1
|
Cao H, Barber AD, Rubio JM, Argyelan M, Gallego JA, Lencz T, Malhotra AK. Effects of phase encoding direction on test-retest reliability of human functional connectome. Neuroimage 2023; 277:120238. [PMID: 37364743 PMCID: PMC10529794 DOI: 10.1016/j.neuroimage.2023.120238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/23/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023] Open
Abstract
The majority of human connectome studies in the literature based on functional magnetic resonance imaging (fMRI) data use either an anterior-to-posterior (AP) or a posterior-to-anterior (PA) phase encoding direction (PED). However, whether and how PED would affect test-retest reliability of functional connectome is unclear. Here, in a sample of healthy subjects with two sessions of fMRI scans separated by 12 weeks (two runs per session, one with AP, the other with PA), we tested the influence of PED on global, nodal, and edge connectivity in the constructed brain networks. All data underwent the state-of-the-art Human Connectome Project (HCP) pipeline to correct for phase-encoding-related distortions before entering analysis. We found that at the global level, the PA scans showed significantly higher intraclass correlation coefficients (ICCs) for global connectivity compared with AP scans, which was particularly prominent when using the Seitzman-300 atlas (versus the CAB-NP-718 atlas). At the nodal level, regions most strongly affected by PED were consistently mapped to the cingulate cortex, temporal lobe, sensorimotor areas, and visual areas, with significantly higher ICCs during PA scans compared with AP scans, regardless of atlas. Better ICCs were also observed during PA scans at the edge level, in particular when global signal regression (GSR) was not performed. Further, we demonstrated that the observed reliability differences between PEDs may relate to a similar effect on the reliability of temporal signal-to-noise ratio (tSNR) in the same regions (that PA scans were associated with higher reliability of tSNR than AP scans). Averaging the connectivity outcome from the AP and PA scans could increase median ICCs, especially at the nodal and edge levels. Similar results at the global and nodal levels were replicated in an independent, public dataset from the HCP-Early Psychosis (HCP-EP) study with a similar design but a much shorter scan session interval. Our findings suggest that PED has significant effects on the reliability of connectomic estimates in fMRI studies. We urge that these effects need to be carefully considered in future neuroimaging designs, especially in longitudinal studies such as those related to neurodevelopment or clinical intervention.
Collapse
Affiliation(s)
- Hengyi Cao
- Institute of Behavioral Sciences, Feinstein Institutes for Medical Research, Manhasset, NY, United States; Division of Psychiatry Research, Zucker Hillside Hospital, 265-16 74th Avenue, Glen Oaks, NY 11004, United States; Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.
| | - Anita D Barber
- Institute of Behavioral Sciences, Feinstein Institutes for Medical Research, Manhasset, NY, United States; Division of Psychiatry Research, Zucker Hillside Hospital, 265-16 74th Avenue, Glen Oaks, NY 11004, United States; Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Jose M Rubio
- Institute of Behavioral Sciences, Feinstein Institutes for Medical Research, Manhasset, NY, United States; Division of Psychiatry Research, Zucker Hillside Hospital, 265-16 74th Avenue, Glen Oaks, NY 11004, United States; Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Miklos Argyelan
- Institute of Behavioral Sciences, Feinstein Institutes for Medical Research, Manhasset, NY, United States; Division of Psychiatry Research, Zucker Hillside Hospital, 265-16 74th Avenue, Glen Oaks, NY 11004, United States; Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Juan A Gallego
- Institute of Behavioral Sciences, Feinstein Institutes for Medical Research, Manhasset, NY, United States; Division of Psychiatry Research, Zucker Hillside Hospital, 265-16 74th Avenue, Glen Oaks, NY 11004, United States; Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Todd Lencz
- Institute of Behavioral Sciences, Feinstein Institutes for Medical Research, Manhasset, NY, United States; Division of Psychiatry Research, Zucker Hillside Hospital, 265-16 74th Avenue, Glen Oaks, NY 11004, United States; Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Anil K Malhotra
- Institute of Behavioral Sciences, Feinstein Institutes for Medical Research, Manhasset, NY, United States; Division of Psychiatry Research, Zucker Hillside Hospital, 265-16 74th Avenue, Glen Oaks, NY 11004, United States; Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
2
|
Kelly RE, Hoptman MJ, Lee S, Alexopoulos GS, Gunning FM, McKeown MJ. Seed-based dual regression: An illustration of the impact of dual regression's inherent filtering of global signal. J Neurosci Methods 2022; 366:109410. [PMID: 34798212 PMCID: PMC8720564 DOI: 10.1016/j.jneumeth.2021.109410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 10/05/2021] [Accepted: 11/09/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND Functional connectivity (FC) maps from brain fMRI data are often derived with seed-based methods that estimate temporal correlations between the time course in a predefined region (seed) and other brain regions (SCA, seed-based correlation analysis). Standard dual regression, which uses a set of spatial regressor maps, can detect FC with entire brain "networks," such as the default mode network, but may not be feasible when detecting FC associated with a single small brain region alone (for example, the amygdala). NEW METHOD We explored seed-based dual regression (SDR) from theoretical and practical points of view. SDR is a modified implementation of dual regression where the set of spatial regressors is replaced by a single binary spatial map of the seed region. RESULTS SDR allowed detection of FC with small brain regions. COMPARISON WITH EXISTING METHOD For both synthetic and natural fMRI data, detection of FC with SDR was identical to that obtained with SCA after removal of global signal from fMRI data with global signal regression (GSR). In the absence of GSR, detection of FC was significantly improved when using SDR compared with SCA. CONCLUSION The improved FC detection achieved with SDR was related to a partial filtering of the global signal that occurred during spatial regression, an integral part of dual regression. This filtering can sometimes lead to spurious negative correlations that result in a widespread negative bias in FC derived with any application of dual regression. We provide guidelines for how to identify and correct this potential problem.
Collapse
Affiliation(s)
- Robert E Kelly
- Department of Psychiatry, Weill Cornell Medical College, 21 Bloomingdale Road, White Plains, NY 10605, USA.
| | - Matthew J Hoptman
- Clinical Research Division, Nathan S. Kline Institute for Psychiatric Research,140 Old Orangeburg Road, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| | - Soojin Lee
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK.
| | - George S Alexopoulos
- Department of Psychiatry, Weill Cornell Medical College, 21 Bloomingdale Road, White Plains, NY 10605, USA.
| | - Faith M Gunning
- Department of Psychiatry, Weill Cornell Medical College, 21 Bloomingdale Road, White Plains, NY 10605, USA.
| | - Martin J McKeown
- Neurology, Pacific Parkinson's Research Center, University of British Columbia, 2221 Wesbrook Mall, Vancouver, British Columbia V6T 2B5 Canada.
| |
Collapse
|
3
|
Egan MK, Larsen R, Wirsich J, Sutton BP, Sadaghiani S. Safety and data quality of EEG recorded simultaneously with multi-band fMRI. PLoS One 2021; 16:e0238485. [PMID: 34214093 PMCID: PMC8253410 DOI: 10.1371/journal.pone.0238485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/04/2021] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Simultaneously recorded electroencephalography and functional magnetic resonance imaging (EEG-fMRI) is highly informative yet technically challenging. Until recently, there has been little information about EEG data quality and safety when used with newer multi-band (MB) fMRI sequences. Here, we measure the relative heating of a MB protocol compared with a standard single-band (SB) protocol considered to be safe. We also evaluated EEG quality recorded concurrently with the MB protocol on humans. MATERIALS AND METHODS We compared radiofrequency (RF)-related heating at multiple electrodes and magnetic field magnitude, B1+RMS, of a MB fMRI sequence with whole-brain coverage (TR = 440 ms, MB factor = 4) against a previously recommended, safe SB sequence using a phantom outfitted with a 64-channel EEG cap. Next, 9 human subjects underwent eyes-closed resting state EEG-fMRI using the MB sequence. Additionally, in three of the subjects resting state EEG was recorded also during the SB sequence and in an fMRI-free condition to directly compare EEG data quality across scanning conditions. EEG data quality was assessed by the ability to remove gradient and cardioballistic artifacts along with a clean spectrogram. RESULTS The heating induced by the MB sequence was lower than that of the SB sequence by a factor of 0.73 ± 0.38. This is consistent with an expected heating ratio of 0.64, calculated from the square of the ratio of B1+RMS values of the sequences. In the resting state EEG data, gradient and cardioballistic artifacts were successfully removed using traditional template subtraction. All subjects showed an individual alpha peak in the spectrogram with a posterior topography characteristic of eyes-closed EEG. The success of artifact rejection for the MB sequence was comparable to that in traditional SB sequences. CONCLUSIONS Our study shows that B1+RMS is a useful indication of the relative heating of fMRI protocols. This observation indicates that simultaneous EEG-fMRI recordings using this MB sequence can be safe in terms of RF-related heating, and that EEG data recorded using this sequence is of acceptable quality after traditional artifact removal techniques.
Collapse
Affiliation(s)
- Maximillian K. Egan
- Psychology Dept., Univ. of Illinois At Urbana-Champaign, Urbana, IL, United States of America
- Beckman Institute for Advanced Science and Technology, Univ. of Illinois At Urbana-Champaign, Urbana, IL, United States of America
| | - Ryan Larsen
- Beckman Institute for Advanced Science and Technology, Univ. of Illinois At Urbana-Champaign, Urbana, IL, United States of America
| | - Jonathan Wirsich
- Beckman Institute for Advanced Science and Technology, Univ. of Illinois At Urbana-Champaign, Urbana, IL, United States of America
- EEG and Epilepsy Unit, Univ. Hospitals and Faculty of Medicine of Geneva, Geneva, Switzerland
| | - Brad P. Sutton
- Beckman Institute for Advanced Science and Technology, Univ. of Illinois At Urbana-Champaign, Urbana, IL, United States of America
- Bioengineering Dept., Univ. of Illinois At Urbana-Champaign, Urbana, IL, United States of America
| | - Sepideh Sadaghiani
- Psychology Dept., Univ. of Illinois At Urbana-Champaign, Urbana, IL, United States of America
- Beckman Institute for Advanced Science and Technology, Univ. of Illinois At Urbana-Champaign, Urbana, IL, United States of America
| |
Collapse
|
4
|
Risk BB, Murden RJ, Wu J, Nebel MB, Venkataraman A, Zhang Z, Qiu D. Which multiband factor should you choose for your resting-state fMRI study? Neuroimage 2021; 234:117965. [PMID: 33744454 PMCID: PMC8159874 DOI: 10.1016/j.neuroimage.2021.117965] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/30/2022] Open
Abstract
Multiband acquisition, also called simultaneous multislice, has become a popular technique in resting-state functional connectivity studies. Multiband (MB) acceleration leads to a higher temporal resolution but also leads to spatially heterogeneous noise amplification, suggesting the costs may be greater in areas such as the subcortex. We evaluate MB factors of 2, 3, 4, 6, 8, 9, and 12 with 2 mm isotropic voxels, and additionally 2 mm and 3.3 mm single-band acquisitions, on a 32-channel head coil. Noise amplification was greater in deeper brain regions, including subcortical regions. Correlations were attenuated by noise amplification, which resulted in spatially varying biases that were more severe at higher MB factors. Temporal filtering decreased spatial biases in correlations due to noise amplification, but also tended to decrease effect sizes. In seed-based correlation maps, left-right putamen connectivity and thalamo-motor connectivity were highest in the single-band 3.3 mm protocol. In correlation matrices, MB 4, 6, and 8 had a greater number of significant correlations than the other acquisitions (both with and without temporal filtering). We recommend single-band 3.3 mm for seed-based subcortical analyses, and MB 4 provides a reasonable balance for studies analyzing both seed-based correlation maps and connectivity matrices. In multiband studies including secondary analyses of large-scale datasets, we recommend reporting effect sizes or test statistics instead of correlations. If correlations are reported, temporal filtering (or another method for thermal noise removal) should be used. The Emory Multiband Dataset is available on OpenNeuro.
Collapse
Affiliation(s)
- Benjamin B Risk
- Department of Biostatistics and Bioinformatics, Atlanta, GA, United States.
| | - Raphiel J Murden
- Department of Biostatistics and Bioinformatics, Atlanta, GA, United States
| | - Junjie Wu
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, United States
| | - Mary Beth Nebel
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Arun Venkataraman
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, United States
| | - Zhengwu Zhang
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Deqiang Qiu
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, United States
| |
Collapse
|
5
|
Scrivener CL. When Is Simultaneous Recording Necessary? A Guide for Researchers Considering Combined EEG-fMRI. Front Neurosci 2021; 15:636424. [PMID: 34267620 PMCID: PMC8276697 DOI: 10.3389/fnins.2021.636424] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/01/2021] [Indexed: 11/19/2022] Open
Abstract
Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) provide non-invasive measures of brain activity at varying spatial and temporal scales, offering different views on brain function for both clinical and experimental applications. Simultaneous recording of these measures attempts to maximize the respective strengths of each method, while compensating for their weaknesses. However, combined recording is not necessary to address all research questions of interest, and experiments may have greater statistical power to detect effects by maximizing the signal-to-noise ratio in separate recording sessions. While several existing papers discuss the reasons for or against combined recording, this article aims to synthesize these arguments into a flow chart of questions that researchers can consider when deciding whether to record EEG and fMRI separately or simultaneously. Given the potential advantages of simultaneous EEG-fMRI, the aim is to provide an initial overview of the most important concepts and to direct readers to relevant literature that will aid them in this decision.
Collapse
Affiliation(s)
- Catriona L. Scrivener
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|