1
|
Ma J, Rui Z, Zou Y, Qin Z, Zhao Z, Zhang Y, Mao Z, Bai H, Zhang J. Neurosurgical and BCI approaches to visual rehabilitation in occipital lobe tumor patients. Heliyon 2024; 10:e39072. [PMID: 39687114 PMCID: PMC11647799 DOI: 10.1016/j.heliyon.2024.e39072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 12/18/2024] Open
Abstract
This study investigates the effects of occipital lobe tumors on visual processing and the role of brain-computer interface (BCI) technologies in post-surgical visual rehabilitation. Through a combination of pre-surgical functional magnetic resonance imaging (fMRI) and Diffusion Tensor Imaging (DTI), intra-operative direct cortical stimulation (DCS) and Electrocorticography (ECoG), and post-surgical BCI interventions, we provide insight into the complex dynamics between occipital lobe tumors and visual function. Our results highlight a discrepancy between clinical assessments of visual field damage and the patient's reported visual experiences, suggesting a residual functional capacity within the damaged occipital regions. Additionally, the absence of expected visual phenomena during surgery and the promising outcomes from BCI-driven rehabilitation underscore the complexity of visual processing and the potential of technology-enhanced rehabilitation strategies. This work emphasizes the need for an interdisciplinary approach in developing effective treatments for visual impairments related to brain tumors, illustrating the significant implications for neurosurgical practices and the advancement of rehabilitation sciences.
Collapse
Affiliation(s)
- Jie Ma
- PLA Medical School, Beijing, 100853, PR China
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Zong Rui
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Yuhui Zou
- Department of Neurosurgery, General Hospital of the Southern Theater Command of PLA, Guangzhou, Guangzhou, 510051, PR China
| | - Zhizhen Qin
- PLA Medical School, Beijing, 100853, PR China
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Zhenyu Zhao
- Department of Neurosurgery, General Hospital of the Southern Theater Command of PLA, Guangzhou, Guangzhou, 510051, PR China
| | - Yanyang Zhang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Zhiqi Mao
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Hongmin Bai
- Department of Neurosurgery, General Hospital of the Southern Theater Command of PLA, Guangzhou, Guangzhou, 510051, PR China
| | - Jianning Zhang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, PR China
| |
Collapse
|
2
|
Isan P, Deslauriers-Gauthier S, Papadopoulo T, Fontaine D, Filipiak P, Almairac F. The effect of common parameters of bipolar stimulation on brain evoked potentials. Clin Neurophysiol 2024; 167:26-36. [PMID: 39260137 DOI: 10.1016/j.clinph.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024]
Abstract
OBJECTIVE To identify optimal bipolar stimulation parameters for robust generation of brain evoked potentials (BEPs), namely the interelectrode distance (IED) and the intensity of stimulation (IS), in cortical and axonal stimulation. METHODS In 15 patients who underwent awake surgery for brain tumor removal, BEPs were elicited at different values of IED and IS, respectively: 5 mm-5 mA, 5 mm-10 mA, and 10 mm-10 mA. The number of BEPs elicited by stimulation, as well as the delays and amplitudes of the N1 waves were compared between the different groups of stimulation parameters and according to the stimulated brain structure (cortical vs. axonal). RESULTS The amplitudes of N1 increased with the intensity of bipolar stimulation, either in cortical or axonal stimulation, while N1 peak delays were not affected by the stimulation parameters. Furthermore, axonal stimulation produced more N1s than cortical stimulation, with lower latencies. CONCLUSIONS Understanding the relationship between stimulation parameters and BEP is of utmost importance to determine whether the generated N1 waves accurately reflect the underlying structural anatomy. Other factors, such as stimulation frequency or pulse width and shape, may also play a role and warrant further investigation. SIGNIFICANCE This study represents the first step in describing the influence of common bipolar stimulation parameters on robustness of BEPs by examining the impact of IED and IS on the N1 wave.
Collapse
Affiliation(s)
- Petru Isan
- Neurosurgery Department, Pasteur 2 Hospital, University Hospital of Nice, France; UR2CA PIN, Université Côte d'Azur, France; Cronos Team, Centre Inria d'Université Côte d'Azur, France
| | | | | | - Denys Fontaine
- Neurosurgery Department, Pasteur 2 Hospital, University Hospital of Nice, France; UR2CA PIN, Université Côte d'Azur, France
| | | | - Fabien Almairac
- Neurosurgery Department, Pasteur 2 Hospital, University Hospital of Nice, France; UR2CA PIN, Université Côte d'Azur, France.
| |
Collapse
|
3
|
Rossel O, Schlosser-Perrin F, Duffau H, Matsumoto R, Mandonnet E, Bonnetblanc F. Short-range axono-cortical evoked-potentials in brain tumor surgery: Waveform characteristics as markers of direct connectivity. Clin Neurophysiol 2023; 153:189-201. [PMID: 37353389 DOI: 10.1016/j.clinph.2023.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/20/2023] [Accepted: 05/24/2023] [Indexed: 06/25/2023]
Abstract
OBJECTIVE Intraoperative measurement of axono-cortical evoked potentials (ACEP) has emerged as a promising tool for studying neural connectivity. However, it is often difficult to determine if the activity recorded by cortical grids is generated by stimulated tracts or by spurious phenomena. This study aimed to identify criteria that would indicate a direct neurophysiological connection between a recording contact and a stimulated pathway. METHODS Electrical stimulation was applied to white matter fascicles within the resection cavity, while the evoked response was recorded at the cortical level in seven patients. RESULTS By analyzing the ACEP recordings, we identified a main epicenter characterized by a very early positive (or negative) evoked response occurring just after the stimulation artifact (<5 ms, |Amplitude| > 100 µV) followed by an early and large negative (or positive) monophasic evoked response (<40 ms; |Amplitude| > 300 µV). The neighboring activity had a different waveform and was attenuated compared to the hot-spot activity. CONCLUSIONS It is possible to distinguish the hotspot with direct connectivity to the stimulated site from neighboring activity using the identified criteria. SIGNIFICANCE The electrogenesis of the ACEP at the hotspot and neighboring activity is discussed.
Collapse
Affiliation(s)
| | | | - Hugues Duffau
- Département de Neurochirurgie, Centre Hospitalier Universitaire de Montpellier Gui de Chauliac, Montpellier, France
| | - Riki Matsumoto
- Division of Neurology, Kobe University Graduate School of Medicine, Japan
| | - Emmanuel Mandonnet
- Département de Neurochirurgie, Centre Hospitalier Universitaire, Hôpital Lariboisière, Paris, France
| | | |
Collapse
|
4
|
Almairac F, Isan P, Onno M, Papadopoulo T, Mondot L, Chanalet S, Fernandez C, Clerc M, Deriche R, Fontaine D, Filipiak P. Identifying subcortical connectivity during brain tumor surgery: a multimodal study. Brain Struct Funct 2023; 228:815-830. [PMID: 36840759 DOI: 10.1007/s00429-023-02623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/16/2023] [Indexed: 02/26/2023]
Abstract
Bipolar direct electrical stimulation (DES) of an awake patient is the reference technique for identifying brain structures to achieve maximal safe tumor resection. Unfortunately, DES cannot be performed in all cases. Alternative surgical tools are, therefore, needed to aid identification of subcortical connectivity during brain tumor removal. In this pilot study, we sought to (i) evaluate the combined use of evoked potential (EP) and tractography for identification of white matter (WM) tracts under the functional control of DES, and (ii) provide clues to the electrophysiological effects of bipolar stimulation on neural pathways. We included 12 patients (mean age of 38.4 years) who had had a dMRI-based tractography and a functional brain mapping under awake craniotomy for brain tumor removal. Electrophysiological recordings of subcortical evoked potentials (SCEPs) were acquired during bipolar low frequency (2 Hz) stimulation of the WM functional sites identified during brain mapping. SCEPs were successfully triggered in 11 out of 12 patients. The median length of the stimulated fibers was 43.24 ± 19.55 mm, belonging to tracts of median lengths of 89.84 ± 24.65 mm. The electrophysiological (delay, amplitude, and speed of propagation) and structural (number and lengths of streamlines, and mean fractional anisotropy) measures were correlated. In our experimental conditions, SCEPs were essentially limited to a subpart of the bundles, suggesting a selectivity of action of the DES on the brain networks. Correlations between functional, structural, and electrophysiological measures portend the combined use of EPs and tractography as a potential intraoperative tool to achieve maximum safe resection in brain tumor surgery.
Collapse
Affiliation(s)
- Fabien Almairac
- Neurosurgery Department, Pasteur 2 Hospital, University Hospital of Nice, 30 Avenue de La Voie Romaine, 06000, Nice, France.
- UR2CA PIN, Université Côte d'Azur, Nice, France.
| | - Petru Isan
- Neurosurgery Department, Pasteur 2 Hospital, University Hospital of Nice, 30 Avenue de La Voie Romaine, 06000, Nice, France
- UR2CA PIN, Université Côte d'Azur, Nice, France
- Athena Team, Centre Inria d'Université Côte d'Azur, Sophia Antipolis, France
| | - Marie Onno
- Neurosurgery Department, Pasteur 2 Hospital, University Hospital of Nice, 30 Avenue de La Voie Romaine, 06000, Nice, France
| | | | - Lydiane Mondot
- Neuroradiology Department, Pasteur 2 Hospital, University Hospital of Nice, Nice, France
- UR2CA URRIS, Université Côte d'Azur, Nice, France
| | - Stéphane Chanalet
- Neuroradiology Department, Pasteur 2 Hospital, University Hospital of Nice, Nice, France
| | - Charlotte Fernandez
- Neurosurgery Department, Pasteur 2 Hospital, University Hospital of Nice, 30 Avenue de La Voie Romaine, 06000, Nice, France
| | - Maureen Clerc
- Athena Team, Centre Inria d'Université Côte d'Azur, Sophia Antipolis, France
| | - Rachid Deriche
- Athena Team, Centre Inria d'Université Côte d'Azur, Sophia Antipolis, France
| | - Denys Fontaine
- Neurosurgery Department, Pasteur 2 Hospital, University Hospital of Nice, 30 Avenue de La Voie Romaine, 06000, Nice, France
- UR2CA PIN, Université Côte d'Azur, Nice, France
| | | |
Collapse
|
5
|
Ley M, Peláez N, Principe A, Langohr K, Zucca R, Rocamora R. Validation of direct cortical stimulation in presurgical evaluation of epilepsy. Clin Neurophysiol 2022; 137:38-45. [DOI: 10.1016/j.clinph.2022.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/20/2022] [Accepted: 02/11/2022] [Indexed: 01/09/2023]
|
6
|
Giampiccolo D, Nunes S, Cattaneo L, Sala F. Functional Approaches to the Surgery of Brain Gliomas. Adv Tech Stand Neurosurg 2022; 45:35-96. [PMID: 35976447 DOI: 10.1007/978-3-030-99166-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the surgery of gliomas, recent years have witnessed unprecedented theoretical and technical development, which extensively increased indication to surgery. On one hand, it has been solidly demonstrated the impact of gross total resection on life expectancy. On the other hand, the paradigm shift from classical cortical localization of brain function towards connectomics caused by the resurgence of awake surgery and the advent of tractography has permitted safer surgeries focused on subcortical white matter tracts preservation and allowed for surgical resections within regions, such as Broca's area or the primary motor cortex, which were previously deemed inoperable. Furthermore, new asleep electrophysiological techniques have been developed whenever awake surgery is not an option, such as operating in situations of poor compliance (including paediatric patients) or pre-existing neurological deficits. One such strategy is the use of intraoperative neurophysiological monitoring (IONM), enabling the identification and preservation of functionally defined, but anatomically ambiguous, cortico-subcortical structures through mapping and monitoring techniques. These advances tie in with novel challenges, specifically risk prediction and the impact of neuroplasticity, the indication for tumour resection beyond visible borders, or supratotal resection, and most of all, a reappraisal of the importance of the right hemisphere from early psychosurgery to mapping and preservation of social behaviour, executive control, and decision making.Here we review current advances and future perspectives in a functional approach to glioma surgery.
Collapse
Affiliation(s)
- Davide Giampiccolo
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, University of Verona, Verona, Italy
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- Institute of Neurosciences, Cleveland Clinic London, London, UK
| | - Sonia Nunes
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, University of Verona, Verona, Italy
| | - Luigi Cattaneo
- Center for Mind and Brain Sciences (CIMeC) and Center for Medical Sciences (CISMed), University of Trento, Trento, Italy
| | - Francesco Sala
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, University of Verona, Verona, Italy.
| |
Collapse
|
7
|
Patterns of axono-cortical evoked potentials: an electrophysiological signature unique to each white matter functional site? Acta Neurochir (Wien) 2021; 163:3121-3130. [PMID: 33433683 DOI: 10.1007/s00701-020-04656-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Brain-to-brain evoked potentials constitute a new methodology that could help to understand the network-level correlates of electrical stimulation applied for brain mapping during tumor resection. In this paper, we aimed to describe the characteristics of axono-cortical evoked potentials recorded from distinct, but in the same patient, behaviorally eloquent white matter sites. METHODS We report the intraoperative white matter mapping and axono-cortical evoked potentials recordings observed in a patient operated on under awake condition of a diffuse low-grade glioma in the left middle frontal gyrus. Out of the eight behaviorally eloquent sites identified with 60-Hz electrical stimulation, five were probed with single electrical pulses (delivered at 1 Hz), while recording evoked potentials on two electrodes, covering the inferior frontal gyrus and the precentral gyrus, respectively. Postoperative diffusion-weighted MRI was used to reconstruct the tractograms passing through each of the five stimulated sites. RESULTS Each stimulated site generated an ACEP on at least one of the recorded electrode contacts. The whole pattern-i.e., the specific contacts with ACEPs and their waveform-was distinct for each of the five stimulated sites. CONCLUSIONS We found that the patterns of ACEPs provided unique electrophysiological signatures for each of the five white matter functional sites. Our results could ultimately provide neurosurgeons with a new tool of intraoperative electrophysiologically based functional guidance.
Collapse
|
8
|
Boyer A, Ramdani S, Duffau H, Dali M, Vincent MA, Mandonnet E, Guiraud D, Bonnetblanc F. Electrophysiological Mapping During Brain Tumor Surgery: Recording Cortical Potentials Evoked Locally, Subcortically and Remotely by Electrical Stimulation to Assess the Brain Connectivity On-line. Brain Topogr 2021; 34:221-233. [PMID: 33400097 DOI: 10.1007/s10548-020-00814-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
Direct electrical stimulation (DES) is used to perform functional brain mapping during awake surgery and in epileptic patients. DES may be coupled with the measurement of Evoked Potentials (EP) to study the conductive and integrative properties of activated neural ensembles and probe the spatiotemporal dynamics of short- and long-range networks. However, its electrophysiological effects remain by far unknown. We recorded ECoG signals on two patients undergoing awake brain surgery and measured EP on functional sites after cortical stimulations and were the firsts to record three different types of EP on the same patients. Using low-intensity (1-3 mA) to evoke electrogenesis we observed that: (i) "true" remote EPs are attenuated in amplitude and delayed in time due to the divergence of white matter pathways; (ii) "false" remote EPs are attenuated but not delayed: as they originate from the same electrical source; (iii) Singular but reproducible positive components in the EP can be generated when the DES is applied in the temporal lobe or the premotor cortex; and (iv) rare EP can be triggered when the DES is applied subcortically: these can be either negative, or surprisingly, positive. We proposed different activation and electrophysiological propagation mechanisms following DES, based on the nature of activated neural elements and discussed important methodological pitfalls when measuring EP in the brain. Altogether, these results pave the way to map the connectivity in real-time between the DES and the recording sites; to characterize the local electrophysiological states and to link electrophysiology and function. In the future, and in practice, this technique could be used to perform electrophysiological mapping in order to link (non)-functional to electrophysiological responses with DES and could be used to guide the surgical act itself.
Collapse
Affiliation(s)
- Anthony Boyer
- CAMIN, INRIA, LIRMM, Université de Montpellier, 34090, Montpellier, France
| | - Sofiane Ramdani
- IDH, LIRMM, Université de Montpellier, 34095, Montpellier, France
| | - Hugues Duffau
- "Plasticité cérébrale, cellules souches neurales et tumeurs gliales", INSERM U1051, Institut des Neurosciences de Montpellier, 34295, Montpellier, France.,Département de Neurochirurgie, Centre Hospitalier Régional Universitaire de Montpellier Gui de Chauliac, 34295, Montpellier, France
| | - Mélissa Dali
- Département de Neurochirurgie, Hopital Lariboisière, Paris, France
| | - Marion A Vincent
- CAMIN, INRIA, LIRMM, Université de Montpellier, 34090, Montpellier, France.,SCALab - Sciences Cognitives et Sciences Affectives, CNRS, UMR 9193, Université de Lille, 59000, Lille, France
| | | | - David Guiraud
- CAMIN, INRIA, LIRMM, Université de Montpellier, 34090, Montpellier, France
| | - François Bonnetblanc
- CAMIN, INRIA, LIRMM, Université de Montpellier, 34090, Montpellier, France. .,Institut Universitaire de France, 75231, Paris, France. .,"Cognition, Action et Plasticité Sensorimotrice", INSERM U1093, UFR STAPS, Université Bourgogne Franche-Comté, 21078, Dijon, France.
| |
Collapse
|
9
|
Vincent MA, Bonnetblanc F, Mandonnet E, Boyer A, Duffau H, Guiraud D. Measuring the electrophysiological effects of direct electrical stimulation after awake brain surgery. J Neural Eng 2020; 17:016047. [DOI: 10.1088/1741-2552/ab5cdd] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|