1
|
Di Nubila A, Dilella G, Simone R, Barbieri SS. Vascular Extracellular Matrix in Atherosclerosis. Int J Mol Sci 2024; 25:12017. [PMID: 39596083 PMCID: PMC11594217 DOI: 10.3390/ijms252212017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/23/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
The extracellular matrix (ECM) plays a central role in the structural integrity and functionality of the cardiovascular system. Moreover, the ECM is involved in atherosclerotic plaque formation and stability. In fact, ECM remodeling affects plaque stability, cellular migration, and inflammatory responses. Collagens, fibronectin, laminin, elastin, and proteoglycans are crucial proteins during atherosclerosis development. This dynamic remodeling is driven by proteolytic enzymes such as matrix metalloproteinases (MMPs), cathepsins, and serine proteases. Exploring and investigating ECM dynamics is an important step to designing innovative therapeutic strategies targeting ECM remodeling mechanisms, thus offering significant advantages in the management of cardiovascular diseases. This review illustrates the structure and role of vascular ECM, presenting a new perspective on ECM remodeling and its potential as a therapeutic target in atherosclerosis treatments.
Collapse
Affiliation(s)
| | | | | | - Silvia S. Barbieri
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, via Parea 4, 20138 Milan, Italy; (A.D.N.); (G.D.); (R.S.)
| |
Collapse
|
2
|
Cheng H, Peng Z, Zhao C, Jin H, Bao Y, Liu M. The transcriptomic and biochemical responses of blood clams (Tegillarca granosa) to prolonged intermittent hypoxia. Comp Biochem Physiol B Biochem Mol Biol 2024; 270:110923. [PMID: 37952637 DOI: 10.1016/j.cbpb.2023.110923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
The blood clam (Tegillarca granosa), a marine bivalve of ecological and economic significance, often encounters intermittent hypoxia in mudflats and aquatic environments. To study the response of blood clam foot to prolonged intermittent hypoxia, the clams were exposed to intermittent hypoxia conditions (0.5 mg/L dissolved oxygen, with a 12-h interval) for 31 days. Initially, transcriptomic analysis was performed, uncovering a total of 698 differentially expressed genes (DEGs), with 236 upregulated and 462 downregulated. These genes show enrichments in signaling pathways related to glucose metabolism, sugar synthesis and responses to oxidative stress. Furthermore, the activity of the enzyme glutathione peroxidase (GPx) and the levels of gpx1 mRNA showed gradual increases, reaching their peak on the 13th day of intermittent hypoxia exposure. This observation suggests an indirect protective role of GPx against oxidative stress. The results of this study make a significantly contribute to our broader comprehensive of the physiological, biochemical responses, and molecular reactions governing the organization of foot muscle tissue in marine bivalves exposed to prolonged intermittent hypoxic conditions.
Collapse
Affiliation(s)
- Haoxiang Cheng
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Zhilan Peng
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China; Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai 315604, China
| | - Chenxi Zhao
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai 315604, China
| | - Hongyu Jin
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Yongbo Bao
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China; Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai 315604, China.
| | - Minhai Liu
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China; Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai 315604, China.
| |
Collapse
|
3
|
Waseem T, Ahmed M, Rajput TA, Babar MM. Molecular implications of glycosaminoglycans in diabetes pharmacotherapy. Int J Biol Macromol 2023; 247:125821. [PMID: 37467830 DOI: 10.1016/j.ijbiomac.2023.125821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
Diabetes mellitus causes a wide range of metabolic derangements with multiple organ damage. The microvascular and macrovascular complications of diabetes result partly from the damage to the glycosaminoglycans (GAG) in the basement membrane. GAGs are negatively charged polysaccharides with repeating disaccharide units. They play a significant role in cellular proliferation and signal transduction. Destruction of extracellular matrix results in diseases in various organs including myocardial fibrosis, retinal damage and nephropathy. To substitute the natural GAGs pharmacotherapeutically, they have been synthesized by using basic disaccharide units. Among the four classes of GAGs, heparin is the most widely studied. Recent studies have revealed multiple significant GAG-protein interactions suggesting their use for the management of diabetic complications. Moreover, they can act as biomarkers for assessing the disease progression. A number of GAG-based therapeutic agents are being evaluated for managing diabetic complications. The current review provides an outline of the role of GAGs in diabetes while covering their interaction with different molecular players that can serve as targets for the diagnosis, management and prevention of diabetes and its complications. The medicinal chemistry and clinical pharmacotherapeutics aspects have are covered to aid in the establishment of GAG-based therapies as a possible avenue for diabetes.
Collapse
Affiliation(s)
- Tanya Waseem
- Department of Pharmaceutical Chemistry, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
| | - Madiha Ahmed
- Department of Pharmaceutical Chemistry, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
| | - Tausif Ahmed Rajput
- Department of Pharmaceutical Chemistry, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
| | - Mustafeez Mujtaba Babar
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan.
| |
Collapse
|
4
|
Colin-Pierre C, El Baraka O, Danoux L, Bardey V, André V, Ramont L, Brézillon S. Regulation of stem cell fate by HSPGs: implication in hair follicle cycling. NPJ Regen Med 2022; 7:77. [PMID: 36577752 PMCID: PMC9797564 DOI: 10.1038/s41536-022-00267-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/30/2022] [Indexed: 12/29/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are part of proteoglycan family. They are composed of heparan sulfate (HS)-type glycosaminoglycan (GAG) chains covalently linked to a core protein. By interacting with growth factors and/or receptors, they regulate numerous pathways including Wnt, hedgehog (Hh), bone morphogenic protein (BMP) and fibroblast growth factor (FGF) pathways. They act as inhibitor or activator of these pathways to modulate embryonic and adult stem cell fate during organ morphogenesis, regeneration and homeostasis. This review summarizes the knowledge on HSPG structure and classification and explores several signaling pathways regulated by HSPGs in stem cell fate. A specific focus on hair follicle stem cell fate and the possibility to target HSPGs in order to tackle hair loss are discussed in more dermatological and cosmeceutical perspectives.
Collapse
Affiliation(s)
- Charlie Colin-Pierre
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France.
- BASF Beauty Care Solutions France SAS, Pulnoy, France.
| | | | - Louis Danoux
- BASF Beauty Care Solutions France SAS, Pulnoy, France
| | | | - Valérie André
- BASF Beauty Care Solutions France SAS, Pulnoy, France
| | - Laurent Ramont
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France
- CHU de Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France
| |
Collapse
|
5
|
Zappe A, Miller RL, Struwe WB, Pagel K. State-of-the-art glycosaminoglycan characterization. MASS SPECTROMETRY REVIEWS 2022; 41:1040-1071. [PMID: 34608657 DOI: 10.1002/mas.21737] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/02/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Glycosaminoglycans (GAGs) are heterogeneous acidic polysaccharides involved in a range of biological functions. They have a significant influence on the regulation of cellular processes and the development of various diseases and infections. To fully understand the functional roles that GAGs play in mammalian systems, including disease processes, it is essential to understand their structural features. Despite having a linear structure and a repetitive disaccharide backbone, their structural analysis is challenging and requires elaborate preparative and analytical techniques. In particular, the extent to which GAGs are sulfated, as well as variation in sulfate position across the entire oligosaccharide or on individual monosaccharides, represents a major obstacle. Here, we summarize the current state-of-the-art methodologies used for GAG sample preparation and analysis, discussing in detail liquid chromatograpy and mass spectrometry-based approaches, including advanced ion activation methods, ion mobility separations and infrared action spectroscopy of mass-selected species.
Collapse
Affiliation(s)
- Andreas Zappe
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Rebecca L Miller
- Department of Cellular and Molecular Medicine, Copenhagen Centre for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | | | - Kevin Pagel
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
6
|
Takahashi I. Importance of Heparan Sulfate Proteoglycans in Pancreatic Islets and β-Cells. Int J Mol Sci 2022; 23:12082. [PMID: 36292936 PMCID: PMC9603760 DOI: 10.3390/ijms232012082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022] Open
Abstract
β-cells in the islets of Langerhans of the pancreas secrete insulin in response to the glucose concentration in the blood. When these pancreatic β-cells are damaged, diabetes develops through glucose intolerance caused by insufficient insulin secretion. High molecular weight polysaccharides, such as heparin and heparan sulfate (HS) proteoglycans, and HS-degrading enzymes, such as heparinase, participate in the protection, maintenance, and enhancement of the functions of pancreatic islets and β-cells, and the demand for studies on glycobiology within the field of diabetes research has increased. This review introduces the roles of complex glycoconjugates containing high molecular weight polysaccharides and their degrading enzymes in pancreatic islets and β-cells, including those obtained in studies conducted by us earlier. In addition, from the perspective of glycobiology, this study proposes the possibility of application to diabetes medicine.
Collapse
Affiliation(s)
- Iwao Takahashi
- Division of Molecular and Cellular Pharmacology, Department of Pathophysiology and Pharmacology, School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Morioka 028-3694, Iwate, Japan
| |
Collapse
|
7
|
Basu A, Patel NG, Nicholson ED, Weiss RJ. Spatiotemporal diversity and regulation of glycosaminoglycans in cell homeostasis and human disease. Am J Physiol Cell Physiol 2022; 322:C849-C864. [PMID: 35294848 PMCID: PMC9037703 DOI: 10.1152/ajpcell.00085.2022] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glycosaminoglycans (GAGs) are long, linear polysaccharides that are ubiquitously expressed on the cell surface and in the extracellular matrix of all animal cells. These complex carbohydrates play important roles in many cellular processes and have been implicated in many disease states, including cancer, inflammation, and genetic disorders. GAGs are among the most complex molecules in biology with enormous information content and extensive structural and functional heterogeneity. GAG biosynthesis is a nontemplate-driven process facilitated by a large group of biosynthetic enzymes that have been extensively characterized over the past few decades. Interestingly, the expression of the enzymes and the consequent structure and function of the polysaccharide chains can vary temporally and spatially during development and under certain pathophysiological conditions, suggesting their assembly is tightly regulated in cells. Due to their many key roles in cell homeostasis and disease, there is much interest in targeting the assembly and function of GAGs as a therapeutic approach. Recent advances in genomics and GAG analytical techniques have pushed the field and generated new perspectives on the regulation of mammalian glycosylation. This review highlights the spatiotemporal diversity of GAGs and the mechanisms guiding their assembly and function in human biology and disease.
Collapse
Affiliation(s)
- Amrita Basu
- 1Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Neil G. Patel
- 1Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia,2Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| | - Elijah D. Nicholson
- 2Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| | - Ryan J. Weiss
- 1Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia,2Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| |
Collapse
|
8
|
Ahat E, Song Y, Xia K, Reid W, Li J, Bui S, Zhang F, Linhardt RJ, Wang Y. GRASP depletion-mediated Golgi fragmentation impairs glycosaminoglycan synthesis, sulfation, and secretion. Cell Mol Life Sci 2022; 79:199. [PMID: 35312866 PMCID: PMC9164142 DOI: 10.1007/s00018-022-04223-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022]
Abstract
Synthesis of glycosaminoglycans, such as heparan sulfate (HS) and chondroitin sulfate (CS), occurs in the lumen of the Golgi, but the relationship between Golgi structural integrity and glycosaminoglycan synthesis is not clear. In this study, we disrupted the Golgi structure by knocking out GRASP55 and GRASP65 and determined its effect on the synthesis, sulfation, and secretion of HS and CS. We found that GRASP depletion increased HS synthesis while decreasing CS synthesis in cells, altered HS and CS sulfation, and reduced both HS and CS secretion. Using proteomics, RNA-seq and biochemical approaches, we identified EXTL3, a key enzyme in the HS synthesis pathway, whose level is upregulated in GRASP knockout cells; while GalNAcT1, an essential CS synthesis enzyme, is robustly reduced. In addition, we found that GRASP depletion decreased HS sulfation via the reduction of PAPSS2, a bifunctional enzyme in HS sulfation. Our study provides the first evidence that Golgi structural defect may significantly alter the synthesis and secretion of glycosaminoglycans.
Collapse
Affiliation(s)
- Erpan Ahat
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 North University Avenue, Ann Arbor, MI, 48109-1085, USA
| | - Yuefan Song
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Ke Xia
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Whitney Reid
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 North University Avenue, Ann Arbor, MI, 48109-1085, USA
| | - Jie Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 North University Avenue, Ann Arbor, MI, 48109-1085, USA
| | - Sarah Bui
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 North University Avenue, Ann Arbor, MI, 48109-1085, USA
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 North University Avenue, Ann Arbor, MI, 48109-1085, USA.
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Aissa AF, Tryndyak VP, de Conti A, Rita Thomazela Machado A, Tuttis K, da Silva Machado C, Hernandes LC, Wellington da Silva Santos P, Mara Serpeloni J, P Pogribny I, Maria Greggi Antunes L. Epigenetic changes induced in mice liver by methionine-supplemented and methionine-deficient diets. Food Chem Toxicol 2022; 163:112938. [PMID: 35314295 DOI: 10.1016/j.fct.2022.112938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023]
Abstract
A diet deficient in donors of methyl group, such as methionine, affects DNA methylation and hepatic lipid metabolism. Methionine also affects other epigenetic mechanisms, such as microRNAs. We investigated the effects of methionine-supplemented or methionine-deficient diets on the expression of chromatin-modifying genes, global DNA methylation, the expression and methylation of genes related to lipid metabolism, and the expression of microRNAs in mouse liver. Female Swiss albino mice were fed a control diet (0.3% methionine), a methionine-supplemented diet (2% methionine), and a methionine-deficient diet (0% methionine) for 10 weeks. The genes most affected by the methionine-supplemented diet were associated with histone and DNA methyltransferases activity, while the methionine-deficient diet mostly altered the expression of histone methyltransferases genes. Both diets altered the global DNA methylation and the expression and gene-specific methylation of the lipid metabolism gene Apoa5. Both diets altered the expression of several liver homeostasis-related microRNAs, including miR-190b-5p, miR-130b-3p, miR-376c-3p, miR-411-5p, miR-29c-3p, miR-295-3p, and miR-467d-5p, with the methionine-deficient diet causing a more substantial effect. The effects of improper amounts of methionine in the diet on liver pathologies may involve a cooperative action of chromatin-modifying genes, which results in an aberrant pattern of global and gene-specific methylation, and microRNAs responsible for liver homeostasis.
Collapse
Affiliation(s)
- Alexandre Ferro Aissa
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Volodymyr P Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Aline de Conti
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Ana Rita Thomazela Machado
- Departament of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Katiuska Tuttis
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carla da Silva Machado
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lívia Cristina Hernandes
- Departament of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Patrick Wellington da Silva Santos
- Departament of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Juliana Mara Serpeloni
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, PR, Brazil
| | - Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Lusânia Maria Greggi Antunes
- Departament of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
10
|
Micale L, Fusco C, Castori M. Ehlers-Danlos Syndromes, Joint Hypermobility and Hypermobility Spectrum Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:207-233. [PMID: 34807421 DOI: 10.1007/978-3-030-80614-9_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ehlers-Danlos syndrome is an umbrella term for a clinically and genetically heterogeneous group of hereditary soft connective tissue disorders mainly featuring abnormal cutaneous texture (doughy/velvety, soft, thin, and/or variably hyperextensible skin), easy bruising, and joint hypermobility. Currently, musculoskeletal manifestations related to joint hypermobility are perceived as the most prevalent determinants of the quality of life of affected individuals. The 2017 International Classification of Ehlers-Danlos syndromes and related disorders identifies 13 clinical types due to deleterious variants in 19 different genes. Recent publications point out the possibility of a wider spectrum of conditions that may be considered members of the Ehlers-Danlos syndrome community. Most Ehlers-Danlos syndromes are due to inherited abnormalities affecting the biogenesis of fibrillar collagens and other components of the extracellular matrix. The introduction of next-generation sequencing technologies in the diagnostic setting fastened patients' classification and improved our knowledge on the phenotypic variability of many Ehlers-Danlos syndromes. This is impacting significantly patients' management and family counseling. At the same time, most individuals presenting with joint hypermobility and associated musculoskeletal manifestations still remain without a firm diagnosis, due to a too vague clinical presentation and/or the lack of an identifiable molecular biomarker. These individuals are currently defined with the term "hypermobility spectrum disorders". Hence, in parallel with a continuous update of the International Classification of Ehlers-Danlos syndromes, the scientific community is investing efforts in offering a more efficient framework for classifying and, hopefully, managing individuals with joint hypermobility.
Collapse
Affiliation(s)
- Lucia Micale
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Carmela Fusco
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| |
Collapse
|
11
|
Haouari W, Dubail J, Poüs C, Cormier-Daire V, Bruneel A. Inherited Proteoglycan Biosynthesis Defects-Current Laboratory Tools and Bikunin as a Promising Blood Biomarker. Genes (Basel) 2021; 12:genes12111654. [PMID: 34828260 PMCID: PMC8625474 DOI: 10.3390/genes12111654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/11/2021] [Accepted: 10/17/2021] [Indexed: 12/15/2022] Open
Abstract
Proteoglycans consist of proteins linked to sulfated glycosaminoglycan chains. They constitute a family of macromolecules mainly involved in the architecture of organs and tissues as major components of extracellular matrices. Some proteoglycans also act as signaling molecules involved in inflammatory response as well as cell proliferation, adhesion, and differentiation. Inborn errors of proteoglycan metabolism are a group of orphan diseases with severe and irreversible skeletal abnormalities associated with multiorgan impairments. Identifying the gene variants that cause these pathologies proves to be difficult because of unspecific clinical symptoms, hardly accessible functional laboratory tests, and a lack of convenient blood biomarkers. In this review, we summarize the molecular pathways of proteoglycan biosynthesis, the associated inherited syndromes, and the related biochemical screening techniques, and we focus especially on a circulating proteoglycan called bikunin and on its potential as a new biomarker of these diseases.
Collapse
Affiliation(s)
- Walid Haouari
- INSERM UMR1193, Paris-Saclay University, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92220 Châtenay-Malabry, France; (W.H.); (C.P.)
| | - Johanne Dubail
- INSERM UMR1163, French Reference Center for Skeletal Dysplasia, Imagine Institute, Paris University, 24 Boulevard du Montparnasse, 75015 Paris, France; (J.D.); (V.C.-D.)
- AP-HP, Necker Enfants Malades Hospital, 149 rue de Sèvres, 75015 Paris, France
| | - Christian Poüs
- INSERM UMR1193, Paris-Saclay University, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92220 Châtenay-Malabry, France; (W.H.); (C.P.)
| | - Valérie Cormier-Daire
- INSERM UMR1163, French Reference Center for Skeletal Dysplasia, Imagine Institute, Paris University, 24 Boulevard du Montparnasse, 75015 Paris, France; (J.D.); (V.C.-D.)
- AP-HP, Necker Enfants Malades Hospital, 149 rue de Sèvres, 75015 Paris, France
| | - Arnaud Bruneel
- INSERM UMR1193, Paris-Saclay University, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92220 Châtenay-Malabry, France; (W.H.); (C.P.)
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, 46 rue Henri Huchard, 75018 Paris, France
- Correspondence:
| |
Collapse
|
12
|
Kong W, Zhang J, Lu C, Ding Y, Meng Y. Glaucoma in mucopolysaccharidoses. Orphanet J Rare Dis 2021; 16:312. [PMID: 34266471 PMCID: PMC8281695 DOI: 10.1186/s13023-021-01935-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 06/27/2021] [Indexed: 11/30/2022] Open
Abstract
Mucopolysaccharidoses are a group of lysosomal storage disorders that are caused by deficiency of enzymes involved in glycosaminoglycans degradation. Due to low prevalence and high childhood mortality, researches on mucopolysaccharidoses were mainly focused on the fatal manifestations. With the development of treatments, more and more mucopolysaccharidoses patients were treated by approved therapies, thereby getting prolonged life span and improved quality of life. Abnormal accumulation of glycosaminoglycans in the eye may block trabecular meshwork, thicken sclera and change mechanical behavior of lamina cribrosa, which, by increasing intraocular pressure and damaging optic nerve, could cause glaucoma. Glaucoma was the leading cause of irreversible blindness worldwide, but it was rarely reported in mucopolysaccharidoses patients. Although non-fatal, it seriously affected quality of life. Prevalence of glaucoma in mucopolysaccharidoses patients (ranged from 2.1 to 12.5%) indicated that glaucoma in patients with mucopolysaccharidoses was worthy of attention and further study, thereby improving the quality of life for MPSs patients.
Collapse
Affiliation(s)
- Weijing Kong
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jing Zhang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Cheng Lu
- Beijing Hong Jian Medical Device Company, Beijing, 100176, China
| | - Yingxue Ding
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Yan Meng
- Department of Pediatrics, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
13
|
Rojo J, Nieto PM, de Paz JL. GAG Multivalent Systems to interact with Langerin. Curr Med Chem 2021; 29:1173-1192. [PMID: 34225602 DOI: 10.2174/0929867328666210705143102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 11/22/2022]
Abstract
Langerin is a C-type Lectin expressed at the surface of Langerhans cells, which play a pivotal role in protecting organisms against pathogen infections. To address this aim, Langerin presents at least two recognition sites, one Ca2+-dependent and another one independent, capable of recognizing a variety of carbohydrate ligands. In contrast to other lectins, Langerin recognizes sulfated glycosaminoglycans (GAGs), a family of complex and heterogeneous polysaccharides present in the cell membrane and the extracellular matrix at the interphase generated in the trimeric form of Langerin but absent in the monomeric form. The complexity of these oligosaccharides has impeded the development of well-defined monodisperse structures to study these interaction processes. However, in the last few decades, an improvement of synthetic developments to achieve the preparation of carbohydrate multivalent systems mimicking the GAGs has been described. Despite all these contributions, very few examples are reported where the GAG multivalent structures are used to evaluate the interaction with Langerin. These molecules should pave the way to explore these GAG-Langerin interactions.
Collapse
Affiliation(s)
- Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain
| | - Pedro M Nieto
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain
| | - José Luis de Paz
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain
| |
Collapse
|
14
|
A Bittersweet Computational Journey among Glycosaminoglycans. Biomolecules 2021; 11:biom11050739. [PMID: 34063530 PMCID: PMC8156566 DOI: 10.3390/biom11050739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 01/22/2023] Open
Abstract
Glycosaminoglycans (GAGs) are linear polysaccharides. In proteoglycans (PGs), they are attached to a core protein. GAGs and PGs can be found as free molecules, associated with the extracellular matrix or expressed on the cell membrane. They play a role in the regulation of a wide array of physiological and pathological processes by binding to different proteins, thus modulating their structure and function, and their concentration and availability in the microenvironment. Unfortunately, the enormous structural diversity of GAGs/PGs has hampered the development of dedicated analytical technologies and experimental models. Similarly, computational approaches (in particular, molecular modeling, docking and dynamics simulations) have not been fully exploited in glycobiology, despite their potential to demystify the complexity of GAGs/PGs at a structural and functional level. Here, we review the state-of-the art of computational approaches to studying GAGs/PGs with the aim of pointing out the “bitter” and “sweet” aspects of this field of research. Furthermore, we attempt to bridge the gap between bioinformatics and glycobiology, which have so far been kept apart by conceptual and technical differences. For this purpose, we provide computational scientists and glycobiologists with the fundamentals of these two fields of research, with the aim of creating opportunities for their combined exploitation, and thereby contributing to a substantial improvement in scientific knowledge.
Collapse
|
15
|
What Are the Potential Roles of Nuclear Perlecan and Other Heparan Sulphate Proteoglycans in the Normal and Malignant Phenotype. Int J Mol Sci 2021; 22:ijms22094415. [PMID: 33922532 PMCID: PMC8122901 DOI: 10.3390/ijms22094415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/27/2022] Open
Abstract
The recent discovery of nuclear and perinuclear perlecan in annulus fibrosus and nucleus pulposus cells and its known matrix stabilizing properties in tissues introduces the possibility that perlecan may also have intracellular stabilizing or regulatory roles through interactions with nuclear envelope or cytoskeletal proteins or roles in nucleosomal-chromatin organization that may regulate transcriptional factors and modulate gene expression. The nucleus is a mechano-sensor organelle, and sophisticated dynamic mechanoresponsive cytoskeletal and nuclear envelope components support and protect the nucleus, allowing it to perceive and respond to mechano-stimulation. This review speculates on the potential roles of perlecan in the nucleus based on what is already known about nuclear heparan sulphate proteoglycans. Perlecan is frequently found in the nuclei of tumour cells; however, its specific role in these diseased tissues is largely unknown. The aim of this review is to highlight probable roles for this intriguing interactive regulatory proteoglycan in the nucleus of normal and malignant cell types.
Collapse
|
16
|
Wedekind SIS, Shenker NS. Antiviral Properties of Human Milk. Microorganisms 2021; 9:715. [PMID: 33807146 PMCID: PMC8066736 DOI: 10.3390/microorganisms9040715] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/29/2022] Open
Abstract
Humans have always coexisted with viruses, with both positive and negative consequences. Evolutionary pressure on mammals has selected intrinsic properties of lactation and milk to support the relatively immunocompromised neonate from environmental pathogens, as well as support the normal development of diverse immune responses. Human milk supports both adaptive and innate immunity, with specific constituents that drive immune learning and maturation, and direct protection against microorganisms. Viruses constitute one of the most ancient pressures on human evolution, and yet there is a lack of awareness by both public and healthcare professionals of the complexity of human milk as an adaptive response beyond the production of maternal antibodies. This review identifies and describes the specific antiviral properties of human milk and describes how maternal support of infants through lactation is protective beyond antibodies.
Collapse
Affiliation(s)
| | - Natalie S. Shenker
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK;
- Human Milk Foundation, Daniel Hall Building, Rothamsted Institute, Harpenden AL5 2JQ, UK
| |
Collapse
|
17
|
Bu C, Jin L. NMR Characterization of the Interactions Between Glycosaminoglycans and Proteins. Front Mol Biosci 2021; 8:646808. [PMID: 33796549 PMCID: PMC8007983 DOI: 10.3389/fmolb.2021.646808] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Glycosaminoglycans (GAGs) constitute a considerable fraction of the glycoconjugates found on cellular membranes and in the extracellular matrix of virtually all mammalian tissues. The essential role of GAG-protein interactions in the regulation of physiological processes has been recognized for decades. However, the underlying molecular basis of these interactions has only emerged since 1990s. The binding specificity of GAGs is encoded in their primary structures, but ultimately depends on how their functional groups are presented to a protein in the three-dimensional space. This review focuses on the application of NMR spectroscopy on the characterization of the GAG-protein interactions. Examples of interpretation of the complex mechanism and characterization of structural motifs involved in the GAG-protein interactions are given. Selected families of GAG-binding proteins investigated using NMR are also described.
Collapse
Affiliation(s)
- Changkai Bu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Lan Jin
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| |
Collapse
|
18
|
Modeling of Old Scars: Histopathological, Biochemical and Thermal Analysis of the Scar Tissue Maturation. BIOLOGY 2021; 10:biology10020136. [PMID: 33572335 PMCID: PMC7916157 DOI: 10.3390/biology10020136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 12/26/2022]
Abstract
Simple Summary Severe skin scars (i.e., hypertrophic and keloid) induce physical and emotional discomfort and functional disorders such as contractures and body part deformations. Scar’s response to treatment depends on “maturity”, which increases with time but is not merely proportional to it. When “fresh”, scars are relatively more treatable by conservative methods, while the treatment is only partially efficient. In contrast, surgery is a preferred approach for the older scars, but it is associated with a risk of the scar regrowth and worsening after excision if unrecognized immature scar tissue remains in the operated lesion. Therefore, to develop better treatment and diagnostics of scars, understanding of the scar maturation is essential. This requires biologically accurate experimental models of skin scarring. The current models only mimic the early stages of skin scar development. They are useful for testing new scar-preventing approaches while not addressing the problem of the older scars that exist for years. In our study, we demonstrate a new rabbit model of “old” scars and explore what happens to the scar tissue during maturation. We define measurable signs to delineate the scar development stages and discuss how this knowledge can improve scar diagnostics and treatment. Abstract Mature hypertrophic scars (HSs) remain a challenging clinical problem, particularly due to the absence of biologically relevant experimental models as a standard rabbit ear HS model only reflects an early stage of scarring. The current study aims to adapt this animal model for simulation of mature HS by validating the time of the scar stabilization using qualitative and quantitative criteria. The full-thickness skin and perichondrium excision wounds were created on the ventral side of the rabbit ears. The tissue samples were studied on post-operation days (PODs) 30, 60, 90 and 120. The histopathological examination and morphometry were applied in parallel with biochemical analysis of protein and glycosaminoglycans (GAGs) content and amino acid composition. The supramolecular organization of collagen was explored by differential scanning calorimetry. Four stages of the rabbit ear HS maturation were delineated and attributed with the histolomorphometrical and physicochemical parameters of the tissue. The experimental scars formed in 30 days but stabilized structurally and biochemically only on POD 90–120. This evidence-based model can be used for the studies and testing of new treatments of the mature HSs.
Collapse
|
19
|
Mishra S, Ganguli M. Functions of, and replenishment strategies for, chondroitin sulfate in the human body. Drug Discov Today 2021; 26:1185-1199. [PMID: 33549530 DOI: 10.1016/j.drudis.2021.01.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/26/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
Chondroitin sulfate (CS) belongs to a class of molecules called glycosaminoglycans (GAGs). These are long, linear chains of polysaccharides comprising alternating amino sugars and hexuronic acid. Similar to other GAGs, CS is important in a multitude of biological activities. Alteration of CS levels has been implicated in several pathological conditions, including osteoarthritis (OA) and other inflammatory diseases, as well as physiological conditions, such as aging. Therefore, devising replenishment strategies for this molecule is an important area of research. In this review, we discuss the nature of CS, its function in different organs, and its implications in health and disease. We also describe different methods for the exogenous administration of CS.
Collapse
Affiliation(s)
- Sarita Mishra
- CSIR - Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Munia Ganguli
- CSIR - Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
20
|
Salinas-Marín R, Villanueva-Cabello TM, Martínez-Duncker I. Biology of Proteoglycans and Associated Glycosaminoglycans. COMPREHENSIVE GLYCOSCIENCE 2021:63-102. [DOI: 10.1016/b978-0-12-819475-1.00065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
21
|
Wang F, Zhao Q, Liu W, Kong D. CENPE, PRC1, TTK, and PLK4 May Play Crucial Roles in the Osteosarcoma Progression. Technol Cancer Res Treat 2020; 19:1533033820973278. [PMID: 33176597 PMCID: PMC7675850 DOI: 10.1177/1533033820973278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Osteosarcoma (OS) is a cancerous tumor in a bone. We aimed to identify the
critical genes involved in OS progression, and then try to elucidate the
molecular mechanisms of this disease. The microarray data of GSE32395 was used
for the present study. We analyzed differentially expressed genes (DEGs) in OS
cells compared with control group by Student’s t-test. The significant enriched
gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) pathways
were analyzed for upregulated genes and downregulated genes, respectively. In
addition, a protein-protein interaction (PPI) network was constructed. GO and
KEGG enrichment analyses were conducted for genes in the PPI network. In total,
183 DEGs, including 100 upregulated DEGs and 83 downregulated DEGs were
screened. The upregulated DEGs were significantly enriched in 2 KEGG pathways,
such as “Glycosaminoglycan biosynthesis-chondroitin sulfate” and the
downregulated DEGs were significantly enriched in 12 pathways, including “cell
adhesion molecules,” “pentose phosphate pathway” and “allograft rejection.” GO
enrichment analysis indicated that the upregulated DEGs were significantly
involved in biological process, such as “multicellular organismal metabolic
process” and “limb morphogenesis,” while the downregulated DEGs were
significantly enriched in biological process, such as “Positive regulation of
pathway-restricted SMAD protein phosphorylation.” The PPI network included 84
interactions and 51 nodes. The “glycosaminoglycan biosynthesis-chondroitin
sulfate pathway,” “microtubule motor activityfunction,” and “regulation of
mitosis process” were significantly enriched by genes in PPI network. In
particular, CENPE, PRC1, TTK, and PLK4 had higher degrees in the PPI network.
The interactions between TTK and PLK4 as well as CENPE and PRC1 may involve in
the OS development. These 4 genes might be possible biomarkers for the treatment
and diagnosis of OS.
Collapse
Affiliation(s)
- Fei Wang
- Department of Orthopedic, 74569China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Qiheng Zhao
- Department of Orthopedic, 74569China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Wenping Liu
- Department of Internal Neurology, 154454The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Daliang Kong
- Department of Orthopedic, 74569China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
22
|
Tabet A, Park JY, Shilts J, Sokolowski K, Rana VK, Kamp M, Warner N, Hoogland D, Scherman OA. Protein-mediated gelation and nano-scale assembly of unfunctionalized hyaluronic acid and chondroitin sulfate. F1000Res 2019; 7:1827. [PMID: 31448078 DOI: 10.12688/f1000research.16929.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/15/2018] [Indexed: 01/27/2023] Open
Abstract
Background: Hyaluronic acid (HA) is a major component of the extracellular matrix (ECM) in the central nervous system and the only purely supramolecular glycosaminoglycan. Much focus has been given to using this high molecular weight polysaccharide for tissue engineering applications. In most studies, the backbone of HA is functionalized with moieties that can facilitate network formation through physical self-assembly, or covalent crosslinking (e.g. photo-catalyzed) at concentrations where the polysaccharide does not gel on its own. However, these crosslinks often utilize functional groups not found in biological tissues. Methods: Oscillatory rheology, dynamic light scattering, and scanning electron microscopy were used to study albumin/HA structures. Dynamic light scattering and transmission electron microscopy were used to study albumin/chondroitin sulfate (CS) structures. UV-vis spectroscopy was used to demonstrate the potential for using protein-polymer blends as an ECM-mimetic model to study transport of small molecules. Results: We examine the intermolecular interactions of two major glycosaminoglycans found in the human brain, HA and the lower molecular weight CS, with the model protein albumin. We report the properties of the resulting micro- and nano materials. Our albumin/HA systems formed gels, and albumin/CS systems formed micro- and nanoparticles. These systems are formed from unfunctionalized polysaccharides, which is an attractive and simple method of forming HA hydrogels and CS nanoparticles. We also summarize the concentrations of HA and CS found in various mammalian brains, which could potentially be useful for biomimetic scaffold development. Conclusions: Simple preparation of commercially available charged biomacromolecules results in interesting materials with structures at the micron and nanometer length-scales. Such materials may have utility in serving as cost-effective models of nervous system electrostatic interactions and as in vitro drug release and model system for ECM transport studies.
Collapse
Affiliation(s)
- Anthony Tabet
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - June Y Park
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | - Kamil Sokolowski
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Vijay K Rana
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Marlous Kamp
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Nina Warner
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Dominique Hoogland
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Oren A Scherman
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
23
|
Tabet A, Park JY, Shilts J, Sokolowski K, Rana VK, Kamp M, Warner N, Hoogland D, Scherman OA. Protein-mediated gelation and nano-scale assembly of unfunctionalized hyaluronic acid and chondroitin sulfate. F1000Res 2019; 7:1827. [PMID: 31448078 PMCID: PMC6688722 DOI: 10.12688/f1000research.16929.3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/04/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Hyaluronic acid (HA) is a major component of the extracellular matrix (ECM) in the central nervous system and the only purely supramolecular glycosaminoglycan. Much focus has been given to using this high molecular weight polysaccharide for tissue engineering applications. In most studies, the backbone of HA is functionalized with moieties that can facilitate network formation through physical self-assembly, or covalent crosslinking (e.g. photo-catalyzed) at concentrations where the polysaccharide does not gel on its own. However, these crosslinks often utilize functional groups not found in biological tissues. Methods: Oscillatory rheology, dynamic light scattering, and scanning electron microscopy were used to study albumin/HA structures. Dynamic light scattering and transmission electron microscopy were used to study albumin/chondroitin sulfate (CS) structures. UV-vis spectroscopy was used to demonstrate the potential for using protein-polymer blends as an ECM-mimetic model to study transport of small molecules. Results: We examine the intermolecular interactions of two major glycosaminoglycans found in the human brain, HA and the lower molecular weight CS, with the model protein albumin. We report the properties of the resulting micro- and nano materials. Our albumin/HA systems formed gels, and albumin/CS systems formed micro- and nanoparticles. These systems are formed from unfunctionalized polysaccharides, which is an attractive and simple method of forming HA hydrogels and CS nanoparticles. We also summarize the concentrations of HA and CS found in various mammalian brains, which could potentially be useful for biomimetic scaffold development. Conclusions: Simple preparation of commercially available charged biomacromolecules results in interesting materials with structures at the micron and nanometer length-scales. Such materials may have utility in serving as cost-effective models of nervous system electrostatic interactions and as in vitro drug release and model system for ECM transport studies.
Collapse
Affiliation(s)
- Anthony Tabet
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - June Y Park
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | - Kamil Sokolowski
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Vijay K Rana
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Marlous Kamp
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Nina Warner
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Dominique Hoogland
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Oren A Scherman
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
24
|
Modelling the early evolution of extracellular matrix from modern Ctenophores and Sponges. Essays Biochem 2019; 63:389-405. [DOI: 10.1042/ebc20180048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022]
Abstract
AbstractAnimals (metazoans) include some of the most complex living organisms on Earth, with regard to their multicellularity, numbers of differentiated cell types, and lifecycles. The metazoan extracellular matrix (ECM) is well-known to have major roles in the development of tissues during embryogenesis and in maintaining homoeostasis throughout life, yet insight into the ECM proteins which may have contributed to the transition from unicellular eukaryotes to multicellular animals remains sparse. Recent phylogenetic studies place either ctenophores or poriferans as the closest modern relatives of the earliest emerging metazoans. Here, we review the literature and representative genomic and transcriptomic databases for evidence of ECM and ECM-affiliated components known to be conserved in bilaterians, that are also present in ctenophores and/or poriferans. Whereas an extensive set of related proteins are identifiable in poriferans, there is a strikingly lack of conservation in ctenophores. From this perspective, much remains to be learnt about the composition of ctenophore mesoglea. The principal ECM-related proteins conserved between ctenophores, poriferans, and bilaterians include collagen IV, laminin-like proteins, thrombospondin superfamily members, integrins, membrane-associated proteoglycans, and tissue transglutaminase. These are candidates for a putative ancestral ECM that may have contributed to the emergence of the metazoans.
Collapse
|
25
|
Burge KY, Hannah L, Eckert JV, Gunasekaran A, Chaaban H. The Protective Influence of Chondroitin Sulfate, a Component of Human Milk, on Intestinal Bacterial Invasion and Translocation. J Hum Lact 2019; 35:538-549. [PMID: 31051086 PMCID: PMC6615959 DOI: 10.1177/0890334419845338] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Human milk is known to be protective against necrotizing enterocolitis, a devastating intestinal inflammatory disease affecting the preterm population. Although the pathogenesis of necrotizing enterocolitis is yet to be solidified, intestinal integrity dysfunction, bacterial invasion and/or translocation, and inflammation may play important roles. Glycosaminoglycans, compounds naturally prevalent in both human milk and the intestine, are thought to be anti-inflammatory and capable of altering bacterial interactions within the gut. RESEARCH AIM In this study, we aimed to evaluate the potential of chondroitin sulfate, the most prominent class of glycosaminoglycans in human milk, to protect against bacterial infection in an intestinal in vitro model. METHODS T84 cell monolayers were treated with chondroitin sulfate and cell viability was assessed across a number of doses. Monolayers were then pretreated with chondroitin sulfate and subsequently challenged with E. coli invasion and translocation to evaluate any protective role of the compound against infection. Tight junction barrier function was assessed by transepithelial electrical resistance, and cytokine levels were evaluated. RESULTS Chondroitin sulfate at any dose up to 750 μg/ml was not associated with any statistically significant decrease in cell viability. Additionally, chondroitin sulfate at 750 μg/ml was associated with a 75% decrease in both bacterial invasion and translocation compared to control. CONCLUSIONS These data suggest chondroitin sulfate may protect against bacterial infection through a reduction in both invasion and translocation, importantly without attendant reduction in cell viability.
Collapse
Affiliation(s)
- Kathryn Y Burge
- 1 Neonatal Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Lindsey Hannah
- 1 Neonatal Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jeffrey V Eckert
- 1 Neonatal Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Aarthi Gunasekaran
- 1 Neonatal Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hala Chaaban
- 1 Neonatal Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
26
|
Saudubray JM, Mochel F, Lamari F, Garcia-Cazorla A. Proposal for a simplified classification of IMD based on a pathophysiological approach: A practical guide for clinicians. J Inherit Metab Dis 2019; 42:706-727. [PMID: 30883825 DOI: 10.1002/jimd.12086] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 03/13/2019] [Indexed: 12/14/2022]
Abstract
In view of the rapidly expanding number of IMD discovered by next generation sequencing, we propose a simplified classification of IMD that mixes elements from a clinical diagnostic perspective and a pathophysiological approach based on three large categories. We highlight the increasing importance of complex molecule metabolism and its connection with cell biology processes. Small molecule disorders have biomarkers and are divided in two subcategories: accumulation and deficiency. Accumulation of small molecules leads to acute or progressive postnatal "intoxication", present after a symptom-free interval, aggravated by catabolism and food intake. These treatable disorders must not be missed! Deficiency of small molecules is due to impaired synthesis of compounds distal to a block or altered transport of essential molecules. This subgroup shares many clinical characteristics with complex molecule disorders. Complex molecules (like glycogen, sphingolipids, phospholipids, glycosaminoglycans, glycolipids) are poorly diffusible. Accumulation of complex molecules leads to postnatal progressive storage like in glycogen and lysosomal storage disorders. Many are treatable. Deficiency of complex molecules is related to the synthesis and recycling of these molecules, which take place in organelles. They may interfere with fœtal development. Most present as neurodevelopmental or neurodegenerative disorders unrelated to food intake. Peroxisomal disorders, CDG defects of intracellular trafficking and processing, recycling of synaptic vesicles, and tRNA synthetases also belong to this category. Only few have biomarkers and are treatable. Disorders involving primarily energy metabolism encompass defects of membrane carriers of energetic molecules as well as cytoplasmic and mitochondrial metabolic defects. This oversimplified classification is connected to the most recent available nosology of IMD.
Collapse
Affiliation(s)
- Jean-Marie Saudubray
- Groupe de Recherche Clinique Neurométabolique, Université Pierre et Marie Curie, Paris, France
| | - Fanny Mochel
- Groupe de Recherche Clinique Neurométabolique, Université Pierre et Marie Curie, Paris, France
- Centre de Référence Neurométabolique Adulte, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Sorbonne Universités, UPMC-Paris 6, UMR S 1127 and Inserm U 1127, and CNRS UMR 7225, and ICM, F-75013, Paris, France
- Département de Génétique, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Foudil Lamari
- Groupe de Recherche Clinique Neurométabolique, Université Pierre et Marie Curie, Paris, France
- Centre de Référence Neurométabolique Adulte, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Département de Biochimie, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Angeles Garcia-Cazorla
- Neurology Department, Neurometabolic Unit and Synaptic Metabolism Lab, Institut Pediàtric de Recerca, Hospital Sant Joan de Déu, metabERN and CIBERER-ISCIII, Barcelona, Spain
| |
Collapse
|
27
|
Swaroop M, Brooks MJ, Gieser L, Swaroop A, Zheng W. Patient iPSC-derived neural stem cells exhibit phenotypes in concordance with the clinical severity of mucopolysaccharidosis I. Hum Mol Genet 2019; 27:3612-3626. [PMID: 30052969 DOI: 10.1093/hmg/ddy259] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/09/2018] [Indexed: 12/29/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is caused by deficiency of α-l-iduronidase (IDUA), a lysosomal enzyme involved in the breakdown and recycling of glycosaminoglycans (GAGs). Although enzyme replacement therapy is available, the efficacy of the treatment for neuropathic manifestations is limited. To facilitate drug discovery and model disease pathophysiology, we generated neural stem cells (NSCs) from MPS I patient-derived induced pluripotent stem cells (iPSCs). The NSCs exhibited characteristic disease phenotypes with deficiency of IDUA, accumulation of GAGs and enlargement of lysosomes, in agreement with the severity of clinical subgroups of MPS I. Transcriptome profiling of NSCs revealed 429 genes that demonstrated a more extensive change in expression in the most severe Hurler syndrome subgroup compared to the intermediate Hurler-Scheie or the least severe Scheie syndrome subgroups. Clustering and pathway analysis revealed high concordance of the severity of neurological defects with marked dysregulation of GAG biosynthesis, GAG degradation, lysosomal function and autophagy. Gene ontology (GO) analysis identified a dramatic upregulation of the autophagy pathway, especially in the Hurler syndrome subgroup. We conclude that GAG accumulation in the patient-derived cells disrupts lysosomal homeostasis, affecting multiple related cellular pathways in response to IDUA deficiency. These dysregulated processes likely lead to enhanced autophagy and progressively severe disease states. Our study provides potentially useful targets for clinical biomarker development, disease diagnosis and prognosis, and drug discovery.
Collapse
Affiliation(s)
- Manju Swaroop
- National Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Matthew J Brooks
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Linn Gieser
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wei Zheng
- National Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
28
|
Xia C, Mei S, Gu C, Zheng L, Fang C, Shi Y, Wu K, Lu T, Jin Y, Lin X, Chen P. Decellularized cartilage as a prospective scaffold for cartilage repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:588-595. [PMID: 31029352 DOI: 10.1016/j.msec.2019.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 01/10/2023]
Abstract
Articular cartilage lacks self-healing capacity, and there is no effective therapy facilitating cartilage repair. Osteoarthritis (OA) due to cartilage defects represents large and increasing healthcare burdens worldwide. Nowadays, the generation of scaffolds to preserve bioactive factors and the biophysical environment has received increasing attention. Furthermore, improved decellularization technology has provided novel insights into OA treatment. This review provides a comparative account of different cartilage defect therapies. Furthermore, some recent effective decellularization protocols have been discussed. In particular, this review focuses on the decellularization ratio of each protocol. Moreover, these protocols were compared particularly on the basis of immunogenicity and mechanical functionality. Further, various recellularization methods have been enlisted and the reparative capacity of decellularized cartilage scaffolds is evaluated herein. The advantages and limitations of different recellularization processes have been described herein. This provides a basis for the generation of decellularized cartilage scaffolds, thereby potentially promoting the possibility of decellularization as a clinical therapeutic target.
Collapse
Affiliation(s)
- Chen Xia
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China; Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Sheng Mei
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Chenhui Gu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Lin Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China; Department of Orthopedics, 5th Affiliated Hospital, Lishui Municipal Central Hospital, Wenzhou Medical University, Lishui, China
| | - Chen Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Yiling Shi
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Kaiwei Wu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Tongtong Lu
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yongming Jin
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.
| | - Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China.
| | - Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China.
| |
Collapse
|
29
|
Expression, activity and localization of lysosomal sulfatases in Chronic Obstructive Pulmonary Disease. Sci Rep 2019; 9:1991. [PMID: 30760748 PMCID: PMC6374378 DOI: 10.1038/s41598-018-37958-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/05/2018] [Indexed: 12/31/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of death world-wide. Recently, we showed that COPD is associated with gene polymorphisms in SUMF1, a master regulator of sulfatases. Sulfatases are involved in extracellular matrix remodeling and activated by SUMF1, but their role in the lung is poorly described. We aimed to examine how sulfatases are affected in the airways of patients with COPD compared to ever smokers and never smokers. We observed that mRNA expression of the sulfatases GALNS, GNS and IDS was increased, while protein expression of many sulfatases was decreased in COPD fibroblasts. Several sulfatases, including GALNS, IDS, and SGSH, showed increased activity in COPD fibroblasts. Examination of different sulfatases by immunofluorescence showed that IDS, ARSB, GNS and SGSH in fibroblasts were localized to sites other than their reported destination. Using a master panel from different organs, RNA expression of all sulfatases could be observed in lung tissue. Additionally, immunohistochemistry on lung biopsies indicated differing expression of sulfatases in COPD patients. In conclusion, mRNA, protein expression, sulfatase activity levels, and localization of sulfatases are altered in lung fibroblasts and lung tissue from COPD patients and may be mechanistically important in COPD pathogenesis. This could contribute to the understanding of the disease mechanism in COPD and in the long run, to lead to more individualized therapies.
Collapse
|
30
|
Little MS, Ervin SM, Walton WG, Tripathy A, Xu Y, Liu J, Redinbo MR. Active site flexibility revealed in crystal structures of Parabacteroides merdae β-glucuronidase from the human gut microbiome. Protein Sci 2018; 27:2010-2022. [PMID: 30230652 PMCID: PMC6237702 DOI: 10.1002/pro.3507] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022]
Abstract
β-Glucuronidase (GUS) enzymes in the gastrointestinal tract are involved in maintaining mammalian-microbial symbiosis and can play key roles in drug efficacy and toxicity. Parabacteroides merdae GUS was identified as an abundant mini-Loop 2 (mL2) type GUS enzyme in the Human Microbiome Project gut metagenomic database. Here, we report the crystal structure of P. merdae GUS and highlight the differences between this enzyme and extant structures of gut microbial GUS proteins. We find that P. merdae GUS exhibits a distinct tetrameric quaternary structure and that the mL2 motif traces a unique path within the active site, which also includes two arginines distinctive to this GUS. We observe two states of the P. merdae GUS active site; a loop repositions itself by more than 50 Å to place a functionally-relevant residue into the enzyme's catalytic site. Finally, we find that P. merdae GUS is able to bind to homo and heteropolymers of the polysaccharide alginic acid. Together, these data broaden our understanding of the structural and functional diversity in the GUS family of enzymes present in the human gut microbiome and point to specialization as an important feature of microbial GUS orthologs.
Collapse
Affiliation(s)
- Michael S. Little
- Department of ChemistryUniversity of North CarolinaChapel HillNorth Carolina27599‐3290
| | - Samantha M. Ervin
- Department of ChemistryUniversity of North CarolinaChapel HillNorth Carolina27599‐3290
| | - William G. Walton
- Department of ChemistryUniversity of North CarolinaChapel HillNorth Carolina27599‐3290
| | - Ashutosh Tripathy
- Department of Biochemistry & BiophysicsUniversity of North CarolinaChapel HillNorth Carolina27599‐3290
| | - Yongmei Xu
- Department of Chemical Biology and Medicinal ChemistryUniversity of North CarolinaChapel HillNorth Carolina27599‐3290
| | - Jian Liu
- Department of Chemical Biology and Medicinal ChemistryUniversity of North CarolinaChapel HillNorth Carolina27599‐3290
| | - Matthew R. Redinbo
- Department of ChemistryUniversity of North CarolinaChapel HillNorth Carolina27599‐3290
- Department of Biochemistry & BiophysicsUniversity of North CarolinaChapel HillNorth Carolina27599‐3290
- Department of Microbiology & ImmunologyUniversity of North CarolinaChapel HillNorth Carolina27599‐3290
- The Integrated Program for Biological and Genome Sciences, University of North CarolinaChapel HillNorth Carolina27599‐3290
| |
Collapse
|
31
|
Ashikov A, Abu Bakar N, Wen XY, Niemeijer M, Rodrigues Pinto Osorio G, Brand-Arzamendi K, Hasadsri L, Hansikova H, Raymond K, Vicogne D, Ondruskova N, Simon MEH, Pfundt R, Timal S, Beumers R, Biot C, Smeets R, Kersten M, Huijben K, Linders PTA, van den Bogaart G, van Hijum SAFT, Rodenburg R, van den Heuvel LP, van Spronsen F, Honzik T, Foulquier F, van Scherpenzeel M, Lefeber DJ, Mirjam W, Han B, Helen M, Helen M, Peter VH, Jiddeke VDK, Diego M, Lars M, Katja BH, Jozef H, Majid A, Kevin C, Johann TWN. Integrating glycomics and genomics uncovers SLC10A7 as essential factor for bone mineralization by regulating post-Golgi protein transport and glycosylation. Hum Mol Genet 2018; 27:3029-3045. [DOI: 10.1093/hmg/ddy213] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/29/2018] [Indexed: 01/13/2023] Open
Affiliation(s)
- Angel Ashikov
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Translational Metabolic Laboratory, Department Laboratory Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Nurulamin Abu Bakar
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Translational Metabolic Laboratory, Department Laboratory Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Xiao-Yan Wen
- Zebrafish Centre for Advanced Drug Discovery & Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, ON, Canada
- Department of Medicine, Physiology & Institute of Medical Science, Faculty of Medicine, University of Toronto, ON, Canada
| | - Marco Niemeijer
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Glentino Rodrigues Pinto Osorio
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Koroboshka Brand-Arzamendi
- Zebrafish Centre for Advanced Drug Discovery & Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, ON, Canada
- Department of Medicine, Physiology & Institute of Medical Science, Faculty of Medicine, University of Toronto, ON, Canada
| | - Linda Hasadsri
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Hana Hansikova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Kimiyo Raymond
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Dorothée Vicogne
- CNRS-UMR 8576, Structural and Functional Glycobiology Unit, FRABIO, University of Lille, 59655 Villeneuve d’Ascq, France
| | - Nina Ondruskova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Marleen E H Simon
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Sharita Timal
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Translational Metabolic Laboratory, Department Laboratory Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Roel Beumers
- Translational Metabolic Laboratory, Department Laboratory Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Christophe Biot
- CNRS-UMR 8576, Structural and Functional Glycobiology Unit, FRABIO, University of Lille, 59655 Villeneuve d’Ascq, France
| | - Roel Smeets
- Translational Metabolic Laboratory, Department Laboratory Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Marjan Kersten
- Translational Metabolic Laboratory, Department Laboratory Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Karin Huijben
- Translational Metabolic Laboratory, Department Laboratory Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Peter T A Linders
- Department of Tumor Immunology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Sacha A F T van Hijum
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- NIZO, 6710 BA Ede, The Netherlands
| | - Richard Rodenburg
- Radboud Center for Mitochondrial Disorders, Translational Metabolic Laboratory, Department of Pediatrics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | | | - Francjan van Spronsen
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University Medical Center Groningen, PO BOX 30.001, 9700 RB Groningen, The Netherlands
| | - Tomas Honzik
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Francois Foulquier
- CNRS-UMR 8576, Structural and Functional Glycobiology Unit, FRABIO, University of Lille, 59655 Villeneuve d’Ascq, France
| | - Monique van Scherpenzeel
- Translational Metabolic Laboratory, Department Laboratory Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Translational Metabolic Laboratory, Department Laboratory Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Wamelink Mirjam
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Brunner Han
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Mundy Helen
- Centre for Inherited Metabolic Disease, Evelina Children's Hospital, Guys and St Thomas NHS Foundation Trust, London SE1 7EH, UK
| | - Michelakakis Helen
- Department of Enzymology and Cellular Function, Institute of Child Health, Athens, Greece
| | - van Hasselt Peter
- Department of Metabolic Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| | - van de Kamp Jiddeke
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Martinelli Diego
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Research Hospital, Rome, Italy
| | - Morkrid Lars
- Department of Medical Biochemistry, Oslo University Hospital, and Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | | | - Alfadhel Majid
- King Abdullah International Medical Research Centre, King Saud bin Abdul Aziz University for Health Sciences, Division of Genetics, Department of Pediatrics, King Abdullah Specialized Children Hospital, King Abdul Aziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Carpenter Kevin
- NSW Biochemical Genetics Service, The Children's Hospital at Westmead, Disciplines of Genetic Medicine & Child and Adolescent Health, The University of Sydney, NSW 2145, Australia
| | | | | | | |
Collapse
|
32
|
Saudubray JM, Garcia-Cazorla À. Inborn Errors of Metabolism Overview: Pathophysiology, Manifestations, Evaluation, and Management. Pediatr Clin North Am 2018; 65:179-208. [PMID: 29502909 DOI: 10.1016/j.pcl.2017.11.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The specialty of inherited metabolic disease is at the forefront of progress in medicine, with new methods in metabolomics and genomics identifying the molecular basis for a growing number of conditions and syndromes. This review presents an updated pathophysiologic classification of inborn errors of metabolism and a method of clinical screening in neonates, late-onset emergencies, neurologic deterioration, and other common clinical scenarios. When and how to investigate a metabolic disorder is presented to encourage physicians to use sophisticated biochemical investigations and not miss a treatable disorder.
Collapse
Affiliation(s)
- Jean-Marie Saudubray
- Department of Neurology, Neurometabolic Unit, Hopital Pitié Salpétrière, 47-83 Boulevard de l'Hopital, Paris 75013, France.
| | - Àngels Garcia-Cazorla
- Neurology Department, Neurometabolic Unit, Hospital Sant Joan de Deu and CIBERER-ISCIII, Passeig Sant Joan de Deu 28950 Esplugues de Llobregat, Barcelona, Spain
| |
Collapse
|
33
|
Trejo P, Rauch F, Glorieux FH, Ouellet J, Benaroch T, Campeau PM. Spondyloepimetaphysial Dysplasia with Joint Laxity in Three Siblings with B3GALT6 Mutations. Mol Syndromol 2017; 8:303-307. [PMID: 29230159 DOI: 10.1159/000479672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2017] [Indexed: 01/25/2023] Open
Abstract
Spondyloepimetaphyseal dysplasia with joint laxity type 1 (SEMDJL1) is a rare entity with a recessive inheritance. In this report, we describe 3 affected members of the same family who present with short stature, hyperlaxity with secondary spinal malalignment, ulnar subluxation, developmental dysplasia of the hips, and craniofacial alterations; one member also had learning difficulties. DNA analysis showed compound heterozygous variants in the B3GALT6 gene (c.901_921dup, c.511C>T) in all 3 patients, inherited from the parents. This family demonstrates the clinical variability of SEMDJL1.
Collapse
Affiliation(s)
- Pamela Trejo
- Shriners Hospital for Children and McGill University, Department of Pediatrics, CHU Sainte-Justine Hospital, University of Montreal, Montreal, Québec, Canada
| | - Frank Rauch
- Shriners Hospital for Children and McGill University, Department of Pediatrics, CHU Sainte-Justine Hospital, University of Montreal, Montreal, Québec, Canada
| | - Francis H Glorieux
- Shriners Hospital for Children and McGill University, Department of Pediatrics, CHU Sainte-Justine Hospital, University of Montreal, Montreal, Québec, Canada
| | - Jean Ouellet
- Shriners Hospital for Children and McGill University, Department of Pediatrics, CHU Sainte-Justine Hospital, University of Montreal, Montreal, Québec, Canada
| | - Thierry Benaroch
- Shriners Hospital for Children and McGill University, Department of Pediatrics, CHU Sainte-Justine Hospital, University of Montreal, Montreal, Québec, Canada
| | - Philippe M Campeau
- Shriners Hospital for Children and McGill University, Department of Pediatrics, CHU Sainte-Justine Hospital, University of Montreal, Montreal, Québec, Canada.,Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine Hospital, University of Montreal, Montreal, Québec, Canada
| |
Collapse
|
34
|
Falardeau F, Camurri MV, Campeau PM. Genomic approaches to diagnose rare bone disorders. Bone 2017; 102:5-14. [PMID: 27474525 DOI: 10.1016/j.bone.2016.07.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 07/24/2016] [Indexed: 02/01/2023]
Abstract
Skeletal dysplasias are Mendelian disorders with a prevalence of approximatively 1 in every 5000 individuals and can usually be diagnosed based on clinical and radiological findings. However, given that some diseases can be caused by several different genes, and that some genes can cause a variety of different phenotypes, achieving a molecular diagnosis can be challenging. We review here different approaches, from single gene sequencing to genomic approaches using next-generation sequencing, to reach a molecular diagnosis for skeletal dysplasias. We will further describe the overall advantages and limitations of first, second and third-generation sequencing, including single gene sequencing, whole-exome and genome sequencing (WES and WGS), multiple gene panel sequencing and single molecule sequencing. We also provide a brief overview of potential future applications of emerging technologies.
Collapse
Affiliation(s)
- Félix Falardeau
- CHU Sainte-Justine Research Center, Montreal, Canada; Division of Molecular and Cellular Biology, Department of Biology, University of Sherbrooke, Sherbrooke, Canada
| | | | - Philippe M Campeau
- CHU Sainte-Justine Research Center, Montreal, Canada; Division of Medical Genetics, Department of Pediatrics, University of Montreal, Montreal, Canada.
| |
Collapse
|