1
|
Wu M, Auksztulewicz R, Riecke L. Multimodal acoustic-electric trigeminal nerve stimulation modulates conscious perception. Neuroimage 2024; 285:120476. [PMID: 38030051 DOI: 10.1016/j.neuroimage.2023.120476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/05/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023] Open
Abstract
Multimodal stimulation can reverse pathological neural activity and improve symptoms in neuropsychiatric diseases. Recent research shows that multimodal acoustic-electric trigeminal-nerve stimulation (TNS) (i.e., musical stimulation synchronized to electrical stimulation of the trigeminal nerve) can improve consciousness in patients with disorders of consciousness. However, the reliability and mechanism of this novel approach remain largely unknown. We explored the effects of multimodal acoustic-electric TNS in healthy human participants by assessing conscious perception before and after stimulation using behavioral and neural measures in tactile and auditory target-detection tasks. To explore the mechanisms underlying the putative effects of acoustic-electric stimulation, we fitted a biologically plausible neural network model to the neural data using dynamic causal modeling. We observed that (1) acoustic-electric stimulation improves conscious tactile perception without a concomitant change in auditory perception, (2) this improvement is caused by the interplay of the acoustic and electric stimulation rather than any of the unimodal stimulation alone, and (3) the effect of acoustic-electric stimulation on conscious perception correlates with inter-regional connection changes in a recurrent neural processing model. These results provide evidence that acoustic-electric TNS can promote conscious perception. Alterations in inter-regional cortical connections might be the mechanism by which acoustic-electric TNS achieves its consciousness benefits.
Collapse
Affiliation(s)
- Min Wu
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV Maastricht, the Netherlands.
| | - Ryszard Auksztulewicz
- Department of Education and Psychology, Freie Universität Berlin, Berlin 14195, Germany
| | - Lars Riecke
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV Maastricht, the Netherlands
| |
Collapse
|
2
|
Parmigiani S, Ross JM, Cline CC, Minasi CB, Gogulski J, Keller CJ. Reliability and Validity of Transcranial Magnetic Stimulation-Electroencephalography Biomarkers. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:805-814. [PMID: 36894435 PMCID: PMC10276171 DOI: 10.1016/j.bpsc.2022.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/15/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Noninvasive brain stimulation and neuroimaging have revolutionized human neuroscience with a multitude of applications, including diagnostic subtyping, treatment optimization, and relapse prediction. It is therefore particularly relevant to identify robust and clinically valuable brain biomarkers linking symptoms to their underlying neural mechanisms. Brain biomarkers must be reproducible (i.e., have internal reliability) across similar experiments within a laboratory and be generalizable (i.e., have external reliability) across experimental setups, laboratories, brain regions, and disease states. However, reliability (internal and external) is not alone sufficient; biomarkers also must have validity. Validity describes closeness to a true measure of the underlying neural signal or disease state. We propose that these metrics, reliability and validity, should be evaluated and optimized before any biomarker is used to inform treatment decisions. Here, we discuss these metrics with respect to causal brain connectivity biomarkers from coupling transcranial magnetic stimulation (TMS) with electroencephalography (EEG). We discuss controversies around TMS-EEG stemming from the multiple large off-target components (noise) and relatively weak genuine brain responses (signal), as is unfortunately often the case in noninvasive human neuroscience. We review the current state of TMS-EEG recordings, which consist of a mix of reliable noise and unreliable signal. We describe methods for evaluating TMS-EEG biomarkers, including how to assess internal and external reliability across facilities, cognitive states, brain networks, and disorders and how to validate these biomarkers using invasive neural recordings or treatment response. We provide recommendations to increase reliability and validity, discuss lessons learned, and suggest future directions for the field.
Collapse
Affiliation(s)
- Sara Parmigiani
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California
| | - Jessica M Ross
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California
| | - Christopher C Cline
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California
| | - Christopher B Minasi
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California
| | - Juha Gogulski
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California; Department of Clinical Neurophysiology, HUS Diagnostic Center, Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Corey J Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California.
| |
Collapse
|
3
|
Hernandez-Pavon JC, Veniero D, Bergmann TO, Belardinelli P, Bortoletto M, Casarotto S, Casula EP, Farzan F, Fecchio M, Julkunen P, Kallioniemi E, Lioumis P, Metsomaa J, Miniussi C, Mutanen TP, Rocchi L, Rogasch NC, Shafi MM, Siebner HR, Thut G, Zrenner C, Ziemann U, Ilmoniemi RJ. TMS combined with EEG: Recommendations and open issues for data collection and analysis. Brain Stimul 2023; 16:567-593. [PMID: 36828303 DOI: 10.1016/j.brs.2023.02.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) evokes neuronal activity in the targeted cortex and connected brain regions. The evoked brain response can be measured with electroencephalography (EEG). TMS combined with simultaneous EEG (TMS-EEG) is widely used for studying cortical reactivity and connectivity at high spatiotemporal resolution. Methodologically, the combination of TMS with EEG is challenging, and there are many open questions in the field. Different TMS-EEG equipment and approaches for data collection and analysis are used. The lack of standardization may affect reproducibility and limit the comparability of results produced in different research laboratories. In addition, there is controversy about the extent to which auditory and somatosensory inputs contribute to transcranially evoked EEG. This review provides a guide for researchers who wish to use TMS-EEG to study the reactivity of the human cortex. A worldwide panel of experts working on TMS-EEG covered all aspects that should be considered in TMS-EEG experiments, providing methodological recommendations (when possible) for effective TMS-EEG recordings and analysis. The panel identified and discussed the challenges of the technique, particularly regarding recording procedures, artifact correction, analysis, and interpretation of the transcranial evoked potentials (TEPs). Therefore, this work offers an extensive overview of TMS-EEG methodology and thus may promote standardization of experimental and computational procedures across groups.
Collapse
Affiliation(s)
- Julio C Hernandez-Pavon
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Legs + Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA; Center for Brain Stimulation, Shirley Ryan AbilityLab, Chicago, IL, USA.
| | | | - Til Ole Bergmann
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Germany; Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Paolo Belardinelli
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, TN, Italy; Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany
| | - Marta Bortoletto
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Elias P Casula
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Faranak Farzan
- Simon Fraser University, School of Mechatronic Systems Engineering, Surrey, British Columbia, Canada
| | - Matteo Fecchio
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Petro Julkunen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland; Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland
| | - Elisa Kallioniemi
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Pantelis Lioumis
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Johanna Metsomaa
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Carlo Miniussi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, TN, Italy
| | - Tuomas P Mutanen
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Nigel C Rogasch
- University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia; Monash University, Melbourne, Australia
| | - Mouhsin M Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gregor Thut
- School of Psychology and Neuroscience, University of Glasgow, United Kingdom
| | - Christoph Zrenner
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Canada; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| |
Collapse
|
4
|
Guzmán López J, Hernandez-Pavon JC, Lioumis P, Mäkelä JP, Silvanto J. State-dependent TMS effects in the visual cortex after visual adaptation: A combined TMS-EEG study. Clin Neurophysiol 2021; 134:129-136. [PMID: 34776356 DOI: 10.1016/j.clinph.2021.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 08/16/2021] [Accepted: 08/29/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE The impact of transcranial magnetic stimulation (TMS) has been shown to depend on the initial brain state of the stimulated cortical region. This observation has led to the development of paradigms that aim to enhance the specificity of TMS effects by using visual/luminance adaptation to modulate brain state prior to the application of TMS. However, the neural basis of interactions between TMS and adaptation is unknown. Here, we examined these interactions by using electroencephalography (EEG) to measure the impact of TMS over the visual cortex after luminance adaptation. METHODS Single-pulses of neuronavigated TMS (nTMS) were applied at two different intensities over the left visual cortex after adaptation to either high or low luminance. We then analyzed the effects of adaptation on the global and local cortical excitability. RESULTS The analysis revealed a significant interaction between the TMS-evoked responses and the adaptation condition. In particular, when nTMS was applied with high intensity, the evoked responses were larger after adaptation to high than low luminance. CONCLUSION This result provides the first neural evidence on the interaction between TMS with visual adaptation. SIGNIFICANCE TMS can activate neurons differentially as a function of their adaptation state.
Collapse
Affiliation(s)
- Jessica Guzmán López
- BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; University of Surrey, Faculty of Health and Medical Sciences, School of Psychology, Guildford, UK.
| | - Julio C Hernandez-Pavon
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Legs + Walking Lab, Shirley Ryan AbilityLab (Formerly The Rehabilitation Institute of Chicago (RIC)), Chicago, IL, USA; Center for Brain Stimulation, Shirley Ryan AbilityLab, Chicago, IL, USA.
| | - Pantelis Lioumis
- BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Neuroscience and Biomedical Engineering (NBE), Aalto University, School of Science, Espoo, Finland
| | - Jyrki P Mäkelä
- BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Juha Silvanto
- BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; University of Surrey, Faculty of Health and Medical Sciences, School of Psychology, Guildford, UK
| |
Collapse
|
5
|
de Tommaso M, Betti V, Bocci T, Bolognini N, Di Russo F, Fattapposta F, Ferri R, Invitto S, Koch G, Miniussi C, Piccione F, Ragazzoni A, Sartucci F, Rossi S, Valeriani M. Pearl and pitfalls in brain functional analysis by event-related potentials: a narrative review by the Italian Psychophysiology and Cognitive Neuroscience Society on methodological limits and clinical reliability-part II. Neurol Sci 2020; 41:3503-3515. [PMID: 32683566 DOI: 10.1007/s10072-020-04527-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 06/21/2020] [Indexed: 12/13/2022]
Abstract
This review focuses on new and/or less standardized event-related potentials methods, in order to improve their knowledge for future clinical applications. The olfactory event-related potentials (OERPs) assess the olfactory functions in time domain, with potential utility in anosmia and degenerative diseases. The transcranial magnetic stimulation-electroencephalography (TMS-EEG) could support the investigation of the intracerebral connections with very high temporal discrimination. Its application in the diagnosis of disorders of consciousness has achieved recent confirmation. Magnetoencephalography (MEG) and event-related fields (ERF) could improve spatial accuracy of scalp signals, with potential large application in pre-surgical study of epileptic patients. Although these techniques have methodological limits, such as high inter- and intraindividual variability and high costs, their diffusion among researchers and clinicians is hopeful, pending their standardization.
Collapse
Affiliation(s)
- Marina de Tommaso
- Applied Neurophysiology and Pain Unit-AnpLab-University of Bari Aldo Moro, Bari, Italy
| | - Viviana Betti
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,Fondazione Santa Lucia, Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Tommaso Bocci
- Dipartimento di Scienze della Salute, University of Milano, Milan, Italy
| | - Nadia Bolognini
- Department of Psychology & NeuroMi, University of Milano Bicocca, Milan, Italy.,Laboratory of Neuropsychology, IRCCS Istituto Auxologico, Milan, Italy
| | - Francesco Di Russo
- Dept. of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | | | | | - Sara Invitto
- INSPIRE - Laboratory of Cognitive and Psychophysiological Olfactory Processes, University of Salento, Lecce, Italy
| | - Giacomo Koch
- Fondazione Santa Lucia, Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, Italy.,Neuroscience Department, Policlinico Tor Vergata, Rome, Italy
| | - Carlo Miniussi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy.,Cognitive Neuroscience Section, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Francesco Piccione
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Aldo Ragazzoni
- Unit of Neurology and Clinical Neurophysiology, Fondazione PAS, Scandicci, Florence, Italy
| | - Ferdinando Sartucci
- Section of Neurophysiopathology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,CNR Institute of Neuroscience, Pisa, Italy
| | - Simone Rossi
- Department of Medicine, Surgery and Neuroscience Siena Brain Investigation and Neuromodulation LAb (SI-BIN Lab), University of Siena, Siena, Italy
| | - Massimiliano Valeriani
- Neurology Unit, Bambino Gesù Hospital, Rome, Italy. .,Center for Sensory-Motor Interaction, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
6
|
Bergmann TO, Hartwigsen G. Inferring Causality from Noninvasive Brain Stimulation in Cognitive Neuroscience. J Cogn Neurosci 2020; 33:195-225. [PMID: 32530381 DOI: 10.1162/jocn_a_01591] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Noninvasive brain stimulation (NIBS) techniques, such as transcranial magnetic stimulation or transcranial direct and alternating current stimulation, are advocated as measures to enable causal inference in cognitive neuroscience experiments. Transcending the limitations of purely correlative neuroimaging measures and experimental sensory stimulation, they allow to experimentally manipulate brain activity and study its consequences for perception, cognition, and eventually, behavior. Although this is true in principle, particular caution is advised when interpreting brain stimulation experiments in a causal manner. Research hypotheses are often oversimplified, disregarding the underlying (implicitly assumed) complex chain of causation, namely, that the stimulation technique has to generate an electric field in the brain tissue, which then evokes or modulates neuronal activity both locally in the target region and in connected remote sites of the network, which in consequence affects the cognitive function of interest and eventually results in a change of the behavioral measure. Importantly, every link in this causal chain of effects can be confounded by several factors that have to be experimentally eliminated or controlled to attribute the observed results to their assumed cause. This is complicated by the fact that many of the mediating and confounding variables are not directly observable and dose-response relationships are often nonlinear. We will walk the reader through the chain of causation for a generic cognitive neuroscience NIBS study, discuss possible confounds, and advise appropriate control conditions. If crucial assumptions are explicitly tested (where possible) and confounds are experimentally well controlled, NIBS can indeed reveal cause-effect relationships in cognitive neuroscience studies.
Collapse
Affiliation(s)
| | - Gesa Hartwigsen
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
7
|
Schwenk JCB, VanRullen R, Bremmer F. Dynamics of Visual Perceptual Echoes Following Short-Term Visual Deprivation. Cereb Cortex Commun 2020; 1:tgaa012. [PMID: 34296091 PMCID: PMC8152942 DOI: 10.1093/texcom/tgaa012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/01/2020] [Accepted: 04/05/2020] [Indexed: 11/12/2022] Open
Abstract
The visual impulse-response function to random input as measured by EEG is dominated by the perceptual echo, a reverberation of stimulus information in the alpha range believed to represent active rhythmic sampling. How this response is generated on a cortical level is unknown. To characterize the underlying mechanisms, we investigated the echoes’ dynamics following short-term visual deprivation, which is known to modify the excitation/inhibition balance in visual cortex. We subjected observers to 150 min of light deprivation (LD) and monocular contrast deprivation (MD). Perceptual echoes were measured by binocular and dichoptic stimulation, respectively, and compared with a baseline condition. Our results show that the echo response is enhanced after LD, but not affected in temporal frequency or spatial propagation. Consistent with previous studies, MD shifted early response (0–150 ms) amplitudes in favor of the deprived eye, but had no systematic effect on the echoes. Our findings demonstrate that the echoes’ synchrony scales with cortical excitability, adding to previous evidence that they represent active visual processing. Their insensitivity to modulation at the monocular level suggests they are generated by a larger region of visual cortex. Our study provides further insight into how mechanisms of rhythmic sampling are implemented in the visual system.
Collapse
Affiliation(s)
- Jakob C B Schwenk
- Department of Neurophysics, University of Marburg, Marburg 35043, Germany.,Center for Mind, Brain and Behavior-CMBB, University of Marburg and Justus-Liebig-University Gießen, Marburg 35032, Germany
| | - Rufin VanRullen
- Centre de Recherche Cerveau et Cognition, CNRS UMR 5549, Université de Toulouse, Toulouse 31052, France
| | - Frank Bremmer
- Department of Neurophysics, University of Marburg, Marburg 35043, Germany.,Center for Mind, Brain and Behavior-CMBB, University of Marburg and Justus-Liebig-University Gießen, Marburg 35032, Germany
| |
Collapse
|