1
|
Aničić R, Zeković M, Kocić M, Gluvić Z, Manojlović D, Ščančar J, Stojsavljević A. Non-occupational exposure to cadmium and breast cancer: A comprehensive and critical review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 298:118331. [PMID: 40367617 DOI: 10.1016/j.ecoenv.2025.118331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/04/2025] [Accepted: 05/12/2025] [Indexed: 05/16/2025]
Abstract
Breast cancer (BC) is a multifactorial disease with unresolved etiology. Environmental pollutants, primarily trace metals, play a pivotal role in the pathophysiological cascade of malignant tumors, including BC. In this up-to-date review, we comprehensively and critically examined the relationship between cadmium (Cd) and BC. For this purpose, peer-reviewed studies from relevant databases (PubMed, SCOPUS, and Cochrane Library) over the last 40 years were retrieved and analyzed. We found that in vitro and in vivo studies strongly support the view that Cd has harmful effects on breast health. According to the human studies, we found that Cd could be responsible for the development and progression of malignant breast tumors due to markedly higher levels in clinical matrices of cases (whole blood, urine, breast tissue, keratin materials) than in clinical matrices of controls. Cadmium does not appear to affect BC density. In contrast, Cd has been found to have a detrimental effect on sex hormones, disrupting the balance of estrogen and androgen. We found that studies looking at dietary Cd intake and BC risk generally (without measuring urine or blood Cd) do not support the association between dietary Cd intake and BC risk. In notable contrast, studies looking at dietary Cd intake and BC risk by measuring Cd in urine or blood generally support this association. The effect of airborne Cd on BC risk was weak, but in favor of specific histological forms, primarily ER-/PR- invasive tubular breast carcinomas. Regardless of the intake route of Cd into the body, it can be concluded that Cd has a harmful effect on breast health. However, well-designed longitudinal, mechanistic, meta-analytic, and other studies are urgently needed to confirm the exact role of environmental Cd in breast carcinogenesis.
Collapse
Affiliation(s)
- Radomir Aničić
- Clinic for Gynecology and Obstetrics "Narodni front", Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milica Zeković
- Group for Nutrition and Metabolism, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milan Kocić
- Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Zoran Gluvić
- University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal Medicine, Department of Endocrinology and Diabetes, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Janez Ščančar
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | | |
Collapse
|
2
|
Ali Hussein M, Kamalakkannan A, Valinezhad K, Kannan J, Paleati N, Saad R, Kajdacsy-Balla A, Munirathinam G. The dynamic face of cadmium-induced Carcinogenesis: Mechanisms, emerging trends, and future directions. Curr Res Toxicol 2024; 6:100166. [PMID: 38706786 PMCID: PMC11068539 DOI: 10.1016/j.crtox.2024.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/18/2024] [Accepted: 04/03/2024] [Indexed: 05/07/2024] Open
Abstract
Cadmium (Cd) is a malleable element with odorless, tasteless characteristics that occurs naturally in the earth's crust, underground water, and soil. The most common reasons for the anthropological release of Cd to the environment include industrial metal mining, smelting, battery manufacturing, fertilizer production, and cigarette smoking. Cadmium-containing products may enter the environment as soluble salts, vapor, or particle forms that accumulate in food, soil, water, and air. Several epidemiological studies have highlighted the association between Cd exposure and adverse health outcomes, especially renal toxicity, and the impact of Cd exposure on the development and progression of carcinogenesis. Also highlighted is the evidence for early-life and even maternal exposure to Cd leading to devastating health outcomes, especially the risk of cancer development in adulthood. Several mechanisms have been proposed to explain how Cd mediates carcinogenic transformation, including epigenetic alteration, DNA methylation, histone posttranslational modification, dysregulated non-coding RNA, DNA damage in the form of DNA mutation, strand breaks, and chromosomal abnormalities with double-strand break representing the most common DNA form of damage. Cd induces an indirect genotoxic effect by reducing p53's DNA binding activity, eventually impairing DNA repair, inducing downregulation in the expression of DNA repair genes, which might result in carcinogenic transformation, enhancing lipid peroxidation or evasion of antioxidant interference such as catalase, superoxide dismutase, and glutathione. Moreover, Cd mediates apoptosis evasion, autophagy activation, and survival mechanisms. In this review, we decipher the role of Cd mediating carcinogenic transformation in different models and highlight the interaction between various mechanisms. We also discuss diagnostic markers, therapeutic interventions, and future perspectives.
Collapse
Affiliation(s)
- Mohamed Ali Hussein
- Department of Pharmaceutical Services, Children’s Cancer Hospital Egypt, 57357 Cairo, Egypt
- Institute of Global Health and Human Ecology (IGHHE), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Abishek Kamalakkannan
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL 61107, USA
| | - Kamyab Valinezhad
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL 61107, USA
| | - Jhishnuraj Kannan
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL 61107, USA
| | - Nikhila Paleati
- Department of Psychology and Neuroscience, College of Undergraduate Studies, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Rama Saad
- Department of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - André Kajdacsy-Balla
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL 61107, USA
| |
Collapse
|
3
|
George MF, Paff S, Rojo J, Powell M, Benz C, Pope K, Kerlikowske K, Shepard J, Willis M, Ereman R, Prebil L. Assessment of salivary cadmium levels and breast density in the Marin Women's Study. Cancer Med 2024; 13:e6973. [PMID: 38379324 PMCID: PMC10831917 DOI: 10.1002/cam4.6973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND We aimed to determine if salivary cadmium (Cd) levels had any association with breast density, hoping to establish a less invasive cost-effective method of stratifying Cd burden as an environmental breast cancer risk factor. METHODS Salivary Cd levels were quantified from the Marin Women's Study, a Marin County, California population composite. Volumetric compositional breast density (BDsxa ) data were measured by single x-ray absorptiometry techniques. Digital screening mammography was performed by the San Francisco Mammography Registry. Radiologists reviewed mammograms and assigned a Breast Imaging-Reporting and Data System score. Early morning salivary Cd samples were assayed. Association analyses were then performed. RESULTS Cd was quantifiable in over 90% of saliva samples (mean = 55.7 pg/L, SD = 29). Women with higher saliva Cd levels had a non-significant odds ratio of 1.34 with BI-RAD scores (3 or 4) (95% CI 0.75-2.39, p = 0.329). Cd levels were higher in current smokers (mean = 61.4 pg/L, SD = 34.8) than former smokers or non-smokers. These results were non-significant. Pilot data revealed that higher age and higher BMI were associated with higher BI-RAD scores (p < 0.001). CONCLUSION Salivary Cd is a viable quantification source in large epidemiologic studies. Association analyses between Cd levels and breast density may provide additional information for breast cancer risk assessment, risk reduction plans, and future research directions. Further work is needed to demonstrate a more robust testing protocol before the extent of its usefulness can be established.
Collapse
Affiliation(s)
- Michaela F. George
- Global Public Health Department, School of Health and Natural SciencesDominican University of CaliforniaSan RafaelCaliforniaUSA
| | - Shayne Paff
- Epidemiology and Community HealthMarin County Department of Health and Human ServicesSan RafaelCaliforniaUSA
| | - Jenyse Rojo
- Global Public Health Department, School of Health and Natural SciencesDominican University of CaliforniaSan RafaelCaliforniaUSA
| | - Mark Powell
- Zero Breast CancerBuck Institute for Research on AgingSan RafaelCaliforniaUSA
| | - Christopher Benz
- Cancer & Developmental TherapeuticsBuck Institute for Research on AgingSan RafaelCaliforniaUSA
- Department of Medicine, Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Karl Pope
- Epidemiology and Community HealthMarin County Department of Health and Human ServicesSan RafaelCaliforniaUSA
| | - Karla Kerlikowske
- Department of Medicine, Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - John Shepard
- Population Sciences in the Pacific Program, Cancer EpidemiologyUniversity of Hawaii Cancer CenterHonoluluHawaiiUSA
| | - Matthew Willis
- Epidemiology and Community HealthMarin County Department of Health and Human ServicesSan RafaelCaliforniaUSA
| | - Rochelle Ereman
- Global Public Health Department, School of Health and Natural SciencesDominican University of CaliforniaSan RafaelCaliforniaUSA
- Epidemiology and Community HealthMarin County Department of Health and Human ServicesSan RafaelCaliforniaUSA
| | - LeeAnn Prebil
- Epidemiology and Community HealthMarin County Department of Health and Human ServicesSan RafaelCaliforniaUSA
| |
Collapse
|
4
|
Kay JE, Cardona B, Rudel RA, Vandenberg LN, Soto AM, Christiansen S, Birnbaum LS, Fenton SE. Chemical Effects on Breast Development, Function, and Cancer Risk: Existing Knowledge and New Opportunities. Curr Environ Health Rep 2022; 9:535-562. [PMID: 35984634 PMCID: PMC9729163 DOI: 10.1007/s40572-022-00376-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Population studies show worrisome trends towards earlier breast development, difficulty in breastfeeding, and increasing rates of breast cancer in young women. Multiple epidemiological studies have linked these outcomes with chemical exposures, and experimental studies have shown that many of these chemicals generate similar effects in rodents, often by disrupting hormonal regulation. These endocrine-disrupting chemicals (EDCs) can alter the progression of mammary gland (MG) development, impair the ability to nourish offspring via lactation, increase mammary tissue density, and increase the propensity to develop cancer. However, current toxicological approaches to measuring the effects of chemical exposures on the MG are often inadequate to detect these effects, impairing our ability to identify exposures harmful to the breast and limiting opportunities for prevention. This paper describes key adverse outcomes for the MG, including impaired lactation, altered pubertal development, altered morphology (such as increased mammographic density), and cancer. It also summarizes evidence from humans and rodent models for exposures associated with these effects. We also review current toxicological practices for evaluating MG effects, highlight limitations of current methods, summarize debates related to how effects are interpreted in risk assessment, and make recommendations to strengthen assessment approaches. Increasing the rigor of MG assessment would improve our ability to identify chemicals of concern, regulate those chemicals based on their effects, and prevent exposures and associated adverse health effects.
Collapse
Affiliation(s)
| | | | | | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Ana M Soto
- Tufts University School of Medicine, Boston, MA, USA
| | - Sofie Christiansen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Linda S Birnbaum
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Suzanne E Fenton
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institutes of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| |
Collapse
|
5
|
Pepłońska B, Janasik B, McCormack V, Bukowska-Damska A, Kałużny P. Cadmium and volumetric mammographic density: A cross-sectional study in Polish women. PLoS One 2020; 15:e0233369. [PMID: 32433664 PMCID: PMC7239444 DOI: 10.1371/journal.pone.0233369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/04/2020] [Indexed: 01/26/2023] Open
Abstract
INTRODUCTION Cadmium (Cd) is a heavy metal, which is widespread in the environment and has been hypothesized to be a metalloestrogen and a breast cancer risk factor. Mammographic density (MD) reflects the composition of the breast and was proposed to be used as a surrogate marker for breast cancer. The aim of our study was to investigate association between cadmium concentration in urine and mammographic density. METHODS A cross-sectional study included 517 women aged 40-60 years who underwent screening mammography in Łódź, Poland. Data were collected through personal interviews and anthropometric measurements. Spot morning urine samples were obtained. The examination of the breasts included both craniocaudal and mediolateral oblique views. Raw data ("for processing") generated by the digital mammography system were analysed using Volpara Imaging Software, The volumetric breast density(%) and fibrograndular tissue volume(cm3) were determined. Cadmium concentration in urine was analysed using the standard ICP-MS method. RESULTS After adjusting for key confounders including age, BMI, family breast cancer, mammographic device, season of the year of mammography, and age at menarche, an inverse association of Cd and volumetric breast density was found, which was attenuated after further adjustment for smoking. Associations of Cd with dense volume were null. CONCLUSIONS These findings suggest that Cd is not positively associated with breast density, a strong marker of breast cancer risk, when examined in a cross-sectional fashion.
Collapse
Affiliation(s)
- Beata Pepłońska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Beata Janasik
- Department of Biological and Environmental Monitoring, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Valerie McCormack
- Section of Environment and Radiation, International Agency for research on Cancer, Lyon, France
| | | | - Paweł Kałużny
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Lodz, Poland
| |
Collapse
|
6
|
Lee E, Doanvo N, Lee M, Soe Z, Lee AW, Van Doan C, Deapen D, Ursin G, Spicer D, Reynolds P, Wu AH. Immigration history, lifestyle characteristics, and breast density in the Vietnamese American Women's Health Study: a cross-sectional analysis. Cancer Causes Control 2020; 31:127-138. [PMID: 31916076 PMCID: PMC7842111 DOI: 10.1007/s10552-019-01264-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Breast density is an important risk factor for breast cancer and varies substantially across racial-ethnic groups. However, determinants of breast density in Vietnamese immigrants in the United States (US) have not been studied. We investigated whether reproductive factors, immigration history, and other demographic and lifestyle factors were associated with breast density in Vietnamese Americans. METHODS We collected information on demographics, immigration history, and other lifestyle factors and mammogram reports from a convenience sample of 380 Vietnamese American women in California aged 40 to 70 years. Breast Imaging Reporting and Data System (BI-RADS) breast density was abstracted from mammogram reports. Multivariable logistic regression was used to investigate the association between lifestyle factors and having dense breasts (BI-RADS 3 or 4). RESULTS All participants were born in Viet Nam and 82% had lived in the US for 10 years or longer. Younger age, lower body mass index, nulliparity/lower number of deliveries, and longer US residence (or younger age at migration) were associated with having dense breasts. Compared to women who migrated at age 40 or later, the odds ratios and 95% confidence intervals for having dense breasts among women who migrated between the ages of 30 and 39 and before age 30 were 1.72 (0.96-3.07) and 2.48 (1.43-4.32), respectively. CONCLUSIONS Longer US residence and younger age at migration were associated with greater breast density in Vietnamese American women. Identifying modifiable mediating factors to reduce lifestyle changes that adversely impact breast density in this traditionally low-risk population for breast cancer is warranted.
Collapse
Affiliation(s)
- Eunjung Lee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Namphuong Doanvo
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - MiHee Lee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Zayar Soe
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Alice W Lee
- Department of Public Health, California State University, Fullerton, Fullerton, CA, 92831, USA
| | - Cam Van Doan
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Dennis Deapen
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | | | - Darcy Spicer
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Peggy Reynolds
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| |
Collapse
|
7
|
Serum Levels of Commonly Detected Persistent Organic Pollutants and Per- and Polyfluoroalkyl Substances (PFASs) and Mammographic Density in Postmenopausal Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17020606. [PMID: 31963577 PMCID: PMC7013395 DOI: 10.3390/ijerph17020606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/11/2020] [Accepted: 01/12/2020] [Indexed: 01/11/2023]
Abstract
There are little epidemiological data on the impact of persistent organic pollutants (POPs) and endocrine disruptors on mammographic density (MD), a strong predictor of breast cancer. We assessed MD in 116 non-Hispanic white post-menopausal women for whom serum concentrations of 23 commonly detected chemicals including 3 polybrominated diphenyl ethers (PBDEs), 8 per- and polyfluoroalkyl substances (PFASs), and 12 polychlorinated biphenyls (PCBs) had been measured. Linear regression analyses adjusting for potential confounders were used to examine the associations between the levels of the chemical compounds, modeled as continuous and dichotomized (above/below median) variables, and square-root-transformed MD. None of the associations were statistically significant after correcting for multiple testing. Prior to correction for multiple testing, all chemicals with un-corrected p-values < 0.05 had regression coefficients less than zero, suggesting inverse associations between increased levels and MD, if any. The smallest p-value was observed for PCB-153 (regression coefficient for above-median vs. below-median levels: −0.87, un-corrected p = 0.008). Neither parity nor body mass index modified the associations. Our results do not support an association between higher MD and serum levels of PBDEs, PCBs, or PFASs commonly detected in postmenopausal women.
Collapse
|
8
|
Terry MB, Michels KB, Brody JG, Byrne C, Chen S, Jerry DJ, Malecki KMC, Martin MB, Miller RL, Neuhausen SL, Silk K, Trentham-Dietz A. Environmental exposures during windows of susceptibility for breast cancer: a framework for prevention research. Breast Cancer Res 2019; 21:96. [PMID: 31429809 PMCID: PMC6701090 DOI: 10.1186/s13058-019-1168-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background The long time from exposure to potentially harmful chemicals until breast cancer occurrence poses challenges for designing etiologic studies and for implementing successful prevention programs. Growing evidence from animal and human studies indicates that distinct time periods of heightened susceptibility to endocrine disruptors exist throughout the life course. The influence of environmental chemicals on breast cancer risk may be greater during several windows of susceptibility (WOS) in a woman’s life, including prenatal development, puberty, pregnancy, and the menopausal transition. These time windows are considered as specific periods of susceptibility for breast cancer because significant structural and functional changes occur in the mammary gland, as well as alterations in the mammary micro-environment and hormone signaling that may influence risk. Breast cancer research focused on these breast cancer WOS will accelerate understanding of disease etiology and prevention. Main text Despite the plausible heightened mechanistic influences of environmental chemicals on breast cancer risk during time periods of change in the mammary gland’s structure and function, most human studies of environmental chemicals are not focused on specific WOS. This article reviews studies conducted over the past few decades that have specifically addressed the effect of environmental chemicals and metals on breast cancer risk during at least one of these WOS. In addition to summarizing the broader evidence-base specific to WOS, we include discussion of the NIH-funded Breast Cancer and the Environment Research Program (BCERP) which included population-based and basic science research focused on specific WOS to evaluate associations between breast cancer risk and particular classes of endocrine-disrupting chemicals—including polycyclic aromatic hydrocarbons, perfluorinated compounds, polybrominated diphenyl ethers, and phenols—and metals. We outline ways in which ongoing transdisciplinary BCERP projects incorporate animal research and human epidemiologic studies in close partnership with community organizations and communication scientists to identify research priorities and effectively translate evidence-based findings to the public and policy makers. Conclusions An integrative model of breast cancer research is needed to determine the impact and mechanisms of action of endocrine disruptors at different WOS. By focusing on environmental chemical exposure during specific WOS, scientists and their community partners may identify when prevention efforts are likely to be most effective.
Collapse
Affiliation(s)
- Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th Street, Room 1611, New York, NY, 10032, USA
| | - Karin B Michels
- Department of Epidemiology, Fielding School of Public Health, University of California, 650 Charles E. Young Drive South, CHS 71-254, Los Angeles, CA, 90095, USA
| | | | - Celia Byrne
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road A-1039F, Bethesda, MD, 20814, USA
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of City of Hope, 1450 E. Duarte Road, Duarte, CA, 91010, USA
| | - D Joseph Jerry
- Pioneer Valley Life Sciences Institute and Department of Veterinary & Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant St., Amherst, MA, 01003, USA
| | - Kristen M C Malecki
- Department of Population Health Sciences and the Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, 610 Walnut St., WARF Room 605, Madison, WI, 53726, USA
| | - Mary Beth Martin
- Departments of Oncology and Biochemistry & Molecular Biology, Georgetown University Medical Center, E411 New Research Building, Washington, DC, 20057, USA
| | - Rachel L Miller
- Departments of Medicine, Pediatrics, Environmental Health Sciences; Vagelos College of Physicians and Surgeons, Mailman School of Public Health, Columbia University, PH8E-101B, 630 W. 168th St, New York, NY, 10032, USA
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, 1450 E. Duarte Road, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Kami Silk
- Department of Communication, University of Delaware, 250 Pearson Hall, 125 Academy St, Newark, DE, 19716, USA
| | - Amy Trentham-Dietz
- Department of Population Health Sciences and Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, 610 Walnut St., WARF Room 307, Madison, WI, 53726, USA.
| | | |
Collapse
|
9
|
White AJ, Weinberg CR, O'Meara ES, Sandler DP, Sprague BL. Airborne metals and polycyclic aromatic hydrocarbons in relation to mammographic breast density. Breast Cancer Res 2019; 21:24. [PMID: 30760301 PMCID: PMC6373138 DOI: 10.1186/s13058-019-1110-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 01/25/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Breast density is strongly related to breast cancer. Identifying associations between environmental exposures and density may elucidate relationships with breast cancer. Metals and polycyclic aromatic hydrocarbons (PAHs) may influence breast density via oxidative stress or endocrine disruption. METHODS Study participants (n = 222,581) underwent a screening mammogram in 2011 at a radiology facility in the Breast Cancer Surveillance Consortium. Zip code residential levels of airborne PAHs and metals (arsenic, cadmium, chromium, cobalt, lead, manganese, mercury, nickel, and selenium) were assessed using the 2011 EPA National Air Toxics Assessment. Breast density was measured using the Breast Imaging-Reporting and Data System (BI-RADS) lexicon. Logistic regression was used to estimate adjusted odds ratios (ORs) and 95% confidence intervals (CI) for the individual air toxics and dense breasts (BI-RADS 3 or 4). Weighted quantile sum (WQS) regression was used to model the association between the air toxic mixture and density. RESULTS Higher residential levels of arsenic, cobalt, lead, manganese, nickel, or PAHs were individually associated with breast density. Comparing the highest to the lowest quartile, higher odds of having dense breasts were observed for cobalt (OR = 1.60, 95% CI 1.56-1.64) and lead (OR = 1.56, 95% CI 1.52-1.64). Associations were stronger for premenopausal women. The WQS index was associated with density overall (OR = 1.22, 95% CI 1.20-1.24); the most heavily weighted air toxics were lead and cobalt. CONCLUSIONS In this first study to evaluate the association between air toxics and breast density, women living in areas with higher concentrations of lead and cobalt were more likely to have dense breasts.
Collapse
Affiliation(s)
- Alexandra J White
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709-2233, USA.
| | - Clarice R Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Ellen S O'Meara
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709-2233, USA
| | - Brian L Sprague
- Departments of Surgery and Radiology, University of Vermont, Burlington, VT, USA
| |
Collapse
|
10
|
Adams SV, Hampton JM, Trentham-Dietz A, Gangnon RE, Shafer MM, Newcomb PA. Urinary Cadmium and Mammographic Density. Epidemiology 2018; 28:e6-e7. [PMID: 27902535 DOI: 10.1097/ede.0000000000000575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Scott V Adams
- Cancer Prevention Program Public Health Sciences Division Fred Hutchinson Cancer Research Center Seattle, WA University of Wisconsin Carbone Cancer Center School of Medicine and Public Health Madison, WI University of Wisconsin Carbone Cancer Center School of Medicine and Public Health Madison, WI Department of Population Health Sciences University of Wisconsin Madison, WI University of Wisconsin Carbone Cancer Center School of Medicine and Public Health Madison, WI Department of Biostatistics and Medical Informatics University of Wisconsin Madison, WI Environmental Chemistry and Technology and Wisconsin State Laboratory of Hygiene University of Wisconsin, Madison, WI Cancer Prevention Program Public Health Sciences Division Fred Hutchinson Cancer Research Center Seattle, WA University of Wisconsin Carbone Cancer Center School of Medicine and Public Health Madison, WI
| | | | | | | | | | | |
Collapse
|
11
|
Nordberg GF, Bernard A, Diamond GL, Duffus JH, Illing P, Nordberg M, Bergdahl IA, Jin T, Skerfving S. Risk assessment of effects of cadmium on human health (IUPAC Technical Report). PURE APPL CHEM 2018. [DOI: 10.1515/pac-2016-0910] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Chemistry and Human Health, Division VII of the International Union on Pure and Applied Chemistry (IUPAC), provides guidance on risk assessment methodology and, as appropriate, assessment of risks to human health from chemicals of exceptional toxicity. The aim of this document is to describe dose-response relationships for the health effects of low-level exposure to cadmium, in particular, with an emphasis on causation. The term “cadmium” in this document includes all chemical species of cadmium, as well as those in cadmium compounds. Diet is the main source of cadmium exposure in the general population. Smokers and workers in cadmium industries have additional exposure. Adverse effects have been shown in populations with high industrial or environmental exposures. Epidemiological studies in general populations have also reported statistically significant associations with a number of adverse health effects at low exposures. Cadmium is recognized as a human carcinogen, a classification mainly based on occupational studies of lung cancer. Other cancers have been reported, but dose-response relationships cannot be defined. Cardiovascular disease has been associated with cadmium exposure in recent epidemiological studies, but more evidence is needed in order to establish causality. Adequate evidence of dose-response relationships is available for kidney effects. There is a relationship between cadmium exposure and kidney effects in terms of low molecular mass (LMM) proteinuria. Long-term cadmium exposures with urine cadmium of 2 nmol mmol−1 creatinine cause such effects in a susceptible part of the population. Higher exposures result in increases in the size of these effects. This assessment is supported by toxicokinetic and toxicodynamic (TKTD) modelling. Associations between urine cadmium lower than 2 nmol mmol−1 creatinine and LMM proteinuria are influenced by confounding by co-excretion of cadmium with protein. A number of epidemiological studies, including some on low exposures, have reported statistically significant associations between cadmium exposure and bone demineralization and fracture risk. Exposures leading to urine cadmium of 5 nmol mmol−1 creatinine and more increase the risk of bone effects. Similar associations at much lower urine cadmium levels have been reported. However, complexities in the cause and effect relationship mean that a no-effect level cannot be defined. LMM proteinuria was selected as the critical effect for cadmium, thus identifying the kidney cortex as the critical organ, although bone effects may occur at exposure levels similar to those giving rise to kidney effects. To avoid these effects, population exposures should not exceed that resulting in cadmium values in urine of more than 2 nmol mmol−1 creatinine. As cadmium is carcinogenic, a ‘safe’ exposure level cannot be defined. We therefore recommend that cadmium exposures be kept as low as possible. Because the safety margin for toxic effects in kidney and bone is small, or non-existent, in many populations around the world, there is a need to reduce cadmium pollution globally.
Collapse
Affiliation(s)
- Gunnar F. Nordberg
- Occupational and Environmental Medicine , Department of Public Health and Clinical Medicine , Umeå University , SE-90187 Umeå , Sweden
| | - Alfred Bernard
- Department of Toxicology , Catholic University of Louvain , Brussels , Belgium
| | | | - John H. Duffus
- The Edinburgh Centre for Toxicology , 43 Mansionhouse Road , Edinburgh EH9 2JD, Scotland , UK
| | | | - Monica Nordberg
- Institute of Environmental Medicine, Karolinska Institutet , Stockholm , Sweden
| | - Ingvar A. Bergdahl
- Occupational and Environmental Medicine , Department of Public Health and Clinical Medicine , Umeå University , SE-90187 Umeå , Sweden
| | - Taiyi Jin
- Department of Occupational Health and Toxicology , School of Public Health, Fudan University , Shanghai , China
| | - Staffan Skerfving
- Division of Occupational and Environmental Medicine, University Hospital , Lund , Sweden
| |
Collapse
|
12
|
Lope V, García-Pérez J, Pérez-Gómez B, Pedraza-Flechas AM, Alguacil J, González-Galarzo MC, Alba MA, van der Haar R, Cortés-Barragán RA, Pedraz-Pingarrón C, Moreo P, Santamariña C, Ederra M, Vidal C, Salas-Trejo D, Sánchez-Contador C, Llobet R, Pollán M. Occupational exposures and mammographic density in Spanish women. Occup Environ Med 2017; 75:124-131. [PMID: 29074552 DOI: 10.1136/oemed-2017-104580] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/20/2017] [Accepted: 09/28/2017] [Indexed: 12/29/2022]
Abstract
OBJECTIVES The association between occupational exposures and mammographic density (MD), a marker of breast cancer risk, has not been previously explored. Our objective was to investigate the influence of occupational exposure to chemical, physical and microbiological agents on MD in adult women. METHODS This is a population-based cross-sectional study based on 1476 female workers aged 45-65 years from seven Spanish breast cancer screening programmes. Occupational history was surveyed by trained staff. Exposure to occupational agents was assessed using the Spanish job-exposure matrix MatEmESp. Percentage of MD was measured by two radiologists using a semiautomatic computer tool. The association was estimated using mixed log-linear regression models adjusting for age, education, body mass index, menopausal status, parity, smoking, alcohol intake, type of mammography, family history of breast cancer and hormonal therapy use, and including screening centre and professional reader as random effects terms. RESULTS Although no association was found with most of the agents, women occupationally exposed to perchloroethylene (eβ=1.51; 95% CI 1.04 to 2.19), ionising radiation (eβ=1.23; 95% CI 0.99 to 1.52) and mould spores (eβ=1.44; 95% CI 1.01 to 2.04) tended to have higher MD. The percentage of density increased 12% for every 5 years exposure to perchloroethylene or mould spores, 11% for every 5 years exposure to aliphatic/alicyclic hydrocarbon solvents and 3% for each 5 years exposure to ionising radiation. CONCLUSIONS Exposure to perchloroethylene, ionising radiation, mould spores or aliphatic/alicyclic hydrocarbon solvents in occupational settings could be associated with higher MD. Further studies are needed to clarify the accuracy and the reasons for these findings.
Collapse
Affiliation(s)
- Virginia Lope
- Cancer and Environmental Epidemiology Unit, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain.,Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública - CIBERESP), Madrid, Spain
| | - Javier García-Pérez
- Cancer and Environmental Epidemiology Unit, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain.,Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública - CIBERESP), Madrid, Spain
| | - Beatriz Pérez-Gómez
- Cancer and Environmental Epidemiology Unit, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain.,Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública - CIBERESP), Madrid, Spain
| | - Ana María Pedraza-Flechas
- Cancer and Environmental Epidemiology Unit, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain
| | - Juan Alguacil
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública - CIBERESP), Madrid, Spain.,Centro de Investigación en Salud y Medio Ambiente (CYSMA), Universidad de Huelva, Huelva, Spain
| | | | - Miguel Angel Alba
- Área de Higiene Industrial, PREMAP Seguridad y Salud S.L.U, Barcelona, Spain
| | | | | | | | - Pilar Moreo
- Aragon Breast Cancer Screening Program, Aragon Health Service, Zaragoza, Spain
| | - Carmen Santamariña
- Servicio de Alertas Epidemiolóxicas, Programa Galego Diagnostico Precoz Cancro de Mama, Unidade Central A Coruña, Conselleria de Sanidade, A Coruña, Spain
| | - María Ederra
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública - CIBERESP), Madrid, Spain.,Public Health Institute, Navarra Breast Cancer Screening Programme, Pamplona, Spain
| | - Carmen Vidal
- Prevention and Control Program, Catalan Institute of Oncology, Barcelona, Spain
| | - Dolores Salas-Trejo
- Valencia Breast Cancer Screening Program, General Directorate Public Health, Valencia, Spain
| | | | - Rafael Llobet
- Institute of Computer Technology, Universitat Politècnica de València, Valencia, Spain
| | - Marina Pollán
- Cancer and Environmental Epidemiology Unit, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain.,Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública - CIBERESP), Madrid, Spain
| |
Collapse
|
13
|
Åkesson A, Barregard L, Bergdahl IA, Nordberg GF, Nordberg M, Skerfving S. Non-renal effects and the risk assessment of environmental cadmium exposure. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:431-8. [PMID: 24569905 PMCID: PMC4014752 DOI: 10.1289/ehp.1307110] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 02/22/2014] [Indexed: 05/19/2023]
Abstract
BACKGROUND Exposure to cadmium (Cd) has long been recognized as a health hazard, both in industry and in general populations with high exposure. Under the currently prevailing health risk assessment, the relationship between urinary Cd (U-Cd) concentrations and tubular proteinuria is used. However, doubts have recently been raised regarding the justification of basing the risk assessment on this relationship at very low exposure. OBJECTIVES Our objective was to review available information on health effects of Cd exposure with respect to human health risk assessment. DISCUSSION The associations between U-Cd and urinary proteins at very low exposure may not be due to Cd toxicity, and the clinical significance of slight proteinuria may also be limited. More importantly, other effects have been reported at very low Cd exposure. There is reason to challenge the basis of the existing health risk assessment for Cd. Our review of the literature found that exposure to low concentrations of Cd is associated with effects on bone, including increased risk of osteoporosis and fractures, and that this observation has implications for the health risk assessment of Cd. Other effects associated with Cd should also be considered, in particular cancer, although the information is still too limited for appropriate use in quantitative risk assessment. CONCLUSION Non-renal effects should be considered critical effects in the health risk assessment of Cd.
Collapse
Affiliation(s)
- Agneta Åkesson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
14
|
Zinc and multi-mineral supplementation should mitigate the pathogenic impact of cadmium exposure. Med Hypotheses 2012; 79:642-8. [DOI: 10.1016/j.mehy.2012.07.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 07/30/2012] [Indexed: 11/21/2022]
|
15
|
Gonçalves S, Fernandes AS, Oliveira NG, Marques J, Costa J, Fátima Cabral M, Miranda J, Cipriano M, Guerreiro PS, Castro M. Cytotoxic effects of cadmium in mammary epithelial cells: Protective role of the macrocycle [15]pyN5. Food Chem Toxicol 2012; 50:2180-7. [DOI: 10.1016/j.fct.2012.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 03/22/2012] [Accepted: 04/03/2012] [Indexed: 02/06/2023]
|