1
|
Fritze S, Brandt GA, Volkmer S, Daub J, Altinok DCA, Kubera KM, Correll CU, Northoff G, Meyer-Lindenberg A, Hirjak D. Sensori- and psychomotor abnormalities, psychopathological symptoms and functionality in schizophrenia-spectrum disorders: a network analytic approach. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2025; 11:16. [PMID: 39939637 PMCID: PMC11821994 DOI: 10.1038/s41537-024-00547-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/16/2024] [Indexed: 02/14/2025]
Abstract
Sensori- and psychomotor abnormalities are an inherent part of schizophrenia-spectrum disorders (SSD) pathophysiology and linked to psychopathological symptoms as well as cognitive and global functioning. However, how these different symptom clusters simultaneously interact with each other is still unclear. Here, we examined 192 SSD patients (37.75 ± 12.15 years, 73 females). First, we investigated the cross-sectional prevalence and overlap of individual sensori- and psychomotor abnormalities. Second, we applied network analysis methods to simultaneously model the associations between Neurological Soft Signs (NSS), level of akathisia, parkinsonism symptoms, tardive dyskinesia (TD) and catatonia signs as well as cognition, psychopathology, global functioning and daily antipsychotic dose. The largest centralities were exhibited by NSS (0.90), catatonia signs (0.82) and global functioning (0.79). NSS showed strong partial correlations with cognition and parkinsonism symptoms (edge weight, ew = 0.409 and ew = 0.318, respectively). Catatonia signs showed strong connections with global functioning (ew = 0.333). In contrast, TD, akathisia and daily antipsychotic dose were weakly connected with other variables (e.g., largest ew=0.176 between TD and akathisia). In conclusion, NSS and cognition, parkinsonism symptoms and NSS as well as catatonia signs and global functioning seem to be preferentially connected in SSD. The daily medication had little influence on sensori- and psychomotor abnormalities, indicating that they are features of core SSD pathophysiology. Future studies should incorporate these relationships to enhance the understanding of SSD.
Collapse
Affiliation(s)
- Stefan Fritze
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Geva A Brandt
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Sebastian Volkmer
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jonas Daub
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Dilsa Cemre Akkoc Altinok
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany
| | - Christoph U Correll
- German Center for Mental Health (DZPG), Partner Site Berlin, Berlin, Germany
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin Berlin, Berlin, Germany
- The Zucker Hillside Hospital, Department of Psychiatry, Northwell Health, Glen Oaks, NY, USA
- Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- German Centre for Mental Health (DZPG), Partner Site Mannheim-Heidelberg-Ulm, Mannheim, Germany
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
- German Centre for Mental Health (DZPG), Partner Site Mannheim-Heidelberg-Ulm, Mannheim, Germany.
| |
Collapse
|
2
|
Iftimovici A, Martinez G, Victor J, Bendjemaa N, Jantac C, Danset-Alexandre C, Amado I, Pina-Camacho L, Chaumette B, Fatjó-Vilas M, Fañanás L, Duchesnay E, Krebs MO. Schizophrenia Following Early Adolescence Prodrome: A Neurodevelopmental Subtype With Autism-like Sensorimotor and Social Cognition Deficits. Schizophr Bull 2025:sbae202. [PMID: 39756426 DOI: 10.1093/schbul/sbae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
BACKGROUND AND HYPOTHESIS While age at onset in schizophrenia (SCZ) is usually defined by age at onset of psychosis, the illness actually occurs earlier, with a prodrome often starting in childhood or adolescence. We postulated that SCZ with early-adolescence prodromes (SCZ-eaP) presents with social cognition deficits and sensorimotor impairments more similar to autism spectrum disorders (ASD) than SCZ with late-adolescence prodromes (SCZ-laP). STUDY DESIGN The movie for the assessment of social cognition and neurological soft signs (NSS) were compared between four groups, ASD, SCZ-eaP (<15 years), SCZ-laP (>15 years), and controls (N = 119), while accounting for age, sex, intelligence quotient, education level, and medication effect. Mediation analyses tested the effect of NSS on social cognition, across groups, and local gyrification indices were used to test whether NSS reflected deviations in early neurodevelopmental trajectories. STUDY RESULTS For social cognition and NSS, subjects with ASD were not different from SCZ-eaP, while they differed from SCZ-laP. Age at onset of prodrome correlated with NSS (r = -0.34, P = .018), and social cognition (r = 0.28, P = .048). Neurological soft signs mediated social cognition impairment across diagnoses (β = -1.24, P < 1e-6), and was explained by hypergyrification in the right fusiform gyrus, right frontal pole gyrus, and left postcentral gyrus. CONCLUSIONS Earlier age of prodrome in SCZ is associated with impaired social cognition, mediated by neurodevelopmentally-related sensorimotor impairments along the ASD-SCZ spectrum. It suggests age of prodrome, rather than the age at psychosis onset, should be considered to define more homogeneous subgroups in SCZ.
Collapse
Affiliation(s)
- Anton Iftimovici
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team "Pathophysiology of psychiatric disorders", Institut de psychiatrie, CNRS GDR 3557, 75014 Paris, France
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France
- Université Paris-Saclay, CEA, CNRS, UMR9027 Baobab, NeuroSpin, 91190 Saclay, France
| | - Gilles Martinez
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team "Pathophysiology of psychiatric disorders", Institut de psychiatrie, CNRS GDR 3557, 75014 Paris, France
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France
| | - Julie Victor
- Université Paris-Saclay, CEA, CNRS, UMR9027 Baobab, NeuroSpin, 91190 Saclay, France
| | - Narjès Bendjemaa
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team "Pathophysiology of psychiatric disorders", Institut de psychiatrie, CNRS GDR 3557, 75014 Paris, France
| | - Célia Jantac
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team "Pathophysiology of psychiatric disorders", Institut de psychiatrie, CNRS GDR 3557, 75014 Paris, France
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France
| | - Charlotte Danset-Alexandre
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team "Pathophysiology of psychiatric disorders", Institut de psychiatrie, CNRS GDR 3557, 75014 Paris, France
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France
| | - Isabelle Amado
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team "Pathophysiology of psychiatric disorders", Institut de psychiatrie, CNRS GDR 3557, 75014 Paris, France
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France
| | - Laura Pina-Camacho
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029 Madrid, Spain
| | - Boris Chaumette
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team "Pathophysiology of psychiatric disorders", Institut de psychiatrie, CNRS GDR 3557, 75014 Paris, France
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France
| | - Mar Fatjó-Vilas
- FIDMAG Germanes Hospitàlaries Research Foundation, 08830 Sant Boi de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Lourdes Fañanás
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Edouard Duchesnay
- Université Paris-Saclay, CEA, CNRS, UMR9027 Baobab, NeuroSpin, 91190 Saclay, France
| | - Marie-Odile Krebs
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team "Pathophysiology of psychiatric disorders", Institut de psychiatrie, CNRS GDR 3557, 75014 Paris, France
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France
| |
Collapse
|
3
|
Fritze S, Brandt GA, Volkmer S, Daub J, Krayem M, Kukovic J, Schwarz E, Braun U, Northoff G, Wolf RC, Kubera KM, Meyer-Lindenberg A, Hirjak D. Deciphering the interplay between psychopathological symptoms, sensorimotor, cognitive and global functioning: a transdiagnostic network analysis. Eur Arch Psychiatry Clin Neurosci 2024; 274:1625-1637. [PMID: 38509230 PMCID: PMC11422259 DOI: 10.1007/s00406-024-01782-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/16/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Understanding the relationship between psychopathology and major domains of human neurobehavioral functioning may identify new transdiagnostic treatment targets. However, studies examining the interrelationship between psychopathological symptoms, sensorimotor, cognitive, and global functioning in a transdiagnostic sample are lacking. We hypothesized a close relationship between sensorimotor and cognitive functioning in a transdiagnostic patient sample. METHODS We applied network analysis and community detection methods to examine the interplay and centrality [expected influence (EI) and strength] between psychopathological symptoms, sensorimotor, cognitive, and global functioning in a transdiagnostic sample consisting of 174 schizophrenia spectrum (SSD) and 38 mood disorder (MOD) patients. All patients (n = 212) were examined with the Positive and Negative Syndrome Scale (PANSS), the Heidelberg Neurological Soft Signs Scale (NSS), the Global Assessment of Functioning (GAF), and the Brief Cognitive Assessment Tool for Schizophrenia consisted of trail making test B (TMT-B), category fluency (CF) and digit symbol substitution test (DSST). RESULTS NSS showed closer connections with TMT-B, CF, and DSST than with GAF and PANSS. DSST, PANSS general, and NSS motor coordination scores showed the highest EI. Sensory integration, DSST, and CF showed the highest strength. CONCLUSIONS The close connection between sensorimotor and cognitive impairment as well as the high centrality of sensorimotor symptoms suggests that both domains share aspects of SSD and MOD pathophysiology. But, because the majority of the study population was diagnosed with SSD, the question as to whether sensorimotor symptoms are really a transdiagnostic therapeutic target needs to be examined in future studies including more balanced diagnostic groups.
Collapse
Affiliation(s)
- Stefan Fritze
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
| | - Geva A Brandt
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
| | - Sebastian Volkmer
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
- Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jonas Daub
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
| | - Maria Krayem
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
| | - Jacqueline Kukovic
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
| | - Emanuel Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
- Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Mental Health (DZPG), Partner Site Heidelberg/Mannheim/Ulm, Mannheim, Germany
| | - Urs Braun
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
- German Centre for Mental Health (DZPG), Partner Site Heidelberg/Mannheim/Ulm, Mannheim, Germany
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Robert Christian Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany
| | - Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
- German Centre for Mental Health (DZPG), Partner Site Heidelberg/Mannheim/Ulm, Mannheim, Germany
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany.
- German Centre for Mental Health (DZPG), Partner Site Heidelberg/Mannheim/Ulm, Mannheim, Germany.
| |
Collapse
|
4
|
Hirjak D, Meyer-Lindenberg A, Sambataro F, Fritze S, Kukovic J, Kubera KM, Wolf RC. Progress in sensorimotor neuroscience of schizophrenia spectrum disorders: Lessons learned and future directions. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110370. [PMID: 34087392 DOI: 10.1016/j.pnpbp.2021.110370] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/15/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022]
Abstract
The number of neuroimaging studies on movement disorders, sensorimotor, and psychomotor functioning in schizophrenia spectrum disorders (SSD) has steadily increased over the last two decades. Accelerated by the addition of the "sensorimotor domain" to the Research Domain Criteria (RDoC) framework in January 2019, neuroscience research on the role of sensorimotor dysfunction in SSD has gained greater scientific and clinical relevance. To draw attention to recent rapid progress in the field, we performed a triennial systematic review (PubMed search from January 1st, 2018 through December 31st, 2020), in which we highlight recent neuroimaging findings and discuss methodological pitfalls as well as challenges for future research. The identified magnetic resonance imaging (MRI) studies suggest that sensorimotor abnormalities in SSD are related to cerebello-thalamo-cortico-cerebellar network dysfunction. Longitudinal and interventional studies highlight the translational potential of the sensorimotor domain as putative biomarkers for treatment response and as targets for non-invasive neurostimulation techniques in SSD.
Collapse
Affiliation(s)
- Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padua, Padua, Italy; Padova Neuroscience Center, University of Padua, Padua, Italy
| | - Stefan Fritze
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Katharina M Kubera
- Department of General Psychiatry at the Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Robert C Wolf
- Department of General Psychiatry at the Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
5
|
Viher PV, Stegmayer K, Bracht T, Federspiel A, Bohlhalter S, Strik W, Wiest R, Walther S. Neurological Soft Signs Are Associated With Altered White Matter in Patients With Schizophrenia. Schizophr Bull 2021; 48:220-230. [PMID: 34355246 PMCID: PMC8781326 DOI: 10.1093/schbul/sbab089] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neurological soft signs (NSS) are related to grey matter and functional brain abnormalities in schizophrenia. Studies in healthy subjects suggest, that NSS are also linked to white matter. However, the association between NSS and white matter abnormalities in schizophrenia remains to be elucidated. The present study investigated, if NSS are related to white matter alterations in patients with schizophrenia. The total sample included 42 healthy controls and 41 patients with schizophrenia. We used the Neurological Evaluation Scale (NES), and we acquired diffusion weighted magnetic resonance imaging to assess white matter on a voxel-wise between subject statistic. In patients with schizophrenia, linear associations between NES with fractional anisotropy (FA), radial, axial, and mean diffusivity were analyzed with tract-based spatial statistics while controlling for age, medication dose, the severity of the disease, and motion. The main pattern of results in patients showed a positive association of NES with all diffusion measures except FA in important motor pathways: the corticospinal tract, internal capsule, superior longitudinal fascicle, thalamocortical radiations and corpus callosum. In addition, exploratory tractography analysis revealed an association of the right aslant with NES in patients. These results suggest that specific white matter alterations, that is, increased diffusivity might contribute to NSS in patients with schizophrenia.
Collapse
Affiliation(s)
- Petra Verena Viher
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland,To whom correspondence should be addressed; Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Switzerland; tel: +41-31-930-97-57, fax: +41-31-930-94-04, e-mail:
| | - Katharina Stegmayer
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Tobias Bracht
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Stephan Bohlhalter
- Department of Clinical Research, University Hospital, Inselspital, Bern, Switzerland,Neurocenter, Luzerner Kantonsspital, Switzerland
| | - Werner Strik
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Roland Wiest
- Support Center of Advanced Neuroimaging, Institute of Neuroradiology, University of Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| |
Collapse
|
6
|
Gharehgazlou A, Freitas C, Ameis SH, Taylor MJ, Lerch JP, Radua J, Anagnostou E. Cortical Gyrification Morphology in Individuals with ASD and ADHD across the Lifespan: A Systematic Review and Meta-Analysis. Cereb Cortex 2021; 31:2653-2669. [PMID: 33386405 PMCID: PMC8023842 DOI: 10.1093/cercor/bhaa381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/13/2020] [Accepted: 11/18/2020] [Indexed: 01/01/2023] Open
Abstract
Autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD) are common neurodevelopmental disorders (NDDs) that may impact brain maturation. A number of studies have examined cortical gyrification morphology in both NDDs. Here we review and when possible pool their results to better understand the shared and potentially disorder-specific gyrification features. We searched MEDLINE, PsycINFO, and EMBASE databases, and 24 and 10 studies met the criteria to be included in the systematic review and meta-analysis portions, respectively. Meta-analysis of local Gyrification Index (lGI) findings across ASD studies was conducted with SDM software adapted for surface-based morphometry studies. Meta-regressions were used to explore effects of age, sex, and sample size on gyrification differences. There were no significant differences in gyrification across groups. Qualitative synthesis of remaining ASD studies highlighted heterogeneity in findings. Large-scale ADHD studies reported no differences in gyrification between cases and controls suggesting that, similar to ASD, there is currently no evidence of differences in gyrification morphology compared with controls. Larger, longitudinal studies are needed to further clarify the effects of age, sex, and IQ on cortical gyrification in these NDDs.
Collapse
Affiliation(s)
- Avideh Gharehgazlou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.,Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Carina Freitas
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.,Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Stephanie H Ameis
- Neuroscience & Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada.,The Margaret and Wallace McCain Centre for Child, Youth, & Family Mental Health, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Margot J Taylor
- Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Neuroscience & Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Jason P Lerch
- Neuroscience & Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Joaquim Radua
- Imaging Mood- and Anxiety-Related Disorders (IMARD) Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Barcelona, Spain.,Centre for Psychiatric Research and Education, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.,Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.,Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Neuroscience & Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Sasabayashi D, Takahashi T, Takayanagi Y, Suzuki M. Anomalous brain gyrification patterns in major psychiatric disorders: a systematic review and transdiagnostic integration. Transl Psychiatry 2021; 11:176. [PMID: 33731700 PMCID: PMC7969935 DOI: 10.1038/s41398-021-01297-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 02/14/2021] [Accepted: 02/24/2021] [Indexed: 01/31/2023] Open
Abstract
Anomalous patterns of brain gyrification have been reported in major psychiatric disorders, presumably reflecting their neurodevelopmental pathology. However, previous reports presented conflicting results of patients having hyper-, hypo-, or normal gyrification patterns and lacking in transdiagnostic consideration. In this article, we systematically review previous magnetic resonance imaging studies of brain gyrification in schizophrenia, bipolar disorder, major depressive disorder, and autism spectrum disorder at varying illness stages, highlighting the gyral pattern trajectory for each disorder. Patients with each psychiatric disorder may exhibit deviated primary gyri formation under neurodevelopmental genetic control in their fetal life and infancy, and then exhibit higher-order gyral changes due to mechanical stress from active brain changes (e.g., progressive reduction of gray matter volume and white matter integrity) thereafter, representing diversely altered pattern trajectories from those of healthy controls. Based on the patterns of local connectivity and changes in neurodevelopmental gene expression in major psychiatric disorders, we propose an overarching model that spans the diagnoses to explain how deviated gyral pattern trajectories map onto clinical manifestations (e.g., psychosis, mood dysregulation, and cognitive impairments), focusing on the common and distinct gyral pattern changes across the disorders in addition to their correlations with specific clinical features. This comprehensive understanding of the role of brain gyrification pattern on the pathophysiology may help to optimize the prediction and diagnosis of psychiatric disorders using objective biomarkers, as well as provide a novel nosology informed by neural circuits beyond the current descriptive diagnostics.
Collapse
Affiliation(s)
- Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan. .,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan.
| | - Tsutomu Takahashi
- grid.267346.20000 0001 2171 836XDepartment of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan ,grid.267346.20000 0001 2171 836XResearch Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yoichiro Takayanagi
- grid.267346.20000 0001 2171 836XDepartment of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan ,Arisawabashi Hospital, Toyama, Japan
| | - Michio Suzuki
- grid.267346.20000 0001 2171 836XDepartment of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan ,grid.267346.20000 0001 2171 836XResearch Center for Idling Brain Science, University of Toyama, Toyama, Japan
| |
Collapse
|
8
|
Walther S, van Harten PN, Waddington JL, Cuesta MJ, Peralta V, Dupin L, Foucher JR, Sambataro F, Morrens M, Kubera KM, Pieters LE, Stegmayer K, Strik W, Wolf RC, Hirjak D. Movement disorder and sensorimotor abnormalities in schizophrenia and other psychoses - European consensus on assessment and perspectives. Eur Neuropsychopharmacol 2020; 38:25-39. [PMID: 32713718 DOI: 10.1016/j.euroneuro.2020.07.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/06/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
Abstract
Over the last three decades, movement disorder as well as sensorimotor and psychomotor functioning in schizophrenia (SZ) and other psychoses has gained greater scientific and clinical relevance as an intrinsic component of the disease process of psychotic illness; this extends to early psychosis prediction, early detection of motor side effects of antipsychotic medication, clinical outcome monitoring, treatment of psychomotor syndromes (e.g. catatonia), and identification of new targets for non-invasive brain stimulation. In 2017, a systematic cooperation between working groups interested in movement disorder and sensorimotor/psychomotor functioning in psychoses was initiated across European universities. As a first step, the members of this group would like to introduce and define the theoretical aspects of the sensorimotor domain in SZ and other psychoses. This consensus paper is based on a synthesis of scientific evidence, good clinical practice and expert opinions that were discussed during recent conferences hosted by national and international psychiatric associations. While reviewing and discussing the recent theoretical and experimental work on neural mechanisms and clinical implications of sensorimotor behavior, we here seek to define the key principles and elements of research on movement disorder and sensorimotor/psychomotor functioning in psychotic illness. Finally, the members of this European group anticipate that this consensus paper will stimulate further multimodal and prospective studies on hypo- and hyperkinetic movement disorders and sensorimotor/psychomotor functioning in SZ and other psychotic disorders.
Collapse
Affiliation(s)
- Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Switzerland
| | - Peter N van Harten
- Psychiatric Center GGz Centraal, Amersfoort, The Netherlands; Department of Psychiatry, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| | - John L Waddington
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Manuel J Cuesta
- Department of Psychiatry, Complejo Hospitalario de Navarra, Spain. Instituto de Investigación Sanitaria de Navarra (IdisNa), Spain
| | - Victor Peralta
- Mental Health Department, Servicio Navarro de Salud, Pamplona, Spain, Navarra Institute for Health Research, IdiSNA, Pamplona, Spain
| | - Lucile Dupin
- Institut de Psychiatrie et Neurosciences de Paris, INSERM U1266, Université de Paris, Paris, France
| | - Jack R Foucher
- ICube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, Strasbourg, France; CEMNIS - Noninvasive Neuromodulation Center, University Hospital Strasbourg, Strasbourg, France
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padua, Italy
| | - Manuel Morrens
- Department of Psychiatry, University Psychiatric Center Duffel, Duffel, Belgium; Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Lydia E Pieters
- Psychiatric Center GGz Centraal, Amersfoort, The Netherlands; Department of Psychiatry, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Katharina Stegmayer
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Switzerland
| | - Werner Strik
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Switzerland
| | - R Christian Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
9
|
Sasabayashi D, Takayanagi Y, Takahashi T, Nemoto K, Furuichi A, Kido M, Nishikawa Y, Nakamura M, Noguchi K, Suzuki M. Increased brain gyrification in the schizophrenia spectrum. Psychiatry Clin Neurosci 2020; 74:70-76. [PMID: 31596011 DOI: 10.1111/pcn.12939] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 12/22/2022]
Abstract
AIM Increased brain gyrification in diverse cortical regions has been reported in patients with schizophrenia, possibly reflecting deviations in early neurodevelopment. However, it remains unknown whether patients with schizotypal disorder exhibit similar changes. METHODS This magnetic resonance imaging study investigated brain gyrification in 46 patients with schizotypal disorder (29 male, 17 female), 101 patients with schizophrenia (55 male, 46 female), and 77 healthy controls (44 male, 33 female). T1-weighted magnetic resonance images were obtained for each participant. Using FreeSurfer software, the local gyrification index (LGI) of the entire cortex was compared across the groups. RESULTS Both schizophrenia and schizotypal disorder patients showed a significantly higher LGI in diverse cortical regions, including the bilateral prefrontal and left parietal cortices, as compared with controls, but its extent was broader in schizophrenia especially for the right prefrontal and left occipital regions. No significant correlations were found between the LGI and clinical variables (e.g., symptom severity, medication) for either of the patient groups. CONCLUSION Increased LGI in the frontoparietal regions was common to both patient groups and might represent vulnerability to schizophrenia, while more diverse changes in schizophrenia patients might be associated with the manifestation of florid psychosis.
Collapse
Affiliation(s)
- Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Yoichiro Takayanagi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Kiyotaka Nemoto
- Department of Psychiatry, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Mikio Kido
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Yumiko Nishikawa
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Mihoko Nakamura
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Kyo Noguchi
- Department of Radiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| |
Collapse
|
10
|
Cortical neurodevelopment in pre-manifest Huntington's disease. NEUROIMAGE-CLINICAL 2019; 23:101913. [PMID: 31491822 PMCID: PMC6627026 DOI: 10.1016/j.nicl.2019.101913] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 11/20/2022]
Abstract
Background The expression of the HTT CAG repeat expansion mutation causes neurodegeneration in Huntington's disease (HD). Objectives: In light of the – mainly in-vitro – evidence suggesting an additional role of huntingtin in neurodevelopment we used 3T MRI to test the hypothesis that in CAG-expanded individuals without clinical signs of HD (preHD) there is evidence for neurodevelopmental abnormalities. Methods We specifically investigated the complexity of cortical folding, a measure of cortical neurodevelopment, employing a novel method to quantify local fractal dimension (FD) measures that uses spherical harmonic reconstructions. Results The complexity of cortical folding differed at a group level between preHD (n = 57) and healthy volunteers (n = 57) in areas of the motor and visual system as well as temporal cortical areas. However, there was no association between the complexity of cortical folding and the loss in putamen volume that was clearly evident in preHD. Conclusions Our results suggest that HTT CAG repeat length may have an influence on cortical folding without evidence that this leads to developmental pathology or was clinically meaningful. This suggests that the HTT CAG-repeat expansion mutation may influence the processes governing cortical neurodevelopment; however, that influence seems independent of the events that lead to neurodegeneration. Measures of cortical neurodevelopment in preclinical Huntington's disease (HD) gene carriers differ from healthy volunteers The influence on cortical folding of the HD gene was not associated with developmental pathology or clinically meaningful The influence of the HD gene on cortical neurodevelopment may differ from that on neurodegeneration
Collapse
|
11
|
Sarrazin S, Cachia A, Hozer F, McDonald C, Emsell L, Cannon DM, Wessa M, Linke J, Versace A, Hamdani N, D'Albis MA, Delavest M, Phillips ML, Brambilla P, Bellani M, Polosan M, Favre P, Leboyer M, Mangin JF, Houenou J. Neurodevelopmental subtypes of bipolar disorder are related to cortical folding patterns: An international multicenter study. Bipolar Disord 2018; 20:721-732. [PMID: 29981196 PMCID: PMC6516086 DOI: 10.1111/bdi.12664] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Brain sulcation is an indirect marker of neurodevelopmental processes. Studies of the cortical sulcation in bipolar disorder have yielded mixed results, probably due to high variability in clinical phenotype. We investigated whole-brain cortical sulcation in a large sample of selected patients with high neurodevelopmental load. METHODS A total of 263 patients with bipolar disorder I and 320 controls were included in a multicentric magnetic resonance imaging (MRI) study. All subjects underwent high-resolution T1-weighted brain MRI. Images were processed with an automatized pipeline to extract the global sulcal index (g-SI) and the local sulcal indices (l-SIs) from 12 a priori determined brain regions covering the whole brain. We compared l-SI and g-SI between patients with and without early-onset bipolar disorder and between patients with and without a positive history of psychosis, adjusting for age, gender and handedness. RESULTS Patients with early-onset bipolar disorder had a higher l-SI in the right prefrontal dorsolateral region. Patients with psychotic bipolar disorder had a decreased l-SI in the left superior parietal cortex. No group differences in g-SI or l-SI were found between healthy subjects and the whole patient cohort. We could replicate the early-onset finding in an independent cohort. CONCLUSIONS Our work suggests that bipolar disorder is not associated with generalized abnormalities of sulcation, but rather with localized changes of cortical folding restricted to patients with a heavy neurodevelopmental loading. These findings support the hypothesis that bipolar disorder is heterogeneous but may be disentangled using MRI, and suggest the need for investigations into neurodevelopmental deviations in the disorder.
Collapse
Affiliation(s)
- Samuel Sarrazin
- APHP, DHU PePSY, Pôle de psychiatrie et d'addictologie des Hôpitaux Universitaires Henri Mondor, Créteil, France
- INSERM U955, Team 15, "Translationnal Psychiatry", IMRB, Créteil, France
- Fondation FondaMental, Créteil, France
- Lab. UNIACT, NeuroSpin, CEA, Gif-sur-Yvette, France
| | - Arnaud Cachia
- Imaging Biomarkers for Brain Development and Disorders, UMR INSERM 894, Université Paris Descartes, Paris, France
- Laboratoire de Psychologie du Développement et de l'Éducation de l'enfant (LaPsyDÉ), UMR CNRS 8240, Université Paris Descartes, Paris, France
- Institut Universitaire de France, Paris, France
| | - Franz Hozer
- Lab. UNIACT, NeuroSpin, CEA, Gif-sur-Yvette, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Corentin-Celton Hospital, Department of Psychiatry, Issy-les-Moulineaux, France
- Paris Descartes University, PRES Sorbonne Paris Cité, Paris, France
| | - Colm McDonald
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Louise Emsell
- Old Age Psychiatry, University Psychiatric Centre (UPC)-KU Leuven, Leuven, Belgium
- Translational MRI & Radiology, KU Leuven, Leuven, Belgium
| | - Dara M Cannon
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Michele Wessa
- Department of Neuropsychology and Clinical Psychology, Psychological Institute, Johannes-Gutenberg University of Mainz, Mainz, Germany
| | - Julia Linke
- Department of Neuropsychology and Clinical Psychology, Psychological Institute, Johannes-Gutenberg University of Mainz, Mainz, Germany
| | - Amelia Versace
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nora Hamdani
- APHP, DHU PePSY, Pôle de psychiatrie et d'addictologie des Hôpitaux Universitaires Henri Mondor, Créteil, France
- INSERM U955, Team 15, "Translationnal Psychiatry", IMRB, Créteil, France
- Fondation FondaMental, Créteil, France
| | - Marc-Antoine D'Albis
- APHP, DHU PePSY, Pôle de psychiatrie et d'addictologie des Hôpitaux Universitaires Henri Mondor, Créteil, France
- INSERM U955, Team 15, "Translationnal Psychiatry", IMRB, Créteil, France
- Fondation FondaMental, Créteil, France
- Lab. UNIACT, NeuroSpin, CEA, Gif-sur-Yvette, France
| | - Marine Delavest
- APHP, Service de Psychiatrie, Hôpital Lariboisiere Fernand Widal, INSERM U 705 CNRS UMR 8206, Paris Diderot University, Paris, France
| | - Mary L Phillips
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Marcella Bellani
- Section of Psychiatry, AOUI Verona/Department of Neurosciences, Biomedicine and Movement Sciences/University of Verona, Verona, Italy
| | - Mircea Polosan
- Université Grenoble Alpes, Inserm U1216 Grenoble Institute of Neuroscience, CHU Grenoble Alpes, Grenoble, France
| | | | - Marion Leboyer
- APHP, DHU PePSY, Pôle de psychiatrie et d'addictologie des Hôpitaux Universitaires Henri Mondor, Créteil, France
- INSERM U955, Team 15, "Translationnal Psychiatry", IMRB, Créteil, France
- Fondation FondaMental, Créteil, France
- Faculté de Médecine, Université Paris Est, Créteil, France
| | | | - Josselin Houenou
- APHP, DHU PePSY, Pôle de psychiatrie et d'addictologie des Hôpitaux Universitaires Henri Mondor, Créteil, France
- INSERM U955, Team 15, "Translationnal Psychiatry", IMRB, Créteil, France
- Fondation FondaMental, Créteil, France
- Lab. UNIACT, NeuroSpin, CEA, Gif-sur-Yvette, France
- Faculté de Médecine, Université Paris Est, Créteil, France
| |
Collapse
|
12
|
Hirjak D, Meyer-Lindenberg A, Fritze S, Sambataro F, Kubera KM, Wolf RC. Motor dysfunction as research domain across bipolar, obsessive-compulsive and neurodevelopmental disorders. Neurosci Biobehav Rev 2018; 95:315-335. [PMID: 30236781 DOI: 10.1016/j.neubiorev.2018.09.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/08/2018] [Accepted: 09/12/2018] [Indexed: 02/07/2023]
Abstract
Although genuine motor abnormalities (GMA) are frequently found in schizophrenia, they are also considered as an intrinsic feature of bipolar, obsessive-compulsive, and neurodevelopmental disorders with early onset such as autism, ADHD, and Tourette syndrome. Such transnosological observations strongly suggest a common neural pathophysiology. This systematic review highlights the evidence on GMA and their neuroanatomical substrates in bipolar, obsessive-compulsive, and neurodevelopmental disorders. The data lends support for a common pattern contributing to GMA expression in these diseases that seems to be related to cerebello-thalamo-cortical, fronto-parietal, and cortico-subcortical motor circuit dysfunction. The identified studies provide first evidence for a motor network dysfunction as a correlate of early neurodevelopmental deviance prior to clinical symptom expression. There are also first hints for a developmental risk factor model of these mental disorders. An in-depth analysis of motor networks and related patho-(physiological) mechanisms will not only help promoting Research Domain Criteria (RDoC) Motor System construct, but also facilitate the development of novel psychopharmacological models, as well as the identification of neurobiologically plausible target sites for non-invasive brain stimulation.
Collapse
Affiliation(s)
- Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan Fritze
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Robert C Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
13
|
Abstract
The cerebral cortex of the human brain has a complex morphological structure consisting of folded or smooth cortical surfaces. These morphological features are referred to as cortical gyrification and are characterized by the gyrification index (GI). A number of cortical gyrification studies have been published using the manual tracing GI, automated GI, and local GI in patients with schizophrenia. In this review, we highlighted abnormal cortical gyrification in patients with schizophrenia, first-episode schizophrenia, siblings of patients, and high-risk and at-risk individuals. Previous researches also indicated that abnormalities in cortical gyrification may underlie the severity of clinical symptoms, neurological soft signs, and executive functions. A substantial body of research has been conducted; however, some researches showed an increased GI, which is called as "hypergyria," and others showed a decreased GI, which is called as "hypogyria." We discussed that different GI methods and a wide variety of characteristics, such as age, sex, stage, and severity of illness, might be important reasons for the conflicting findings. These issues still need to be considered, and future studies should address them.
Collapse
Affiliation(s)
- Yukihisa Matsuda
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Hiroshima, Japan
| | - Kazutaka Ohi
- Department of Neuropsychiatry, Kanazawa Medical University, Ishikawa, Japan, .,Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan,
| |
Collapse
|
14
|
Hirjak D, Northoff G, Thomann PA, Kubera KM, Wolf RC. Genuine motorische Phänomene bei schizophrenen Psychosen. DER NERVENARZT 2017; 89:27-43. [DOI: 10.1007/s00115-017-0434-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Hirjak D, Huber M, Kirchler E, Kubera KM, Karner M, Sambataro F, Freudenmann RW, Wolf RC. Cortical features of distinct developmental trajectories in patients with delusional infestation. Prog Neuropsychopharmacol Biol Psychiatry 2017; 76:72-79. [PMID: 28257853 DOI: 10.1016/j.pnpbp.2017.02.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND Although there is strong neuroimaging evidence that cortical alterations are a core feature of schizophrenia spectrum disorders, it still remains unclear to what extent such abnormalities occur in monothematic delusional disorders. In individuals with delusional infestation (DI), the delusional belief to be infested with pathogens, previous structural MRI studies have shown prefrontal, temporal, parietal, insular, thalamic and striatal gray matter volume changes. Differential contributions of cortical features of evolutionary and genetic origin (such as cortical thickness, area and folding) which may distinctly contribute to DI pathophysiology are unclear at present. METHODS In this study, 18 patients with DI and 20 healthy controls (HC) underwent MRI scanning at 1.0T. Using surface-based analyses we calculated cortical thickness, surface area and local gyrification index (LGI). Whole-brain differences between patients and controls were investigated. RESULTS Surface analyses revealed frontoparietal patterns exhibiting altered cortical thickness, surface area and LGI in DI patients compared to controls. Higher cortical thickness was found in the right medial orbitofrontal cortex (p<0.05, cluster-wise probability [CWP] corrected). Smaller surface area in patients was found in the left inferior temporal gyrus, the precuneus, the pars orbitalis of the right frontal gyrus, and the lingual gyrus (p<0.05, CWP corr.). Lower LGI was found in the left postcentral, bilateral precentral, right middle temporal, inferior parietal, and superior parietal gyri (p<0.01, CWP corr.). CONCLUSION This study lends further support to the hypothesis that cortical features of distinct evolutionary and genetic origin differently contribute to the pathogenesis of delusional disorders. Regions in which atrophy was observed are part of neural circuits associated with perception, visuospatial control and self-awareness. The data are in line with the notion of a content-specific neural signature of DI.
Collapse
Affiliation(s)
- Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University Mannheim, Germany.
| | - Markus Huber
- Department of Psychiatry, General Hospital Bruneck, South Tyrol, Italy
| | - Erwin Kirchler
- Department of Psychiatry, General Hospital Bruneck, South Tyrol, Italy
| | - Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Germany
| | - Martin Karner
- Department of Radiology, General Hospital Bruneck, South Tyrol, Italy
| | - Fabio Sambataro
- Department of Experimental and Clinical Medical Sciences, Udine University, Italy
| | | | - Robert C Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Germany
| |
Collapse
|
16
|
Hirjak D, Thomann PA, Wolf RC, Kubera KM, Goch C, Hering J, Maier-Hein KH. White matter microstructure variations contribute to neurological soft signs in healthy adults. Hum Brain Mapp 2017; 38:3552-3565. [PMID: 28429448 DOI: 10.1002/hbm.23609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/26/2017] [Accepted: 03/29/2017] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE Neurological soft signs (NSS) are core features of psychiatric disorders with significant neurodevelopmental origin. However, it is unclear whether NSS correlates are associated with neuropathological processes underlying the disease or if they are confounded by medication. Given that NSS are also present in healthy persons (HP), investigating HP could reveal NSS correlates, which are not biased by disease-specific processes or drug treatment. Therefore, we used a combination of diffusion MRI analysis tools to provide a framework of specific white matter (WM) microstructure variations underlying NSS in HP. METHOD NSS of 59 HP were examined on the Heidelberg Scale and related to diffusion associated metrics. Using tract-based spatial statistics (TBSS), we studied WM variations in fractional anisotropy (FA) as well as radial (RD), axial (AD), and mean diffusivity (MD). Using graph analytics (clustering coefficient-CC, local betweenness centrality -BC), we then explored DTI-derived structural network variations in regions identified by previous MRI studies on NSS. RESULTS NSS scores were negatively associated with RD, AD and MD in corpus callosum, brainstem and cerebellum (P < 0.05, corr.). NSS scores were negatively associated with CC and BC of the pallidum, the superior parietal gyrus, the precentral sulcus, the insula, and the cingulate gyrus (P < 0.05, uncorr.). CONCLUSION The present study supports the notion that WM microstructure variations in subcortical and cortical sensorimotor regions contribute to NSS expression in young HP. Hum Brain Mapp 38:3552-3565, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Germany
| | - Philipp A Thomann
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Germany.,Center for Mental Health, Odenwald District Healthcare Center, Albert-Schweitzer-Straße 10-20, 64711, Erbach, Germany
| | - Robert C Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Germany
| | - Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Germany
| | - Caspar Goch
- Medical Image Computing Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Hering
- Medical Image Computing Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Klaus H Maier-Hein
- Medical Image Computing Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|