1
|
Sundaram P, Luessi M, Bianciardi M, Stufflebeam S, Hamalainen M, Solo V. Individual Resting-State Brain Networks Enabled by Massive Multivariate Conditional Mutual Information. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:1957-1966. [PMID: 31880547 PMCID: PMC7593831 DOI: 10.1109/tmi.2019.2962517] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Individual-level resting-state networks (RSNs) based on resting-state fMRI (rs-fMRI) are of great interest due to evidence that network dysfunction may underlie some diseases. Most current rs-fMRI analyses use linear correlation. Since correlation is a bivariate measure of association, it discards most of the information contained in the spatial variation of the thousands of hemodynamic signals within the voxels in a given brain region. Subject-specific functional RSNs using typical rs-fMRI data, are therefore dominated by indirect connections and loss of spatial information and can only deliver reliable connectivity after group averaging. While bivariate partial correlation can rule out indirect connections, it results in connectivity that is too sparse due to lack of sensitivity. We have developed a method that uses all the spatial variation information in a given parcel by employing a multivariate information-theoretic association measure based on canonical correlations. Our method, multivariate conditional mutual information (mvCMI) reliably constructs single-subject connectivity estimates showing mostly direct connections. Averaging across subjects is not needed. The method is applied to Human Connectome Project data and compared to diffusion MRI. The results are far superior to those obtained by correlation and partial correlation.
Collapse
|
2
|
Mendola JD, Lam J, Rosenstein M, Lewis LB, Shmuel A. Partial correlation analysis reveals abnormal retinotopically organized functional connectivity of visual areas in amblyopia. NEUROIMAGE-CLINICAL 2018; 18:192-201. [PMID: 29868445 PMCID: PMC5984596 DOI: 10.1016/j.nicl.2018.01.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/10/2017] [Accepted: 01/18/2018] [Indexed: 11/30/2022]
Abstract
Amblyopia is a prevalent developmental visual disorder of childhood that typically persists in adults. Due to altered visual experience during critical periods of youth, the structure and function of adult visual cortex is abnormal. In addition to substantial deficits shown with task-based fMRI, previous studies have used resting state measures to demonstrate altered long-range connectivity in amblyopia. This is the first study in amblyopia to analyze connectivity between regions of interest that are smaller than a single cortical area and to apply partial correlation analysis to reduce network effects. We specifically assess short-range connectivity between retinotopically defined regions of interest within the occipital lobe of 8 subjects with amblyopia and 7 subjects with normal vision (aged 19–45). The representations of visual areas V1, V2, and V3 within each of the four quadrants of visual space were further subdivided into three regions based on maps of visual field eccentricity. Connectivity between pairs of all nine regions of interest in each quadrant was tested via correlation and partial correlation for both groups. Only the tests of partial correlation, i.e., correlation between time courses of two regions following the regression of time courses from all other regions, yielded significant differences between resting state functional connectivity in amblyopic and normal subjects. Subjects with amblyopia showed significantly higher partial correlation between para-foveal and more eccentric representations within V1, and this effect associated with poor acuity of the worse eye. In addition, we observed reduced correlation in amblyopic subjects between isoeccentricity regions in V1 and V2, and separately, between such regions in V2 and V3. We conclude that partial correlation-based connectivity is altered in an eccentricity-dependent pattern in visual field maps of amblyopic patients. Moreover, results are consistent with known clinical and psychophysical vision loss. More broadly, this provides evidence that abnormal cortical adaptations to disease may be better isolated with tests of partial correlation connectivity than with the regular correlation techniques that are currently widely used. Cortical functional connectivity abnormalities exist in amblyopia at a scale finer than previously reported. Connectivity changes within primary visual cortex are consistent with known loss of function. Connectivity changes between visual areas are consistent with concept of deafferentation. Partial correlation differentiates patients from controls, whereas correlation does not.
Collapse
Affiliation(s)
- J D Mendola
- Department of Ophthalmology, McGill University, Montreal, QC, Canada.
| | - J Lam
- Departments of Neurology, Neurosurgery, Physiology and Biomedical Engineering, McGill University, Montreal, QC, Canada; Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - M Rosenstein
- Department of Ophthalmology, McGill University, Montreal, QC, Canada
| | - L B Lewis
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - A Shmuel
- Departments of Neurology, Neurosurgery, Physiology and Biomedical Engineering, McGill University, Montreal, QC, Canada; Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
3
|
Lu KH, Jeong JY, Wen H, Liu Z. Spontaneous activity in the visual cortex is organized by visual streams. Hum Brain Mapp 2017; 38:4613-4630. [PMID: 28608643 DOI: 10.1002/hbm.23687] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 12/12/2022] Open
Abstract
Large-scale functional networks have been extensively studied using resting state functional magnetic resonance imaging (fMRI). However, the pattern, organization, and function of fine-scale network activity remain largely unknown. Here, we characterized the spontaneously emerging visual cortical activity by applying independent component (IC) analysis to resting state fMRI signals exclusively within the visual cortex. In this subsystem scale, we observed about 50 spatially ICs that were reproducible within and across subjects, and analyzed their spatial patterns and temporal relationships to reveal the intrinsic parcellation and organization of the visual cortex. The resulting visual cortical parcels were aligned with the steepest gradient of cortical myelination, and were organized into functional modules segregated along the dorsal/ventral pathways and foveal/peripheral early visual areas. Cortical distance could partly explain intra-hemispherical functional connectivity, but not interhemispherical connectivity; after discounting the effect of anatomical affinity, the fine-scale functional connectivity still preserved a similar visual-stream-specific modular organization. Moreover, cortical retinotopy, folding, and cytoarchitecture impose limited constraints to the organization of resting state activity. Given these findings, we conclude that spontaneous activity patterns in the visual cortex are primarily organized by visual streams, likely reflecting feedback network interactions. Hum Brain Mapp 38:4613-4630, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kun-Han Lu
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana.,Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana
| | - Jun Young Jeong
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana
| | - Haiguang Wen
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana.,Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana
| | - Zhongming Liu
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana.,Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| |
Collapse
|
4
|
Diwadkar VA, Asemi A, Burgess A, Chowdury A, Bressler SL. Potentiation of motor sub-networks for motor control but not working memory: Interaction of dACC and SMA revealed by resting-state directed functional connectivity. PLoS One 2017; 12:e0172531. [PMID: 28278267 PMCID: PMC5344349 DOI: 10.1371/journal.pone.0172531] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/06/2017] [Indexed: 12/20/2022] Open
Abstract
The dorsal Anterior Cingulate Cortex (dACC) and the Supplementary Motor Area (SMA) are known to interact during motor coordination behavior. We previously discovered that the directional influences underlying this interaction in a visuo-motor coordination task are asymmetric, with the dACC→SMA influence being significantly greater than that in the reverse direction. To assess the specificity of this effect, here we undertook an analysis of the interaction between dACC and SMA in two distinct contexts. In addition to the motor coordination task, we also assessed these effects during a (n-back) working memory task. We applied directed functional connectivity analysis to these two task paradigms, and also to the rest condition of each paradigm, in which rest blocks were interspersed with task blocks. We report here that the previously known asymmetric interaction between dACC and SMA, with dACC→SMA dominating, was significantly larger in the motor coordination task than the memory task. Moreover the asymmetry between dACC and SMA was reversed during the rest condition of the motor coordination task, but not of the working memory task. In sum, the dACC→SMA influence was significantly greater in the motor task than the memory task condition, and the SMA→dACC influence was significantly greater in the motor rest than the memory rest condition. We interpret these results as suggesting that the potentiation of motor sub-networks during the motor rest condition supports the motor control of SMA by dACC during the active motor task condition.
Collapse
Affiliation(s)
- Vaibhav A. Diwadkar
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail:
| | - Avisa Asemi
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida, United States of America
| | - Ashley Burgess
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Asadur Chowdury
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Steven L. Bressler
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida, United States of America
- Department of Psychology, Florida Atlantic University, Boca Raton, Florida, United States of America
| |
Collapse
|
5
|
Dawson DA, Lam J, Lewis LB, Carbonell F, Mendola JD, Shmuel A. Partial Correlation-Based Retinotopically Organized Resting-State Functional Connectivity Within and Between Areas of the Visual Cortex Reflects More Than Cortical Distance. Brain Connect 2016; 6:57-75. [PMID: 26415043 DOI: 10.1089/brain.2014.0331] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Numerous studies have demonstrated functional magnetic resonance imaging (fMRI)-based resting-state functional connectivity (RSFC) between cortical areas. Recent evidence suggests that synchronous fluctuations in blood oxygenation level-dependent fMRI reflect functional organization at a scale finer than that of visual areas. In this study, we investigated whether RSFCs within and between lower visual areas are retinotopically organized and whether retinotopically organized RSFC merely reflects cortical distance. Subjects underwent retinotopic mapping and separately resting-state fMRI. Visual areas V1, V2, and V3, were subdivided into regions of interest (ROIs) according to quadrants and visual field eccentricity. Functional connectivity (FC) was computed based on Pearson's linear correlation (correlation), and Pearson's linear partial correlation (correlation between two time courses after the time courses from all other regions in the network are regressed out). Within a quadrant, within visual areas, all correlation and nearly all partial correlation FC measures showed statistical significance. Consistently in V1, V2, and to a lesser extent in V3, correlation decreased with increasing eccentricity separation. Consistent with previously reported monkey anatomical connectivity, correlation/partial correlation values between regions from adjacent areas (V1-V2 and V2-V3) were higher than those between nonadjacent areas (V1-V3). Within a quadrant, partial correlation showed consistent significance between regions from two different areas with the same or adjacent eccentricities. Pairs of ROIs with similar eccentricity showed higher correlation/partial correlation than pairs distant in eccentricity. Between dorsal and ventral quadrants, partial correlation between common and adjacent eccentricity regions within a visual area showed statistical significance; this extended to more distant eccentricity regions in V1. Within and between quadrants, correlation decreased approximately linearly with increasing distances separating the tested ROIs. Partial correlation showed a more complex dependence on cortical distance: it decreased exponentially with increasing distance within a quadrant, but was best fit by a quadratic function between quadrants. We conclude that RSFCs within and between lower visual areas are retinotopically organized. Correlation-based FC is nonselectively high across lower visual areas, even between regions that do not share direct anatomical connections. The mechanisms likely involve network effects caused by the dense anatomical connectivity within this network and projections from higher visual areas. FC based on partial correlation, which minimizes network effects, follows expectations based on direct anatomical connections in the monkey visual cortex better than correlation. Last, partial correlation-based retinotopically organized RSFC reflects more than cortical distance effects.
Collapse
Affiliation(s)
- Debra Ann Dawson
- 1 McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University , Montréal, Canada .,2 Department of Neurology and Neurosurgery, McGill University , Montréal, Canada
| | - Jack Lam
- 1 McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University , Montréal, Canada .,2 Department of Neurology and Neurosurgery, McGill University , Montréal, Canada
| | - Lindsay B Lewis
- 1 McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University , Montréal, Canada .,3 McGill Vision Research, Department of Ophthalmology, McGill University , Montréal, Canada
| | - Felix Carbonell
- 1 McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University , Montréal, Canada .,2 Department of Neurology and Neurosurgery, McGill University , Montréal, Canada
| | - Janine D Mendola
- 1 McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University , Montréal, Canada .,3 McGill Vision Research, Department of Ophthalmology, McGill University , Montréal, Canada
| | - Amir Shmuel
- 1 McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University , Montréal, Canada .,2 Department of Neurology and Neurosurgery, McGill University , Montréal, Canada .,4 Departments of Physiology and Biomedical Engineering, McGill University , Montréal, Canada
| |
Collapse
|
6
|
Genç E, Schölvinck ML, Bergmann J, Singer W, Kohler A. Functional Connectivity Patterns of Visual Cortex Reflect its Anatomical Organization. Cereb Cortex 2015; 26:3719-3731. [DOI: 10.1093/cercor/bhv175] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|