, Ofman R, Dijkstra IM, Wanders RJ, Kemp S. Enzymatic characterization of ELOVL1, a key enzyme in very long-chain fatty acid synthesis. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:231-7. [DOI: 10.1016/j.bbalip.2014.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022]
|
29
|
|
30
|
Sassa T, Wakashima T, Ohno Y, Kihara A. Lorenzo's oil inhibits ELOVL1 and lowers the level of sphingomyelin with a saturated very long-chain fatty acid. J Lipid Res 2014; 55:524-30. [PMID: 24489110 DOI: 10.1194/jlr.m044586] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal disorder caused by impaired degradation of very long-chain fatty acids (VLCFAs) due to mutations in the ABCD1 gene responsible for VLCFA transport into peroxisomes. Lorenzo's oil, a 4:1 mixture of glyceryl trioleate and glyceryl trierucate, has been used to reduce the saturated VLCFA level in the plasma of X-ALD patients; however, the mechanism by which this occurs remains elusive. We report the biochemical characterization of Lorenzo's oil activity toward elongation of very long-chain fatty acid (ELOVL) 1, the primary enzyme responsible for the synthesis of saturated and monounsaturated VLCFAs. Oleic and erucic acids inhibited ELOVL1, and, moreover, their 4:1 mixture (the FA composition of Lorenzo's oil) exhibited the most potent inhibitory activity. The kinetics analysis revealed that this was a mixed (not a competitive) inhibition. At the cellular level, treatment with the 4:1 mixture reduced the level of SM with a saturated VLCFA accompanied by an increased level of SM with a monounsaturated VLCFA, probably due to the incorporation of erucic acid into the FA elongation cycle. These results suggest that inhibition of ELOVL1 may be an underlying mechanism by which Lorenzo's oil exerts its action.
Collapse
Affiliation(s)
- Takayuki Sassa
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | | | | | | |
Collapse
|
31
|
Barry DS, O'Keeffe GW. Peroxisomes: the neuropathological consequences of peroxisomal dysfunction in the developing brain. Int J Biochem Cell Biol 2013; 45:2012-5. [PMID: 23830890 DOI: 10.1016/j.biocel.2013.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/07/2013] [Accepted: 06/23/2013] [Indexed: 12/27/2022]
Abstract
Peroxisomes are intracellular organelles that perform vital metabolic functions. They have been extensively studied in the hepatic and renal systems, yet their pivotal roles in facilitating central nervous system patterning and in disease pathogenesis are only recently being firmly established by the neuroscience community. Peroxisomal functions including the break-down of long chain fatty acids, the removal of H2O2, and the biosynthesis of ether lipids. The build up of long chain fatty acids and H2O2 is detrimental to cellular function, and ether lipids play roles in maintaining cell membrane structure. These findings have major implications for treatments for the full spectrum of peroxisomal disorders. Here, we provide a timely review highlighting the most important data in recent times linking peroxisomal functions to brain formation, and we describe how peroxisomal deficiency and pathway dysfunction results in neurological deficits, the more severe of which result in life changing disabilities and death.
Collapse
Affiliation(s)
- Denis S Barry
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | | |
Collapse
|
32
|
Morató L, Galino J, Ruiz M, Calingasan NY, Starkov AA, Dumont M, Naudí A, Martínez JJ, Aubourg P, Portero-Otín M, Pamplona R, Galea E, Beal MF, Ferrer I, Fourcade S, Pujol A. Pioglitazone halts axonal degeneration in a mouse model of X-linked adrenoleukodystrophy. ACTA ACUST UNITED AC 2013; 136:2432-43. [PMID: 23794606 DOI: 10.1093/brain/awt143] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
X-linked adrenoleukodystrophy is a neurometabolic disorder caused by inactivation of the peroxisomal ABCD1 transporter of very long-chain fatty acids. In mice, ABCD1 loss causes late onset axonal degeneration in the spinal cord in association with locomotor disability resembling the most common phenotype in patients, adrenomyeloneuropathy. Increasing evidence indicates that oxidative stress and bioenergetic failure play major roles in the pathogenesis of X-linked adrenoleukodystrophy. In this study, we aimed to evaluate whether mitochondrial biogenesis is affected in X-linked adrenoleukodystrophy. We demonstrated that Abcd1 null mice show reduced mitochondrial DNA concomitant with downregulation of mitochondrial biogenesis pathway driven by PGC-1α/PPARγ and reduced expression of mitochondrial proteins cytochrome c, NDUFB8 and VDAC. Moreover, we show that the oral administration of pioglitazone, an agonist of PPARγ, restored mitochondrial content and expression of master regulators of biogenesis, neutralized oxidative damage to proteins and DNA, and reversed bioenergetic failure in terms of ATP levels, NAD+/NADH ratios, pyruvate kinase and glutathione reductase activities. Most importantly, the treatment halted locomotor disability and axonal damage in X-linked adrenoleukodystrophy mice. These results lend support to the use of pioglitazone in clinical trials with patients with adrenomyeloneuropathy and reveal novel molecular mechanisms of action of pioglitazone in neurodegeneration. Future studies should address the effects of this anti-diabetic drug on other axonopathies in which oxidative stress and mitochondrial dysfunction are contributing factors.
Collapse
Affiliation(s)
- Laia Morató
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
UNLABELLED X-linked adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene and is characterized by impaired beta-oxidation of very-long-chain fatty acids (VLCFA) and subsequent VLCFA accumulation in tissues. In adulthood X-ALD most commonly manifests as a gradually progressive myelopathy, (adrenomyeloneuropathy; AMN) without any curative or disease modifying treatments. We recently showed that bezafibrate (BF), a drug used for the treatment of hyperlipidaemia, reduces VLCFA accumulation in X-ALD fibroblasts by inhibiting ELOVL1, an enzyme involved in the VLCFA synthesis. We therefore designed a proof-of-principal clinical trial to determine whether BF reduces VLCFA levels in plasma and lymphocytes of X-ALD patients. Ten males with AMN were treated with BF for 12 weeks at a dose of 400 mg daily, followed by 12 weeks of 800 mg daily. Every 4 weeks patients were evaluated for side effects and blood samples were taken for analysis. Adherence was good as indicated by a clear reduction in triglycerides. There was no reduction in VLCFA in either plasma or lymphocytes. Plasma levels of BF did not exceed 25 µmol/L. We concluded that BF, at least in the dose given, is unable to lower VLCFA levels in plasma or lymphocytes in X-ALD patients. It is unclear whether this is due to the low levels of BF reached in plasma. Our future work is aimed at the identification of highly-specific inhibitors of ELOVL1 that act at much lower concentrations than BF and are well tolerated. BF appears to have no therapeutic utility in X-ALD. TRIAL REGISTRATION ClinicalTrials.gov NCT01165060.
Collapse
|