1
|
Li M, Wu L, Si H, Wu Y, Liu Y, Zeng Y, Shen B. Engineered mitochondria in diseases: mechanisms, strategies, and applications. Signal Transduct Target Ther 2025; 10:71. [PMID: 40025039 PMCID: PMC11873319 DOI: 10.1038/s41392-024-02081-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/30/2024] [Accepted: 11/17/2024] [Indexed: 03/04/2025] Open
Abstract
Mitochondrial diseases represent one of the most prevalent and debilitating categories of hereditary disorders, characterized by significant genetic, biological, and clinical heterogeneity, which has driven the development of the field of engineered mitochondria. With the growing recognition of the pathogenic role of damaged mitochondria in aging, oxidative disorders, inflammatory diseases, and cancer, the application of engineered mitochondria has expanded to those non-hereditary contexts (sometimes referred to as mitochondria-related diseases). Due to their unique non-eukaryotic origins and endosymbiotic relationship, mitochondria are considered highly suitable for gene editing and intercellular transplantation, and remarkable progress has been achieved in two promising therapeutic strategies-mitochondrial gene editing and artificial mitochondrial transfer (collectively referred to as engineered mitochondria in this review) over the past two decades. Here, we provide a comprehensive review of the mechanisms and recent advancements in the development of engineered mitochondria for therapeutic applications, alongside a concise summary of potential clinical implications and supporting evidence from preclinical and clinical studies. Additionally, an emerging and potentially feasible approach involves ex vivo mitochondrial editing, followed by selection and transplantation, which holds the potential to overcome limitations such as reduced in vivo operability and the introduction of allogeneic mitochondrial heterogeneity, thereby broadening the applicability of engineered mitochondria.
Collapse
Affiliation(s)
- Mingyang Li
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Limin Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Haibo Si
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuangang Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuan Liu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yi Zeng
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Bin Shen
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
2
|
Wang Y, Peng J, Yang D, Xing Z, Jiang B, Ding X, Jiang C, Ouyang B, Su L. From metabolism to malignancy: the multifaceted role of PGC1α in cancer. Front Oncol 2024; 14:1383809. [PMID: 38774408 PMCID: PMC11106418 DOI: 10.3389/fonc.2024.1383809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/16/2024] [Indexed: 05/24/2024] Open
Abstract
PGC1α, a central player in mitochondrial biology, holds a complex role in the metabolic shifts seen in cancer cells. While its dysregulation is common across major cancers, its impact varies. In some cases, downregulation promotes aerobic glycolysis and progression, whereas in others, overexpression escalates respiration and aggression. PGC1α's interactions with distinct signaling pathways and transcription factors further diversify its roles, often in a tissue-specific manner. Understanding these multifaceted functions could unlock innovative therapeutic strategies. However, challenges exist in managing the metabolic adaptability of cancer cells and refining PGC1α-targeted approaches. This review aims to collate and present the current knowledge on the expression patterns, regulators, binding partners, and roles of PGC1α in diverse cancers. We examined PGC1α's tissue-specific functions and elucidated its dual nature as both a potential tumor suppressor and an oncogenic collaborator. In cancers where PGC1α is tumor-suppressive, reinstating its levels could halt cell proliferation and invasion, and make the cells more receptive to chemotherapy. In cancers where the opposite is true, halting PGC1α's upregulation can be beneficial as it promotes oxidative phosphorylation, allows cancer cells to adapt to stress, and promotes a more aggressive cancer phenotype. Thus, to target PGC1α effectively, understanding its nuanced role in each cancer subtype is indispensable. This can pave the way for significant strides in the field of oncology.
Collapse
Affiliation(s)
- Yue Wang
- Department of Surgery, Nanjing Central Hospital, Nanjing, China
| | - Jianing Peng
- Division of Biosciences, University College London, London, United Kingdom
| | - Dengyuan Yang
- Department of Surgery, Nanjing Central Hospital, Nanjing, China
| | - Zhongjie Xing
- Department of Surgery, Nanjing Central Hospital, Nanjing, China
| | - Bo Jiang
- Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Xu Ding
- Department of Surgery, Nanjing Central Hospital, Nanjing, China
| | - Chaoyu Jiang
- Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Bing Ouyang
- Department of Surgery, Nanjing Central Hospital, Nanjing, China
| | - Lei Su
- Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Muller C, Lacroix-Malgras V, Kluza J, Laine W, Güler Y, Bost F, Boisbrun M, Mazerbourg S, Flament S. The troglitazone derivative EP13 disrupts energy metabolism through respiratory chain complex I inhibition in breast cancer cells and potentiates the antiproliferative effect of glycolysis inhibitors. Cancer Cell Int 2024; 24:132. [PMID: 38594745 PMCID: PMC11005237 DOI: 10.1186/s12935-024-03319-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/30/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND The metabolism of cancer cells generally differs from that of normal cells. Indeed, most cancer cells have a high rate of glycolysis, even at normal oxygen concentrations. These metabolic properties can potentially be exploited for therapeutic intervention. In this context, we have developed troglitazone derivatives to treat hormone-sensitive and triple-negative breast cancers, which currently lack therapeutic targets, have an aggressive phenotype, and often have a worse prognosis than other subtypes. Here, we studied the metabolic impact of the EP13 compound, a desulfured derivative of Δ2-troglitazone that we synthetized and is more potent than its parent compounds. METHODS EP13 was tested on two triple-negative breast cancer cell lines, MDA-MB-231 and Hs578T, and on the luminal cell line MCF-7. The oxygen consumption rate (OCR) of the treated cell lines, Hs578T mammospheres and isolated mitochondria was measured using the XFe24 Seahorse analyser. ROS production was quantified using the MitoSOX fluorescent probe. Glycolytic activity was evaluated through measurement of the extracellular acidification rate (ECAR), glucose consumption and lactate production in extracellular medium. The synergistic effect of EP13 with glycolysis inhibitors (oxamate and 2-deoxyglucose) on cell cytotoxicity was established using the Chou-Talalay method. RESULTS After exposure to EP13, we observed a decrease in the mitochondrial oxygen consumption rate in MCF7, MDA-MB-231 and Hs578T cells. EP13 also modified the maximal OCR of Hs578T spheroids. EP13 reduced the OCR through inhibition of respiratory chain complex I. After 24 h, ATP levels in EP13-treated cells were not altered compared with those in untreated cells, suggesting compensation by glycolysis activity, as shown by the increase in ECAR, the glucose consumption and lactate production. Finally, we performed co-treatments with EP13 and glycolysis inhibitors (oxamate and 2-DG) and observed that EP13 potentiated their cytotoxic effects. CONCLUSION This study demonstrates that EP13 inhibits OXPHOS in breast cancer cells and potentiates the effect of glycolysis inhibitors.
Collapse
Affiliation(s)
- Claire Muller
- Université de Lorraine, CNRS, CRAN, F-54000, Nancy, France
| | | | - Jérôme Kluza
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pour la Recherche Sur le Cancer de Lille, UMR 9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - William Laine
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pour la Recherche Sur le Cancer de Lille, UMR 9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Yonca Güler
- Université de Lorraine, CNRS, CRAN, F-54000, Nancy, France
| | - Frédéric Bost
- Inserm U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire, Team Cancer Metabolism, Environment, F-06200, Nice, France
| | | | - Sabine Mazerbourg
- Université de Lorraine, CNRS, CRAN, F-54000, Nancy, France.
- CRAN, UMR 7039, Faculté des Sciences et Technologies, BP 70239, 54506, Vandœuvre-lès-Nancy, France.
| | | |
Collapse
|
4
|
Dornfeld K, Bjork J, Folkert G, Skildum A, Wallace KB. Mitochondrial activities play a pivotal role in regulating cell cycle in response to doxorubicin. CELL CYCLE (GEORGETOWN, TEX.) 2021; 20:1067-1079. [PMID: 33978554 DOI: 10.1080/15384101.2021.1919839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Doxorubicin induces both DNA damage and metabolic interference. How these effects interact to modulate cellular toxicity is not completely understood but important given the widespread use of doxorubicin in cancer treatment. This study tests the hypothesis that cell cycle arrest and survival are affected by distinct mitochondrial activities during doxorubicin exposure.Parental and mutant S. cerevisiae strains deficient in selected genes with mitochondrial function were treated with doxorubicin and assayed for changes in proliferation rates, cell survival and cell cycle arrest kinetics. Mitochondrial DNA content was estimated using quantitative PCR. Mitochondrial function was assessed by measuring oxygen consumption with and without an uncoupler.Parental cells growing in a non-fermentable carbon source medium and mutants lacking mitochondria and grown in glucose medium both show abrupt cell cycle and proliferation arrest during doxorubicin exposure compared to parental cells grown in glucose. Mitochondrial DNA increases during doxorubicin exposure in S. cerevisiae and in human breast cancer cells. Yeast strains deficient in TCA cycle activity or electron transport both show more abrupt cell cycle arrest than parental cells when exposed to doxorubicin. Concurrent treatment with the mitochondrial uncoupler dinitrophenol facilitates cell cycle progression and proliferation during doxorubicin exposure.Doxorubicin exposure induces mitochondrial DNA synthesis with TCA cycle and oxidative phosphorylation activity having opposing effects on cell proliferation, survival and cell cycle kinetics. TCA cycle activity provides biosynthetic substrates to support cell cycle progression and cell proliferation while electron transport and oxidative phosphorylation facilitate cell cycle arrest and possibly increased cytotoxicity.
Collapse
Affiliation(s)
- Ken Dornfeld
- Department of Radiation Oncology, Essentia Health, Duluth, MN, USA.,Department of Biomedical Science, University of Minnesota Medical School, Duluth Campus, USA
| | - James Bjork
- Department of Biomedical Science, University of Minnesota Medical School, Duluth Campus, USA
| | - Gavin Folkert
- Department of Biomedical Science, University of Minnesota Medical School, Duluth Campus, USA
| | - Andrew Skildum
- Department of Biomedical Science, University of Minnesota Medical School, Duluth Campus, USA.,Masonic Cancer Center, University of Minnesota, USA
| | - Kendall B Wallace
- Department of Biomedical Science, University of Minnesota Medical School, Duluth Campus, USA.,Masonic Cancer Center, University of Minnesota, USA
| |
Collapse
|
5
|
Rigoulet M, Bouchez CL, Paumard P, Ransac S, Cuvellier S, Duvezin-Caubet S, Mazat JP, Devin A. Cell energy metabolism: An update. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148276. [PMID: 32717222 DOI: 10.1016/j.bbabio.2020.148276] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022]
Abstract
In living cells, growth is the result of coupling between substrate catabolism and multiple metabolic processes that take place during net biomass formation and maintenance processes. During growth, both ATP/ADP and NADH/NAD+ molecules play a key role. Cell energy metabolism hence refers to metabolic pathways involved in ATP synthesis linked to NADH turnover. Two main pathways are thus involved in cell energy metabolism: glycolysis/fermentation and oxidative phosphorylation. Glycolysis and mitochondrial oxidative phosphorylation are intertwined through thermodynamic and kinetic constraints that are reviewed herein. Further, our current knowledge of short-term and long term regulation of cell energy metabolism will be reviewed using examples such as the Crabtree and the Warburg effect.
Collapse
Affiliation(s)
- M Rigoulet
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - C L Bouchez
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - P Paumard
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - S Ransac
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - S Cuvellier
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - S Duvezin-Caubet
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - J P Mazat
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - A Devin
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France.
| |
Collapse
|
6
|
Abstract
Doxorubicin is a commonly used chemotherapeutic agent for the treatment of a range of cancers, but despite its success in improving cancer survival rates, doxorubicin is cardiotoxic and can lead to congestive heart failure. Therapeutic options for this patient group are limited to standard heart failure medications with the only drug specific for doxorubicin cardiotoxicity to reach FDA approval being dexrazoxane, an iron-chelating agent targeting oxidative stress. However, dexrazoxane has failed to live up to its expectations from preclinical studies while also bringing up concerns about its safety. Despite decades of research, the molecular mechanisms of doxorubicin cardiotoxicity are still poorly understood and oxidative stress is no longer considered to be the sole evil. Mitochondrial impairment, increased apoptosis, dysregulated autophagy and increased fibrosis have also been shown to be crucial players in doxorubicin cardiotoxicity. These cellular processes are all linked by one highly conserved intracellular kinase: adenosine monophosphate-activated protein kinase (AMPK). AMPK regulates mitochondrial biogenesis via PGC1α signalling, increases oxidative mitochondrial metabolism, decreases apoptosis through inhibition of mTOR signalling, increases autophagy through ULK1 and decreases fibrosis through inhibition of TGFβ signalling. AMPK therefore sits at the control point of many mechanisms shown to be involved in doxorubicin cardiotoxicity and cardiac AMPK signalling itself has been shown to be impaired by doxorubicin. In this review, we introduce different agents known to activate AMPK (metformin, statins, resveratrol, thiazolidinediones, AICAR, specific AMPK activators) as well as exercise and dietary restriction, and we discuss the existing evidence for their potential role in cardioprotection from doxorubicin cardiotoxicity.
Collapse
Affiliation(s)
- Kerstin N Timm
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, UK.
| | - Damian J Tyler
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Abstract
Anthracycline-based chemotherapy can result in the development of a cumulative and progressively developing cardiomyopathy. Doxorubicin is one of the most highly prescribed anthracyclines in the United States due to its broad spectrum of therapeutic efficacy. Interference with different mitochondrial processes is chief among the molecular and cellular determinants of doxorubicin cardiotoxicity, contributing to the development of cardiomyopathy. The present review provides the basis for the involvement of mitochondrial toxicity in the different functional hallmarks of anthracycline toxicity. Our objective is to understand the molecular determinants of a progressive deterioration of functional integrity of mitochondria that establishes a historic record of past drug treatments (mitochondrial memory) and renders the cancer patient susceptible to subsequent regimens of drug therapy. We focus on the involvement of doxorubicin-induced mitochondrial oxidative stress, disruption of mitochondrial oxidative phosphorylation, and permeability transition, contributing to altered metabolic and redox circuits in cardiac cells, ultimately culminating in disturbances of autophagy/mitophagy fluxes and increased apoptosis. We also suggest some possible pharmacological and nonpharmacological interventions that can reduce mitochondrial damage. Understanding the key role of mitochondria in doxorubicin-induced cardiomyopathy is essential to reduce the barriers that so dramatically limit the clinical success of this essential anticancer chemotherapy.
Collapse
Affiliation(s)
- Kendall B Wallace
- From the Department of Biomedical Sciences, University of Minnesota Medical School, Duluth (K.B.W.)
| | - Vilma A Sardão
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal (V.A.S., P.J.O.)
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal (V.A.S., P.J.O.)
| |
Collapse
|
8
|
Fan P, Jordan VC. New insights into acquired endocrine resistance of breast cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:198-209. [PMID: 31815253 PMCID: PMC6897388 DOI: 10.20517/cdr.2019.13] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The translational research strategy of targeting estrogen receptor α (ERα) positive breast cancer and then using long term anti-hormone adjuvant therapy (5-10 years) has reduced recurrences and mortality. However, resistance continues to occur and improvements are required to build on the success of tamoxifen and aromatase inhibitors (AIs) established over the past 40 years. Further translational research has described the evolution of acquired resistance of breast cancer cell lines to long term estrogen deprivation that parallels clinical experience over years. Additionally, recent reports have identified mutations in the ERα obtained from the recurrences of AI treated patients. These mutations allow the ERα to activate without ligands and auto stimulate metastatic tumor growth. Furthermore, the new biology of estrogen-induced apoptosis in acquired resistant models in vitro and in vivo has been interrogated and applied to clinical trials. Inflammation and stress are emerging concepts occurring in the process of acquired resistance and estrogen-induced apoptosis with different mechanisms. In this review, we will present progress in the understanding of acquired resistance, focus on stress and inflammatory responses in the development of acquired resistance, and consider approaches to create new treatments to improve the treatment of breast cancer with endocrine resistance.
Collapse
Affiliation(s)
- Ping Fan
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - V Craig Jordan
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
9
|
Zhang Y, Deng H, Zhou H, Lu Y, Shan L, Lee SM, Cui G. A novel agent attenuates cardiotoxicity and improves antitumor activity of doxorubicin in breast cancer cells. J Cell Biochem 2018; 120:5913-5922. [DOI: 10.1002/jcb.27880] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 09/19/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Ying Zhang
- Department of Bioengineering Zhuhai Campus of Zunyi Medical University Zhuhai China
| | - Hongkuan Deng
- Department of Pharmaceutical Engineering, School of Life Sciences, Shandong University of Technology Zibo China
| | - Hefeng Zhou
- Department of Bioengineering Zhuhai Campus of Zunyi Medical University Zhuhai China
| | - Yucong Lu
- Department of Bioengineering Zhuhai Campus of Zunyi Medical University Zhuhai China
| | - Luchen Shan
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐cerebrovascular Diseases, Jinan University College of Pharmacy Guangzhou China
| | - Simon Ming‐Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau Macao China
| | - Guozhen Cui
- Department of Bioengineering Zhuhai Campus of Zunyi Medical University Zhuhai China
| |
Collapse
|
10
|
Dornfeld KJ, Skildum AJ. Mitochondria Remodeling in Cancer. MITOCHONDRIAL BIOLOGY AND EXPERIMENTAL THERAPEUTICS 2018:153-191. [DOI: 10.1007/978-3-319-73344-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
11
|
Wang L, Zhang X, Chan JYW, Shan L, Cui G, Cui Q, Wang Y, Li J, Chen H, Zhang Q, Yu P, Han Y, Wang Y, Lee SMY. A Novel Danshensu Derivative Prevents Cardiac Dysfunction and Improves the Chemotherapeutic Efficacy of Doxorubicin in Breast Cancer Cells. J Cell Biochem 2016; 117:94-105. [PMID: 26058377 DOI: 10.1002/jcb.25253] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/05/2015] [Indexed: 12/19/2022]
Abstract
Doxorubicin (Dox) is an anthracycline antibiotic widely used in clinics as an anticancer agent. However, the use of Dox is limited by its cardiotoxicity. We have previously shown that a Danshensu (DSS) derivative, ADTM, displayed strong cardioprotective effects. With improved chemical stability and activity, a novel DSS derivative, D006, based on the structure of ADTM, was synthesized. In the present study, the protective effects of D006, indexed by attenuation of the cardiotoxicity induced by Dox as well as chemosensitizing effects that increase the antitumor activity of Dox, were investigated. Our results showed that D006 was more potent than either parental compound, or their use in combination, in ameliorating Dox-induced toxicity in H9c2 cells. In our zebrafish model, D006, but not DSS, alone significantly preserved the ventricular function of zebrafish after Dox treatment. Moreover, D006 upregulated mitochondrial biogenesis and increased mtDNA copy number after Dox treatment of H9c2 cells. D006 promoted the expression of HO-1 protein in a time-dependent manner while the HO-1 inhibitor, Znpp, reversed the protective effects of D006. In human breast tumor MCF-7 cells, D006 enhanced Dox-induced cytotoxicity by increasing apoptosis. In conclusion, our results indicate that a new DSS derivative exhibits promising protective effects against Dox-induced cardiotoxicity both in vivo and in vitro, an effect at least partially mediated by induction of HO-1 expression and the activation of mitochondrial biogenesis. Meanwhile, D006 also potentiated the anti-cancer effects of Dox in breast tumor cells.
Collapse
Affiliation(s)
- Liang Wang
- State Key Laboratory of Quality Research in Chinese Institute of Chinese Medical Sciences, University of Macau, Macao, China.,Department of Applied Biology and Chemical Technology, Institute of Modern Medicine, Hong Kong Polytechnic University, Hong Kong, China
| | - Xiaojing Zhang
- Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Judy Yuet-Wa Chan
- State Key Laboratory of Quality Research in Chinese Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Luchen Shan
- Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Guozhen Cui
- State Key Laboratory of Quality Research in Chinese Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Qingbin Cui
- Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Yingfei Wang
- Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Jingjing Li
- State Key Laboratory of Quality Research in Chinese Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Huanxian Chen
- State Key Laboratory of Quality Research in Chinese Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Qingwen Zhang
- State Key Laboratory of Quality Research in Chinese Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Pei Yu
- Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Yifan Han
- Department of Applied Biology and Chemical Technology, Institute of Modern Medicine, Hong Kong Polytechnic University, Hong Kong, China
| | - Yuqiang Wang
- Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
12
|
Jia D, Tan Y, Liu H, Ooi S, Li L, Wright K, Bennett S, Addison CL, Wang L. Cardamonin reduces chemotherapy-enriched breast cancer stem-like cells in vitro and in vivo. Oncotarget 2016; 7:771-85. [PMID: 26506421 PMCID: PMC4808032 DOI: 10.18632/oncotarget.5819] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 10/06/2015] [Indexed: 12/26/2022] Open
Abstract
The failure of cytotoxic chemotherapy in breast cancers has been closely associated with the presence of drug resistant cancer stem cells (CSCs). Thus, screening for small molecules that selectively inhibit growth of CSCs may offer great promise for cancer control, particularly in combination with chemotherapy. In this report, we provide the first demonstration that cardamonin, a small molecule, selectively inhibits breast CSCs that have been enriched by chemotherapeutic drugs. In addition, cardamonin also sufficiently prevents the enrichment of CSCs when simultaneously used with chemotherapeutic drugs. Specifically, cardamonin effectively abolishes chemotherapeutic drug-induced up-regulation of IL-6, IL-8 and MCP-1 and activation of NF-κB/IKBα and Stat3. Furthermore, in a xenograft mouse model, co-administration of cardamonin and the chemotherapeutic drug doxorubicin significantly retards tumor growth and simultaneously decreases CSC pools in vivo. Since cardamonin has been found in some herbs, this work suggests a potential new approach for the effective treatment of breast CSCs by administration of cardamonin either concurrent with or after chemotherapeutic drugs.
Collapse
Affiliation(s)
- Deyong Jia
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Yuan Tan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Huijuan Liu
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sarah Ooi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Li Li
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Kathryn Wright
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Steffany Bennett
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Christina L Addison
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
13
|
Dornfeld K, Madden M, Skildum A, Wallace KB. Aspartate facilitates mitochondrial function, growth arrest and survival during doxorubicin exposure. Cell Cycle 2016; 14:3282-91. [PMID: 26317891 PMCID: PMC4825578 DOI: 10.1080/15384101.2015.1087619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Genomic screens of doxorubicin toxicity in S. cerevisiae have identified numerous mutants in amino acid and carbon metabolism which express increased doxorubicin sensitivity. This work examines the effect of amino acid metabolism on doxorubicin toxicity. S. cerevisiae were treated with doxorubicin in combination with a variety of amino acid supplements. Strains of S. cerevisiae with mutations in pathways utilizing aspartate and other metabolites were examined for sensitivity to doxorubicin. S. cerevisiae cultures exposed to doxorubicin in minimal media showed significantly more toxicity than cultures exposed in rich media. Supplementing minimal media with aspartate, glutamate or alanine reduced doxorubicin toxicity. Cell cycle response was assessed by examining the budding pattern of treated cells. Cultures exposed to doxorubicin in minimal media arrested growth with no apparent cell cycle progression. Aspartate supplementation allowed cultures exposed to doxorubicin in minimal media to arrest after one division with a budding pattern and survival comparable to cultures exposed in rich media. Aspartate provides less protection from doxorubicin in cells mutant in either mitochondrial citrate synthase (CIT1) or NADH oxidase (NDI1), suggesting aspartate reduces doxorubicin toxicity by facilitating mitochondrial function. These data suggest glycolysis becomes less active and mitochondrial respiration more active following doxorubicin exposure.
Collapse
Affiliation(s)
- Ken Dornfeld
- a Department of Biomedical Sciences ; University of Minnesota Medical School, Duluth campus ; Duluth , MN USA.,b Department of Radiation Oncology ; Essentia Health ; Duluth , MN USA
| | - Michael Madden
- a Department of Biomedical Sciences ; University of Minnesota Medical School, Duluth campus ; Duluth , MN USA
| | - Andrew Skildum
- a Department of Biomedical Sciences ; University of Minnesota Medical School, Duluth campus ; Duluth , MN USA
| | - Kendall B Wallace
- a Department of Biomedical Sciences ; University of Minnesota Medical School, Duluth campus ; Duluth , MN USA
| |
Collapse
|
14
|
Walter W, Thomalla J, Bruhn J, Fagan DH, Zehowski C, Yee D, Skildum A. Altered regulation of PDK4 expression promotes antiestrogen resistance in human breast cancer cells. SPRINGERPLUS 2015; 4:689. [PMID: 26576332 PMCID: PMC4641142 DOI: 10.1186/s40064-015-1444-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 10/19/2015] [Indexed: 11/10/2022]
Abstract
Acquired or de novo resistance to the selective estrogen receptor modulators tamoxifen and fulvestrant (ICI) is a major barrier to successful treatment of breast cancer. Gene expression patterns in tamoxifen resistant (TamR-MCF-7) cells were compared to their parental cells (MCF-7L) to identify an aberrantly regulated metabolic pathway. TamR-MCF-7 cells are cross resistant to ICI and doxorubicin, and have increased mitochondrial DNA. A small subset of genes had altered expression in TamR-MCF-7 relative to MCF-7L cells. One of the genes, pyruvate dehydrogenase kinase-4 (PDK4), phosphorylates pyruvate dehydrogenase (PDH). PDK4 expression was elevated in TamR-MCF-7 cells; this result was also observed in a second model of acquired antiestrogen resistance. PDK4 expression is controlled in part by glucocorticoid response elements in the PDK4 gene promoter. In MCF-7L cells, PDK4 mRNA expression was insensitive to glucocorticoid receptor agonists, while dexamethasone dramatically increased PDK4 expression in TamR-MCF-7 cells. Using siRNA to knock down PDK4 expression increased TamR-MCF-7 sensitivity to ICI; in contrast adapting cells to growth in glucose depleted media did not affect ICI sensitivity. Despite TamR-MCF-7 cells high levels of PDK4 mRNA relative to MCF-7L, TamR-MCF-7 cells have increased PDH activity. Wild type MCF-7 cells are reported to be heterozygous for a G to A mutation that results in a substitution of threonine for alanine near PDK4′s catalytic site. We found loss of heterozygosity in TamR-MCF-7 cells; TamR-MCF-7 are homozygous for the wild type allele. These data support a role for altered regulation of PDH by PDK4 and altered substrate utilization in the development of drug resistance in human breast cancer cells.
Collapse
Affiliation(s)
- William Walter
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN USA
| | - Jennifer Thomalla
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN USA
| | - Josh Bruhn
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN USA
| | - Dedra H Fagan
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA
| | - Cheryl Zehowski
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN USA
| | - Douglas Yee
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA
| | - Andrew Skildum
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN USA ; Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA
| |
Collapse
|
15
|
Exogenous normal mammary epithelial mitochondria suppress glycolytic metabolism and glucose uptake of human breast cancer cells. Breast Cancer Res Treat 2015; 153:519-29. [DOI: 10.1007/s10549-015-3583-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/21/2015] [Indexed: 10/23/2022]
|
16
|
Deus CM, Zehowski C, Nordgren K, Wallace KB, Skildum A, Oliveira PJ. Stimulating basal mitochondrial respiration decreases doxorubicin apoptotic signaling in H9c2 cardiomyoblasts. Toxicology 2015; 334:1-11. [PMID: 25997894 DOI: 10.1016/j.tox.2015.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/27/2015] [Accepted: 05/05/2015] [Indexed: 11/26/2022]
Abstract
Doxorubicin (DOX) is currently used in cancer chemotherapy, however, its use often results in adverse effects highlighted by the development of cardiomyopathy and ultimately heart failure. Interestingly, DOX cardiotoxicity is decreased by resveratrol or by physical activity, suggesting that increased mitochondrial activity may be protective. Conversely, recent studies showed that troglitazone, a PPARγ agonist, increases the cytotoxicity of DOX against breast cancer cells by up-regulating mitochondrial biogenesis. The hypothesis for the current investigation was that DOX cytotoxicity in H9c2 cardiomyoblasts is decreased when mitochondrial capacity is increased. We focused on several end-points for DOX cytotoxicity, including loss of cell mass, apoptotic signaling and alterations of autophagic-related proteins. Our results show that a galactose-based, modified cell culture medium increased H9c2 basal mitochondrial respiration, protein content, and mtDNA copy number without increasing maximal or spare respiratory capacity. H9c2 cardiomyoblasts cultured in the galactose-modified media showed lower DOX-induced activation of the apoptotic pathway, measured by decreased caspase-3 and -9 activation, and lower p53 expression, although ultimately loss of cells was not prevented. Treatment with the PPARγ agonist troglitazone had no effect on DOX toxicity in this cardiac cell line, which agrees with the fact that troglitazone did not increase mitochondrial DNA content or capacity at the concentrations and duration of exposure used in this investigation. Our results show that mitochondrial remodeling caused by stimulating basal rates of oxidative phosphorylation decreased DOX-induced apoptotic signaling and increased DOX-induced autophagy in H9c2 cardiomyoblasts. The differential effect on cytotoxicity in cardiac versus breast cancer cell lines suggests a possible overall improvement in the clinical efficacy for doxorubicin in treating cancer.
Collapse
Affiliation(s)
- Cláudia M Deus
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building, Biocant Park, 3060-197 Cantanhede, Portugal
| | - Cheryl Zehowski
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, USA
| | - Kendra Nordgren
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, USA
| | - Kendall B Wallace
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, USA
| | - Andrew Skildum
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, USA
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building, Biocant Park, 3060-197 Cantanhede, Portugal.
| |
Collapse
|
17
|
Evangelisti C, de Biase D, Kurelac I, Ceccarelli C, Prokisch H, Meitinger T, Caria P, Vanni R, Romeo G, Tallini G, Gasparre G, Bonora E. A mutation screening of oncogenes, tumor suppressor gene TP53 and nuclear encoded mitochondrial complex I genes in oncocytic thyroid tumors. BMC Cancer 2015; 15:157. [PMID: 25880213 PMCID: PMC4374372 DOI: 10.1186/s12885-015-1122-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/24/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Thyroid neoplasias with oncocytic features represent a specific phenotype in non-medullary thyroid cancer, reflecting the unique biological phenomenon of mitochondrial hyperplasia in the cytoplasm. Oncocytic thyroid cells are characterized by a prominent eosinophilia (or oxyphilia) caused by mitochondrial abundance. Although disruptive mutations in the mitochondrial DNA (mtDNA) are the most significant hallmark of such tumors, oncocytomas may be envisioned as heterogeneous neoplasms, characterized by multiple nuclear and mitochondrial gene lesions. We investigated the nuclear mutational profile of oncocytic tumors to pinpoint the mutations that may trigger the early oncogenic hit. METHODS Total DNA was extracted from paraffin-embedded tissues from 45 biopsies of oncocytic tumors. High-resolution melting was used for mutation screening of mitochondrial complex I subunits genes. Specific nuclear rearrangements were investigated by RT-PCR (RET/PTC) or on isolated nuclei by interphase FISH (PAX8/PPARγ). Recurrent point mutations were analyzed by direct sequencing. RESULTS In our oncocytic tumor samples, we identified rare TP53 mutations. The series of analyzed cases did not include poorly- or undifferentiated thyroid carcinomas, and none of the TP53 mutated cases had significant mitotic activity or high-grade features. Thus, the presence of disruptive TP53 mutations was completely unexpected. In addition, novel mutations in nuclear-encoded complex I genes were identified. CONCLUSIONS These findings suggest that nuclear genetic lesions altering the bioenergetics competence of thyroid cells may give rise to an aberrant mitochondria-centered compensatory mechanism and ultimately to the oncocytic phenotype.
Collapse
Affiliation(s)
- Cecilia Evangelisti
- Department of Medical and Surgical Sciences (DIMEC), Policlinico S. Orsola-Malpighi, Unit of Medical Genetics, University of Bologna, Bologna, Italy.
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Cell Signaling Laboratory, University of Bologna, Bologna, Italy.
| | - Dario de Biase
- Department of Diagnostic, Experimental and Specialty Medicine (DIMES), Unit of Anatomic Pathology, Bellaria Hospital, University of Bologna, Bologna, Italy.
| | - Ivana Kurelac
- Department of Medical and Surgical Sciences (DIMEC), Policlinico S. Orsola-Malpighi, Unit of Medical Genetics, University of Bologna, Bologna, Italy.
| | - Claudio Ceccarelli
- Department of Diagnostic, Experimental and Specialty Medicine (DIMES), Unit of Anatomy, Policlinico S. Orsola-Malpighi, University of Bologna, Bologna, Italy.
| | - Holger Prokisch
- Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany.
| | - Thomas Meitinger
- Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany.
| | - Paola Caria
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.
| | - Roberta Vanni
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.
| | - Giovanni Romeo
- Department of Medical and Surgical Sciences (DIMEC), Policlinico S. Orsola-Malpighi, Unit of Medical Genetics, University of Bologna, Bologna, Italy.
| | - Giovanni Tallini
- Department of Diagnostic, Experimental and Specialty Medicine (DIMES), Unit of Anatomic Pathology, Bellaria Hospital, University of Bologna, Bologna, Italy.
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences (DIMEC), Policlinico S. Orsola-Malpighi, Unit of Medical Genetics, University of Bologna, Bologna, Italy.
| | - Elena Bonora
- Department of Medical and Surgical Sciences (DIMEC), Policlinico S. Orsola-Malpighi, Unit of Medical Genetics, University of Bologna, Bologna, Italy.
| |
Collapse
|
18
|
Sato Y, Sasaki N, Saito M, Endo N, Kugawa F, Ueno A. Luteolin Attenuates Doxorubicin-Induced Cytotoxicity to MCF-7 Human Breast Cancer Cells. Biol Pharm Bull 2015; 38:703-9. [DOI: 10.1248/bpb.b14-00780] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yasunori Sato
- Department of Health Chemistry, School of Pharmaceutical Sciences, Ohu University
| | - Naoto Sasaki
- Department of Health Chemistry, School of Pharmaceutical Sciences, Ohu University
| | - Megu Saito
- Department of Health Chemistry, School of Pharmaceutical Sciences, Ohu University
| | - Nao Endo
- Department of Health Chemistry, School of Pharmaceutical Sciences, Ohu University
| | - Fumihiko Kugawa
- Department of Biopharmaceutics, School of Pharmaceutical Sciences, Hyogo University of Health Sciences
| | - Akemichi Ueno
- Department of Health Chemistry, School of Pharmaceutical Sciences, Ohu University
| |
Collapse
|
19
|
Onishi Y, Ueha T, Kawamoto T, Hara H, Toda M, Harada R, Minoda M, Kurosaka M, Akisue T. Regulation of mitochondrial proliferation by PGC-1α induces cellular apoptosis in musculoskeletal malignancies. Sci Rep 2014; 4:3916. [PMID: 24472748 PMCID: PMC7365312 DOI: 10.1038/srep03916] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 01/06/2014] [Indexed: 12/21/2022] Open
Abstract
A number of studies have reported that decreased mitochondrial numbers are linked with neoplastic transformation and/or tumor progression, including resistance to apoptosis. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) is a multi-functional transcriptional coactivator that regulates the activities of multiple nuclear receptors and transcriptional factors involved in mitochondrial biogenesis. In this study, we observed that the number of mitochondria in sarcoma tissues, such as osteosarcoma and malignant fibrous histiocytoma, is significantly lower than that in normal muscle tissue or benign tumors and that increasing the number of mitochondria by PGC-1α overexpression induces mitochondrial apoptosis in human sarcoma cell lines. The findings suggest that decreased mitochondrial numbers may contribute to musculoskeletal tumor progression and that regulation of mitochondrial numbers by PGC-1α could be a potent therapeutic tool for human malignancies.
Collapse
Affiliation(s)
- Yasuo Onishi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Takeshi Ueha
- NeoChemir Inc., Sannomiya Chuo-building 4F, 4-2-20 Gokodori, Chuo-ku, Kobe 651-0087, Japan
| | - Teruya Kawamoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Hitomi Hara
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Mitsunori Toda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Risa Harada
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Masaya Minoda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Masahiro Kurosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Toshihiro Akisue
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| |
Collapse
|
20
|
Elliott RL, Jiang XP, Head JF. Mitochondria organelle transplantation: introduction of normal epithelial mitochondria into human cancer cells inhibits proliferation and increases drug sensitivity. Breast Cancer Res Treat 2012; 136:347-54. [PMID: 23080556 DOI: 10.1007/s10549-012-2283-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/01/2012] [Indexed: 10/27/2022]
Abstract
Mitochondrial dysfunction of cancer cells includes increased aerobic glycolysis, elevated levels of ROS, decreased apoptosis, and resistance to chemotherapeutic agents. We hypothesized that the introduction of normal mitochondria into cancer cells might restore mitochondrial function and inhibit cancer cell growth, and reverse chemoresistance. First, in the present study, we tested if mitochondria of immortalized, untransformed mammary epithelial MCF-12A cells could enter into human cancer cell lines. Second, if introducing normal mitochondria into cancer cells would inhibit proliferation. And third, would the addition of normal mitochondria increase the sensitivity of human breast cancer MCF-7 cells to chemotherapy. We found that JC-1-stained mitochondria of immortalized, untransformed mammary epithelial MCF-12A cells can enter into the cancer cell lines MCF-7, MDA-MB-231, and NCI/ADR-Res, but cannot enter immortalized, untransformed MCF-12A cells. The normal mitochondria from immortalized, untransformed MCF-12A cells suppressed the proliferation of MCF-7 and NCI/ADR-Res cells in a dose-dependent pattern, but did not affect the proliferation of immortalized, untransformed MCF-12A cells. The normal mitochondria from immortalized, untransformed MCF-12A cells increased the sensitivity of human breast cancer MCF-7 cells to doxorubicin, Abraxane, and carboplatin. In conclusion, the introduction of normal mammary mitochondria into human breast cancer cells inhibits cancer cell proliferation and increases the sensitivity of the MCF-7 human breast cancer cell line to doxorubicin, Abraxane, and carboplatin. These results support the role of mitochondrial dysfunction in cancer and suggest the possible use of targeted mitochondria for cancer therapeutics.
Collapse
Affiliation(s)
- R L Elliott
- Elliott-Barnett-Head Breast Cancer Research and Treatment Center, 17050 Medical Center Drive, 4th Floor, Plaza II, Baton Rouge, LA 70816, USA.
| | | | | |
Collapse
|
21
|
Barbosa IA, Machado NG, Skildum AJ, Scott PM, Oliveira PJ. Mitochondrial remodeling in cancer metabolism and survival: potential for new therapies. Biochim Biophys Acta Rev Cancer 2012; 1826:238-54. [PMID: 22554970 DOI: 10.1016/j.bbcan.2012.04.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 04/16/2012] [Accepted: 04/17/2012] [Indexed: 02/09/2023]
Abstract
Mitochondria are semi-autonomous organelles that play essential roles in cellular metabolism and programmed cell death pathways. Genomic, functional and structural mitochondrial alterations have been associated with cancer. Some of those alterations may provide a selective advantage to cells, allowing them to survive and grow under stresses created by oncogenesis. Due to the specific alterations that occur in cancer cell mitochondria, these organelles may provide promising targets for cancer therapy. The development of drugs that specifically target metabolic and mitochondrial alterations in tumor cells has become a matter of interest in recent years, with several molecules undergoing clinical trials. This review focuses on the most relevant mitochondrial alterations found in tumor cells, their contribution to cancer progression and survival, and potential usefulness for stratification and therapy.
Collapse
Affiliation(s)
- Inês A Barbosa
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | |
Collapse
|