1
|
Dubey R, Sharma A, Gupta S, Gupta GD, Asati V. A comprehensive review of small molecules targeting PI3K pathway: Exploring the structural development for the treatment of breast cancer. Bioorg Chem 2024; 143:107077. [PMID: 38176377 DOI: 10.1016/j.bioorg.2023.107077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/28/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Cancer stands as one of the deadliest diseases, ranking second in terms of its global impact. Despite the presence of numerous compelling theories concerning its origins, none have succeeded in fully elucidating the intricate nature of this ailment. Among the prevailing concerns in today's world, breast cancer proliferation remains a significant issue, particularly affecting females. The abnormal proliferation of the PI3K pathway emerges as a prominent driver of breast cancer, underscoring its role in cellular survival and proliferation. Consequently, targeting this pathway has emerged as a leading strategy in breast cancer therapeutics. Within this context, the present article explores the current landscape of anti-tumour drug development, focusing on structural activity relationships (SAR) in PI3K targeting breast cancer treatment. Notably, certain moieties like triazines, pyrimidine, quinazoline, quinoline, and pyridoxine have been explored as potential PI3K inhibitors for combating breast cancer. Various heterocyclic small molecules are undergoing clinical trials, such as Alpelisib, the first orally available FDA-approved drug targeting PI3K; others include buparlisib, pictilisib, and taselisib, which inhibit class I PI3K. These drugs are used for the treatment of breast cancer but still have various side effects with their high cost. Therefore, the primary goal of this review is to include all current advances in the development of anticancer medicines that target PI3K over-activation in the treatment of breast cancer.
Collapse
Affiliation(s)
- Rahul Dubey
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Anushka Sharma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Shankar Gupta
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - G D Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India.
| |
Collapse
|
2
|
Strickland S, Turashvili G. Are Columnar Cell Lesions the Earliest Non-Obligate Precursor in the Low-Grade Breast Neoplasia Pathway? Curr Oncol 2022; 29:5664-5681. [PMID: 36005185 PMCID: PMC9406596 DOI: 10.3390/curroncol29080447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Columnar cell lesions (CCLs) of the breast comprise a spectrum of morphologic alterations of the terminal duct lobular unit involving variably dilated and enlarged acini lined by columnar epithelial cells. The World Health Organization currently classifies CCLs without atypia as columnar cell change (CCC) and columnar cell hyperplasia (CCH), whereas flat epithelial atypia (FEA) is a unifying term encompassing both CCC and CCH with cytologic atypia. CCLs have been increasingly recognized in stereotactic core needle biopsies (CNBs) performed for the assessment of calcifications. CCLs are believed to represent the earliest non-obligate precursor of low-grade invasive breast carcinomas as they share molecular alterations and often coexist with entities in the low-grade breast neoplasia pathway. Despite this association, however, the risk of progression of CCLs to invasive breast carcinoma appears low and may not exceed that of concurrent proliferative lesions. As the reported upgrade rates of pure CCL/FEA when identified as the most advanced high-risk lesion on CNB vary widely, the management of FEA diagnosed on CNB remains controversial. This review will include a historical overview of CCLs and will examine histologic diagnostic criteria, molecular alterations, prognosis and issues related to upgrade rates and clinical management.
Collapse
Affiliation(s)
- Sarah Strickland
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Gulisa Turashvili
- Department of Pathology and Laboratory Medicine, Emory University Hospital, Emory University School of Medicine, Atlanta, GA 30322, USA
- Correspondence:
| |
Collapse
|
3
|
Patel BK, Pepin K, Brandt KR, Mazza GL, Pockaj BA, Chen J, Zhou Y, Northfelt DW, Anderson K, Kling JM, Vachon CM, Swanson KR, Nikkhah M, Ehman R. Association of breast cancer risk, density, and stiffness: global tissue stiffness on breast MR elastography (MRE). Breast Cancer Res Treat 2022; 194:79-89. [PMID: 35501423 PMCID: PMC9538705 DOI: 10.1007/s10549-022-06607-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 04/05/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Quantify in vivo biomechanical tissue properties in various breast densities and in average risk and high-risk women using Magnetic Resonance Imaging (MRI)/MRE and examine the association between breast biomechanical properties and cancer risk based on patient demographics and clinical data. METHODS Patients with average risk or high-risk of breast cancer underwent 3.0 T breast MR imaging and elastography. Breast parenchymal enhancement (BPE), density (from most recent mammogram), stiffness, elasticity, and viscosity were recorded. Within each breast density group (non-dense versus dense), stiffness, elasticity, and viscosity were compared across risk groups (average versus high). Separately for stiffness, elasticity, and viscosity, a multivariable logistic regression model was used to evaluate whether the MRE parameter predicted risk status after controlling for clinical factors. RESULTS 50 average risk and 86 high-risk patients were included. Risk groups were similar in age, density, and menopausal status. Among patients with dense breasts, mean stiffness, elasticity, and viscosity were significantly higher in high-risk patients (N = 55) compared to average risk patients (N = 34; all p < 0.001). Stiffness remained a significant predictor of risk status (OR = 4.26, 95% CI [1.96, 9.25]) even after controlling for breast density, BPE, age, and menopausal status. Similar results were seen for elasticity and viscosity. CONCLUSION A structurally based, quantitative biomarker of tissue stiffness obtained from MRE is associated with differences in breast cancer risk in dense breasts. Tissue stiffness could provide a novel prognostic marker to help identify high-risk women with dense breasts who would benefit from increased surveillance and/or risk reduction measures.
Collapse
Affiliation(s)
- Bhavika K Patel
- Diagnostic Radiology, Mayo Clinic, 5777 E. Mayo Blvd., Phoenix, AZ, 85054, USA.
| | - Kay Pepin
- Diagnostic Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Gina L Mazza
- Department of Biostatistics, Mayo Clinic, Phoenix, AZ, USA
| | | | - Jun Chen
- Diagnostic Radiology, Mayo Clinic, Rochester, MN, USA
| | - Yuxiang Zhou
- Diagnostic Radiology, Mayo Clinic, 5777 E. Mayo Blvd., Phoenix, AZ, 85054, USA
| | | | | | - Juliana M Kling
- Department of Internal Medicine, Mayo Clinic, Phoenix, AZ, USA
| | | | | | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering, Arizona State University, Phoenix, AZ, USA
- Biodesign Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, USA
| | - Richard Ehman
- Diagnostic Radiology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
4
|
Northey JJ, Barrett AS, Acerbi I, Hayward MK, Talamantes S, Dean IS, Mouw JK, Ponik SM, Lakins JN, Huang PJ, Wu J, Shi Q, Samson S, Keely PJ, Mukhtar RA, Liphardt JT, Shepherd JA, Hwang ES, Chen YY, Hansen KC, Littlepage LE, Weaver VM. Stiff stroma increases breast cancer risk by inducing the oncogene ZNF217. J Clin Invest 2021; 130:5721-5737. [PMID: 32721948 DOI: 10.1172/jci129249] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Women with dense breasts have an increased lifetime risk of malignancy that has been attributed to a higher epithelial density. Quantitative proteomics, collagen analysis, and mechanical measurements in normal tissue revealed that stroma in the high-density breast contains more oriented, fibrillar collagen that is stiffer and correlates with higher epithelial cell density. microRNA (miR) profiling of breast tissue identified miR-203 as a matrix stiffness-repressed transcript that is downregulated by collagen density and reduced in the breast epithelium of women with high mammographic density. Culture studies demonstrated that ZNF217 mediates a matrix stiffness- and collagen density-induced increase in Akt activity and mammary epithelial cell proliferation. Manipulation of the epithelium in a mouse model of mammographic density supported a causal relationship between stromal stiffness, reduced miR-203, higher levels of the murine homolog Zfp217, and increased Akt activity and mammary epithelial proliferation. ZNF217 was also increased in the normal breast epithelium of women with high mammographic density, correlated positively with epithelial proliferation and density, and inversely with miR-203. The findings identify ZNF217 as a potential target toward which preexisting therapies, such as the Akt inhibitor triciribine, could be used as a chemopreventive agent to reduce cancer risk in women with high mammographic density.
Collapse
Affiliation(s)
- Jason J Northey
- Department of Surgery.,Center for Bioengineering and Tissue Regeneration, UCSF, San Francisco, California, USA
| | - Alexander S Barrett
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Irene Acerbi
- Department of Surgery.,Center for Bioengineering and Tissue Regeneration, UCSF, San Francisco, California, USA
| | - Mary-Kate Hayward
- Department of Surgery.,Center for Bioengineering and Tissue Regeneration, UCSF, San Francisco, California, USA
| | - Stephanie Talamantes
- Department of Surgery.,Center for Bioengineering and Tissue Regeneration, UCSF, San Francisco, California, USA
| | - Ivory S Dean
- Department of Surgery.,Center for Bioengineering and Tissue Regeneration, UCSF, San Francisco, California, USA
| | - Janna K Mouw
- Department of Surgery.,Center for Bioengineering and Tissue Regeneration, UCSF, San Francisco, California, USA
| | - Suzanne M Ponik
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jonathon N Lakins
- Department of Surgery.,Center for Bioengineering and Tissue Regeneration, UCSF, San Francisco, California, USA
| | - Po-Jui Huang
- Department of Surgery.,Center for Bioengineering and Tissue Regeneration, UCSF, San Francisco, California, USA
| | - Junmin Wu
- Harper Cancer Research Institute, Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, Indiana, USA
| | - Quanming Shi
- Department of Bioengineering, Stanford University, Palo Alto, California, USA
| | - Susan Samson
- Helen Diller Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| | - Patricia J Keely
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Jan T Liphardt
- Department of Bioengineering, Stanford University, Palo Alto, California, USA
| | - John A Shepherd
- Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawaii Cancer Center, University of Hawaii at Manoa, Manoa, Hawaii, USA
| | - E Shelley Hwang
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Yunn-Yi Chen
- Department of Pathology, UCSF, San Francisco, California, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA.,Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Laurie E Littlepage
- Harper Cancer Research Institute, Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, Indiana, USA
| | - Valerie M Weaver
- Department of Surgery.,Center for Bioengineering and Tissue Regeneration, UCSF, San Francisco, California, USA.,Helen Diller Comprehensive Cancer Center, UCSF, San Francisco, California, USA.,Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawaii Cancer Center, University of Hawaii at Manoa, Manoa, Hawaii, USA.,Radiation Oncology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, California, USA
| |
Collapse
|
5
|
Chhetri A, Rispoli JV, Lelièvre SA. 3D Cell Culture for the Study of Microenvironment-Mediated Mechanostimuli to the Cell Nucleus: An Important Step for Cancer Research. Front Mol Biosci 2021; 8:628386. [PMID: 33644116 PMCID: PMC7902798 DOI: 10.3389/fmolb.2021.628386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/11/2021] [Indexed: 11/21/2022] Open
Abstract
The discovery that the stiffness of the tumor microenvironment (TME) changes during cancer progression motivated the development of cell culture involving extracellular mechanostimuli, with the intent of identifying mechanotransduction mechanisms that influence cell phenotypes. Collagen I is a main extracellular matrix (ECM) component used to study mechanotransduction in three-dimensional (3D) cell culture. There are also models with interstitial fluid stress that have been mostly focusing on the migration of invasive cells. We argue that a major step for the culture of tumors is to integrate increased ECM stiffness and fluid movement characteristic of the TME. Mechanotransduction is based on the principles of tensegrity and dynamic reciprocity, which requires measuring not only biochemical changes, but also physical changes in cytoplasmic and nuclear compartments. Most techniques available for cellular rheology were developed for a 2D, flat cell culture world, hence hampering studies requiring proper cellular architecture that, itself, depends on 3D tissue organization. New and adapted measuring techniques for 3D cell culture will be worthwhile to study the apparent increase in physical plasticity of cancer cells with disease progression. Finally, evidence of the physical heterogeneity of the TME, in terms of ECM composition and stiffness and of fluid flow, calls for the investigation of its impact on the cellular heterogeneity proposed to control tumor phenotypes. Reproducing, measuring and controlling TME heterogeneity should stimulate collaborative efforts between biologists and engineers. Studying cancers in well-tuned 3D cell culture platforms is paramount to bring mechanomedicine into the realm of oncology.
Collapse
Affiliation(s)
- Apekshya Chhetri
- Biomedical Engineering, Purdue University, West Lafayette, IN, United States.,Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States
| | - Joseph V Rispoli
- Biomedical Engineering, Purdue University, West Lafayette, IN, United States.,Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Sophie A Lelièvre
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States.,Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
6
|
Pubertal mammary gland development is a key determinant of adult mammographic density. Semin Cell Dev Biol 2020; 114:143-158. [PMID: 33309487 DOI: 10.1016/j.semcdb.2020.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 01/04/2023]
Abstract
Mammographic density refers to the radiological appearance of fibroglandular and adipose tissue on a mammogram of the breast. Women with relatively high mammographic density for their age and body mass index are at significantly higher risk for breast cancer. The association between mammographic density and breast cancer risk is well-established, however the molecular and cellular events that lead to the development of high mammographic density are yet to be elucidated. Puberty is a critical time for breast development, where endocrine and paracrine signalling drive development of the mammary gland epithelium, stroma, and adipose tissue. As the relative abundance of these cell types determines the radiological appearance of the adult breast, puberty should be considered as a key developmental stage in the establishment of mammographic density. Epidemiological studies have pointed to the significance of pubertal adipose tissue deposition, as well as timing of menarche and thelarche, on adult mammographic density and breast cancer risk. Activation of hypothalamic-pituitary axes during puberty combined with genetic and epigenetic molecular determinants, together with stromal fibroblasts, extracellular matrix, and immune signalling factors in the mammary gland, act in concert to drive breast development and the relative abundance of different cell types in the adult breast. Here, we discuss the key cellular and molecular mechanisms through which pubertal mammary gland development may affect adult mammographic density and cancer risk.
Collapse
|
7
|
Sak M, Littrup P, Brem R, Duric N. Whole Breast Sound Speed Measurement from US Tomography Correlates Strongly with Volumetric Breast Density from Mammography. JOURNAL OF BREAST IMAGING 2020; 2:443-451. [PMID: 33015618 DOI: 10.1093/jbi/wbaa052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Indexed: 11/14/2022]
Abstract
Objective To assess the feasibility of using tissue sound speed as a quantitative marker of breast density. Methods This study was carried out under an Institutional Review Board-approved protocol (written consent required). Imaging data were selected retrospectively based on the availability of US tomography (UST) exams, screening mammograms with volumetric breast density data, patient age of 18 to 80 years, and weight less than 300 lbs. Sound speed images from the UST exams were used to measure the volume of dense tissue, the volume averaged sound speed (VASS), and the percent of high sound speed tissue (PHSST). The mammographic breast density and volume of dense tissue were estimated with three-dimensional (3D) software. Differences in volumes were assessed with paired t-tests. Spearman correlation coefficients were calculated to determine the strength of the correlations between the mammographic and UST assessments of breast density. Results A total of 100 UST and 3D mammographic data sets met the selection criteria. The resulting measurements showed that UST measured a more than 2-fold larger volume of dense tissue compared to mammography. The differences were statistically significant (P < 0.001). A strong correlation of rS = 0.85 (95% CI: 0.79-0.90) between 3D mammographic breast density (BD) and the VASS was noted. This correlation is significantly stronger than those reported in previous two-dimensional studies (rS = 0.85 vs rS = 0.71). A similar correlation was found for PHSST and mammographic BD with rS = 0.86 (95% CI: 0.80-0.90). Conclusion The strong correlations between UST parameters and 3D mammographic BD suggest that breast sound speed should be further studied as a potential new marker for inclusion in clinical risk models.
Collapse
Affiliation(s)
- Mark Sak
- Delphinus Medical Technologies, Inc, Novi, MI
| | | | - Rachel Brem
- George Washington University, Department of Radiology, Washington, DC
| | - Neb Duric
- Delphinus Medical Technologies, Inc, Novi, MI.,Wayne State University, Barbara Ann Karmanos Cancer Institute, Department of Oncology, Detroit, MI
| |
Collapse
|
8
|
Pinkert MA, Salkowski LR, Keely PJ, Hall TJ, Block WF, Eliceiri KW. Review of quantitative multiscale imaging of breast cancer. J Med Imaging (Bellingham) 2018; 5:010901. [PMID: 29392158 PMCID: PMC5777512 DOI: 10.1117/1.jmi.5.1.010901] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most common cancer among women worldwide and ranks second in terms of overall cancer deaths. One of the difficulties associated with treating breast cancer is that it is a heterogeneous disease with variations in benign and pathologic tissue composition, which contributes to disease development, progression, and treatment response. Many of these phenotypes are uncharacterized and their presence is difficult to detect, in part due to the sparsity of methods to correlate information between the cellular microscale and the whole-breast macroscale. Quantitative multiscale imaging of the breast is an emerging field concerned with the development of imaging technology that can characterize anatomic, functional, and molecular information across different resolutions and fields of view. It involves a diverse collection of imaging modalities, which touch large sections of the breast imaging research community. Prospective studies have shown promising results, but there are several challenges, ranging from basic physics and engineering to data processing and quantification, that must be met to bring the field to maturity. This paper presents some of the challenges that investigators face, reviews currently used multiscale imaging methods for preclinical imaging, and discusses the potential of these methods for clinical breast imaging.
Collapse
Affiliation(s)
- Michael A. Pinkert
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Laboratory for Optical and Computational Instrumentation, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
| | - Lonie R. Salkowski
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Radiology, Madison, Wisconsin, United States
| | - Patricia J. Keely
- University of Wisconsin–Madison, Department of Cell and Regenerative Biology, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Timothy J. Hall
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Walter F. Block
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Radiology, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Kevin W. Eliceiri
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Laboratory for Optical and Computational Instrumentation, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| |
Collapse
|
9
|
Vinnicombe SJ. Breast density: why all the fuss? Clin Radiol 2017; 73:334-357. [PMID: 29273225 DOI: 10.1016/j.crad.2017.11.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 11/17/2017] [Indexed: 01/06/2023]
Abstract
The term "breast density" or mammographic density (MD) denotes those components of breast parenchyma visualised at mammography that are denser than adipose tissue. MD is composed of a mixture of epithelial and stromal components, notably collagen, in variable proportions. MD is most commonly assessed in clinical practice with the time-honoured method of visual estimation of area-based percent density (PMD) on a mammogram, with categorisation into quartiles. The computerised semi-automated thresholding method, Cumulus, also yielding area-based percent density, is widely used for research purposes; however, the advent of fully automated volumetric methods developed as a consequence of the widespread use of digital mammography (DM) and yielding both absolute and percent dense volumes, has resulted in an explosion of interest in MD recently. Broadly, the importance of MD is twofold: firstly, the presence of marked MD significantly reduces mammographic sensitivity for breast cancer, even with state-of-the-art DM. Recognition of this led to the formation of a powerful lobby group ('Are You Dense') in the US, as a consequence of which 32 states have legislated for mandatory disclosure of MD to women undergoing mammography. Secondly, it is now widely accepted that MD is in itself a risk factor for breast cancer, with a four-to sixfold increased relative risk in women with PMD in the highest quintile compared to those with PMD in the lowest quintile. Consequently, major research efforts are underway to assess whether use of MD could provide a major step forward towards risk-adapted, personalised breast cancer prevention, imaging, and treatment.
Collapse
Affiliation(s)
- S J Vinnicombe
- Cancer Research, School of Medicine, Level 7, Mailbox 4, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK.
| |
Collapse
|
10
|
Association between mammographic breast density and histologic features of benign breast disease. Breast Cancer Res 2017; 19:134. [PMID: 29258587 PMCID: PMC5735506 DOI: 10.1186/s13058-017-0922-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/15/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Over 40% of women undergoing breast screening have mammographically dense breasts. Elevated mammographic breast density (MBD) is an established breast cancer risk factor and is known to mask tumors within the dense tissue. However, the association of MBD with high risk benign breast disease (BBD) is unknown. METHOD We analyzed data for 3400 women diagnosed with pathologically confirmed BBD in the Mayo Clinic BBD cohort from 1985-2001, with a clinical MBD measure (either parenchymal pattern (PP) or Breast Imaging Reporting and Data Systems (BI-RADS) density) and expert pathology review. Risk factor information was collected from medical records and questionnaires. MBD was dichotomized as dense (PP classification P2 or DY, or BI-RADS classification c or d) or non-dense (PP classification N1 or P1, or BI-RADS classification a or b). Associations of clinical and histologic characteristics with MBD were examined using logistic regression analysis to estimate odds ratios (ORs) with 95% confidence intervals (CIs). RESULTS Of 3400 women in the study, 2163 (64%) had dense breasts. Adjusting for age and body mass index (BMI), there were positive associations of dense breasts with use of hormone therapy (HT), lack of lobular involution, presence of atypical lobular hyperplasia (ALH), histologic fibrosis, columnar cell hyperplasia/flat epithelia atypia (CCH/FEA), sclerosing adenosis (SA), cyst, usual ductal hyperplasia, and calcifications. In fully adjusted multivariate models, HT (1.3, 95% CI 1.1-1.5), ALH (1.5, 95% CI 1.0-2.2), lack of lobular involution (OR 1.6, 95% CI 1.2-2.1, compared to complete involution), fibrosis (OR 2.2, 95% CI 1.9-2.6) and CCH/FEA (OR 1.3, 95% CI 1.0-1.6) remained significantly associated with high MBD. CONCLUSION Our findings support an association between high risk BBD and high MBD, suggesting that risks associated with the latter may act early in breast carcinogenesis.
Collapse
|
11
|
Duric N, Boyd N, Littrup P, Sak M, Myc L, Li C, West E, Minkin S, Martin L, Yaffe M, Schmidt S, Faiz M, Shen J, Melnichouk O, Li Q, Albrecht T. Breast density measurements with ultrasound tomography: a comparison with film and digital mammography. Med Phys 2013; 40:013501. [PMID: 23298122 DOI: 10.1118/1.4772057] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To investigate the use of the whole-breast sound speed measurement as a marker of breast density (BD), a known risk factor for breast cancer. METHODS As part of an ongoing study of breast cancer detection, 249 patients were scanned with a clinical prototype that operates on the principles of ultrasound tomography. Typically, 40-100 sound speed tomograms were reconstructed from the scan data, corresponding to the entire volume of the breast of each patient. The data were used to estimate the volume averaged sound speed (VASS) of the breast for each patient. The corresponding mammograms were used to calculate mammographic percent density (MPD) using CUMULUS software. Film mammograms were available for 164 patients while 85 digital mammograms were available for the remaining patients. Standard statistical techniques were used to determine associations of breast sound speed with a variety of mammographic measures such as percent density, area of dense tissue, and area of nondense tissue. Furthermore, associations of breast sound speed with continuous variables such as age and weight and dichotomous variables such as parity and menopausal status were also assessed. RESULTS VASS was found to be significantly associated with MPD. The Spearman correlation coefficient (r(s)) between VASS and MPD was found to be 0.77 and 0.71 for film and digital mammography, respectively. VASS was positively correlated with dense areas by mammography, both digital (r(s) = 0.46) and film (r(s) = 0.56). VASS was negatively associated with nondense area by mammography, both digital (r(s) = -0.58) and film (r(s) = -0.63). BD by all methods was less in postmenopausal than in premenopausal women. The MPD was lower in the postmenopausal group (by 6.6%, p < 0.08, for the digital group and 7.73%, p < 0.007, for the film group). The VASS was also lower in the postmenopausal group (by 15 m∕s, p < 0.001 for the digital group and 8 m∕s, p < 0.08, for the film group). The association of MPD with age was characterized with r(s) = -0.06 (p < 0.6) for digital mammography and r(s) = -0.53 (p < 0.002) for film mammography. For weight, the MPD associations were characterized by r(s) = -0.53 (p < 0.0001) for digital mammography and -0.38 (p < 0.0001) for film mammography. The association of VASS with age was r(s) = -0.33 (p < 0.002) for the digital group and -0.17 (p < 0.03) for the film group. For weight, the relationship was characterized with r(s) = -0.45 (p < 0.001) for the digital group and -0.37 (p < 0.0001) for the film group. CONCLUSIONS The association between VASS and MPD is strong for both film and digital mammography, suggesting that VASS is a viable measure of breast density. This result sets the stage for future work that will focus on directly testing the association of VASS with breast cancer risk.
Collapse
Affiliation(s)
- Neb Duric
- Department of Oncology, The Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Nomogram for predicting positive resection margins after breast-conserving surgery. Breast Cancer Res Treat 2012; 134:1115-23. [DOI: 10.1007/s10549-012-2124-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 05/28/2012] [Indexed: 01/11/2023]
|
13
|
Boyd NF, Martin LJ, Yaffe MJ, Minkin S. Mammographic density and breast cancer risk: current understanding and future prospects. Breast Cancer Res 2011; 13:223. [PMID: 22114898 PMCID: PMC3326547 DOI: 10.1186/bcr2942] [Citation(s) in RCA: 439] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Variations in percent mammographic density (PMD) reflect variations in the amounts of collagen and number of epithelial and non-epithelial cells in the breast. Extensive PMD is associated with a markedly increased risk of invasive breast cancer. The PMD phenotype is important in the context of breast cancer prevention because extensive PMD is common in the population, is strongly associated with risk of the disease, and, unlike most breast cancer risk factors, can be changed. Work now in progress makes it likely that measurement of PMD will be improved in the near future and that understanding of the genetics and biological basis of the association of PMD with breast cancer risk will also improve. Future prospects for the application of PMD include mammographic screening, risk prediction in individuals, breast cancer prevention research, and clinical decision making.
Collapse
Affiliation(s)
- Norman F Boyd
- Campbell Family Institute for Breast Cancer Research, Room 10-415, 610 University Avenue, Toronto, ON M5G 2M9, Canada.
| | | | | | | |
Collapse
|
14
|
Pinto Pereira SM, McCormack VA, Hipwell JH, Record C, Wilkinson LS, Moss SM, Hawkes DJ, dos-Santos-Silva I. Localized fibroglandular tissue as a predictor of future tumor location within the breast. Cancer Epidemiol Biomarkers Prev 2011; 20:1718-25. [PMID: 21693627 DOI: 10.1158/1055-9965.epi-11-0423] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Mammographic density (MD) is a strong marker of breast cancer risk, but it is unclear whether tumors arise specifically within dense tissue. METHODS In 231 British women diagnosed with breast cancer after at least one negative annual screening during a mammographic screening trial, we assessed whether tumor location was related to localized MD 5 years prior to diagnosis. Radiologists identified tumor locations on digitised films. We used a validated algorithm to align serial images from the same woman to locate the corresponding point on the prediagnostic film. A virtual 1 cm square grid was overlaid on prediagnostic films and MD calculated for each square within a woman's breast (mean = 271 squares/film). Conditional logistic regression, matching on a woman's breast, was used to estimate the odds of a tumor arising in a square in relation to its prediagnostic square-specific MD. RESULTS Median (interquartile range) prediagnostic MD was 98.2% (46.8%-100%) in 1 cm-squares that subsequently contained the tumor and 41.0% (31.5%-53.9%) for the whole breast. The odds of a tumor arising in a 1 cm-square were, respectively, 6.1 (95% CI: 1.9-20.1), 16.6 (5.2-53.2), and 25.5-fold (8.1-80.3) higher for squares in the second, third, and fourth quartiles of prediagnostic MD relative to those in the lowest quartile within that breast (P(trend) < 0.001). The corresponding odds ratios were 2.3 (1.3-4.0), 3.9 (2.3-6.4), and 4.6 (2.8-7.6) if a 3 cm-square grid was used. CONCLUSION Tumors arise predominantly within the radiodense breast tissue. IMPACT Localized MD may be used as a predictor of subsequent tumor location within the breast.
Collapse
Affiliation(s)
- Snehal M Pinto Pereira
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Sudarshan M, Meguerditchian AN, Mesurolle B, Meterissian S. Flat epithelial atypia of the breast: characteristics and behaviors. Am J Surg 2011; 201:245-50. [DOI: 10.1016/j.amjsurg.2010.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 02/08/2010] [Accepted: 02/08/2010] [Indexed: 10/19/2022]
|
16
|
Lin SJ, Cawson J, Hill P, Haviv I, Jenkins M, Hopper JL, Southey MC, Campbell IG, Thompson EW. Image-guided sampling reveals increased stroma and lower glandular complexity in mammographically dense breast tissue. Breast Cancer Res Treat 2011; 128:505-16. [PMID: 21258862 DOI: 10.1007/s10549-011-1346-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
|
17
|
Coates PJ, Appleyard MVCL, Murray K, Ackland C, Gardner J, Brown DC, Adamson DJA, Jordan LB, Purdie CA, Munro AJ, Wright EG, Dewar JA, Thompson AM. Differential contextual responses of normal human breast epithelium to ionizing radiation in a mouse xenograft model. Cancer Res 2010; 70:9808-15. [PMID: 21084272 DOI: 10.1158/0008-5472.can-10-1118] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Radiotherapy is a key treatment option for breast cancer, yet the molecular responses of normal human breast epithelial cells to ionizing radiation are unclear. A murine subcutaneous xenograft model was developed in which nonneoplastic human breast tissue was maintained with the preservation of normal tissue architecture, allowing us to study for the first time the radiation response of normal human breast tissue in situ. Ionizing radiation induced dose-dependent p53 stabilization and p53 phosphorylation, together with the induction of p21(CDKN1A) and apoptosis of normal breast epithelium. Although p53 was stabilized in both luminal and basal cells, induction of Ser392-phosphorylated p53 and p21 was higher in basal cells and varied along the length of the ductal system. Basal breast epithelial cells expressed ΔNp63, which was unchanged on irradiation. Although stromal responses themselves were minimal, the response of normal breast epithelium to ionizing radiation differed according to the stromal setting. We also demonstrated a dose-dependent induction of γ-H2AX foci in epithelial cells that was similarly dependent on the stromal environment and differed between basal and luminal epithelial cells. The intrinsic differences between human mammary cell types in response to in vivo irradiation are consistent with clinical observation that therapeutic ionizing radiation is associated with the development of basal-type breast carcinomas. Furthermore, there may be clinically important stromal-epithelial interactions that influence DNA damage responses in the normal breast. These findings demonstrate highly complex responses of normal human breast epithelium following ionizing radiation exposure and emphasize the importance of studying whole-tissue effects rather than single-cell systems.
Collapse
Affiliation(s)
- Philip J Coates
- Centre for Oncology and Molecular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Boyd NF, Martin LJ, Bronskill M, Yaffe MJ, Duric N, Minkin S. Breast tissue composition and susceptibility to breast cancer. J Natl Cancer Inst 2010; 102:1224-37. [PMID: 20616353 DOI: 10.1093/jnci/djq239] [Citation(s) in RCA: 329] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Breast density, as assessed by mammography, reflects breast tissue composition. Breast epithelium and stroma attenuate x-rays more than fat and thus appear light on mammograms while fat appears dark. In this review, we provide an overview of selected areas of current knowledge about the relationship between breast density and susceptibility to breast cancer. We review the evidence that breast density is a risk factor for breast cancer, the histological and other risk factors that are associated with variations in breast density, and the biological plausibility of the associations with risk of breast cancer. We also discuss the potential for improved risk prediction that might be achieved by using alternative breast imaging methods, such as magnetic resonance or ultrasound. After adjustment for other risk factors, breast density is consistently associated with breast cancer risk, more strongly than most other risk factors for this disease, and extensive breast density may account for a substantial fraction of breast cancer. Breast density is associated with risk of all of the proliferative lesions that are thought to be precursors of breast cancer. Studies of twins have shown that breast density is a highly heritable quantitative trait. Associations between breast density and variations in breast histology, risk of proliferative breast lesions, and risk of breast cancer may be the result of exposures of breast tissue to both mitogens and mutagens. Characterization of breast density by mammography has several limitations, and the uses of breast density in risk prediction and breast cancer prevention may be improved by other methods of imaging, such as magnetic resonance or ultrasound tomography.
Collapse
Affiliation(s)
- Norman F Boyd
- Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, Room 10-415 610 University Ave, Toronto, ON, Canada M5G2M9.
| | | | | | | | | | | |
Collapse
|
19
|
Cox B, Ballard-Barbash R, Broeders M, Dowling E, Malila N, Shumak R, Taplin S, Buist D, Miglioretti D. Recording of hormone therapy and breast density in breast screening programs: summary and recommendations of the International Cancer Screening Network. Breast Cancer Res Treat 2010; 124:793-800. [PMID: 20414718 DOI: 10.1007/s10549-010-0893-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 04/07/2010] [Indexed: 11/30/2022]
Abstract
Breast density and the use of hormone therapy (HT) for menopausal symptoms alter the risk of breast cancer and both factors influence screening mammography performance. The International Cancer Screening Network (ICSN) surveyed its 29 member countries and found that few programs record breast density or the use of HT among screening participants. This may affect the ability of programs to assess their effectiveness in reducing breast cancer mortality. Seven countries recorded the use of HT at screening, and some were able to link screening records to individual prescribing records of HT. Eight countries reported recording breast density at screening mammography for some or all women screened. The recommendations of the ICSN for recording information about breast density and HT are presented.
Collapse
Affiliation(s)
- Brian Cox
- Hugh Adam Cancer Epidemiology Unit, Department of Preventive and Social Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| | | | | | | | | | | | | | | | | | | |
Collapse
|