1
|
Yun M, Yingzi L, Jie G, Guanxin L, Zimei Z, Zhen C, Zhi L, Yingjie N, Lunquan S, Tao C, Yuezhen D, Chengzhi Z. PPDPF Promotes the Progression and acts as an Antiapoptotic Protein in Non-Small Cell Lung Cancer. Int J Biol Sci 2022; 18:214-228. [PMID: 34975328 PMCID: PMC8692159 DOI: 10.7150/ijbs.65654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/20/2021] [Indexed: 02/07/2023] Open
Abstract
Resistance to radiotherapy is frequently observed in the clinic and leads to poor prognosis of non-small cell lung cancer (NSCLC). How to overcome resistance to radiotherapy is a challenge in the treatment of NSCLC. In this study, PPDPF was found to be upregulated in NSCLC tissues and cell lines, and its expression negatively correlated with the overall survival of patients with NSCLC. PPDPF promoted the growth, colony formation and invasion of lung cancer cells. Moreover, knockout of PPDPF inhibited tumorigenesis in the KL (KrasG12D; LKB1f/f) mouse model of lung cancer. Additionally, overexpression of PPDPF led to radioresistance in lung cancer cells, and knockdown of PPDPF sensitized lung cancer cells to radiotherapy. Mechanistically, PPDPF interacted with BABAM2 (an antiapoptotic protein) and blocked its ubiquitination by MDM2, thus stabilizing BABAM2 and promoting the radioresistance of lung cancer cells. Our present study suggested PPDPF as a therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Mu Yun
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China
| | - Li Yingzi
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Gao Jie
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China.,Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha 410008, China.,Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha 410008, China
| | - Liu Guanxin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Zeng Zimei
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China.,Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha 410008, China.,Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha 410008, China
| | - Cao Zhen
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China.,Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha 410008, China.,Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha 410008, China
| | - Li Zhi
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China.,Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha 410008, China.,Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha 410008, China
| | - Nie Yingjie
- NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People's Hospital; Guiyang 550000, China
| | - Sun Lunquan
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China.,Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha 410008, China.,Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha 410008, China
| | - Chen Tao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Deng Yuezhen
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China.,Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha 410008, China.,Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha 410008, China
| | - Zhou Chengzhi
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|
2
|
Zhang L, Wei XT, Niu JJ, Lin ZX, Xu Q, Ni JJ, Zhang WL, Han BX, Yan SS, Feng GJ, Zhang H, Yang XL, Zhang ZJ, Hai R, Ren HG, Zhang F, Pei YF. Joint Genome-Wide Association Analyses Identified 49 Novel Loci For Age at Natural Menopause. J Clin Endocrinol Metab 2021; 106:2574-2591. [PMID: 34050765 DOI: 10.1210/clinem/dgab377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Age at natural menopause (ANM) is an important index for women's health. Either early or late ANM is associated with a series of adverse outcomes later in life. Despite being an inheritable trait, its genetic determinant has not yet been fully understood. METHODS Aiming to better characterize the genetic architecture of ANM, we conducted genome-wide association study (GWAS) meta-analyses in European-specific as well as trans-ancestry samples by using GWAS summary statistics from the following 3 large studies: the Reproductive Genetics Consortium (ReproGen; N = 69 626), the UK Biobank cohort (UKBB; N = 111 593) and the BioBank Japan Project (BBJ; N = 43 861), followed by a series of bioinformatical assessments and functional annotations. RESULTS By integrating the summary statistics from the 3 GWAS of up to 225 200 participants, this largest meta-analysis identified 49 novel loci and 3 secondary signals that were associated with ANM at the genome-wide significance level (P < 5 × 10-8). No population specificity or heterogeneity was observed at most of the associated loci. Functional annotations prioritized 90 candidate genes at the newly identified loci. Among the 26 traits that were genetically correlated with ANM, hormone replacement therapy (HRT) exerted a causal relationship, implying a causal pattern by which HRT was determined by ANM. CONCLUSION Our findings improved our understanding of the etiology of female menopause, as well as shed light on potential new therapies for abnormal menopause.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, the first affiliated hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College, Soochow University, Suzhou, China
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College, Soochow University, Suzhou, China
| | - Xin-Tong Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, the first affiliated hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College, Soochow University, Suzhou, China
| | - Jun-Jie Niu
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, the first affiliated hospital of Soochow University, Suzhou, China
| | - Zi-Xuan Lin
- Jiangsu Key laboratory of Translational Research and Therapy for Neuropsychiatric disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Qian Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, the first affiliated hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College, Soochow University, Suzhou, China
| | - Jing-Jing Ni
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College, Soochow University, Suzhou, China
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College, Soochow University, Suzhou, China
| | - Wan-Lin Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, the first affiliated hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College, Soochow University, Suzhou, China
| | - Bai-Xue Han
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, the first affiliated hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College, Soochow University, Suzhou, China
| | - Shan-Shan Yan
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, the first affiliated hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College, Soochow University, Suzhou, China
| | - Gui-Juan Feng
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, the first affiliated hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College, Soochow University, Suzhou, China
| | - Hong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College, Soochow University, Suzhou, China
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College, Soochow University, Suzhou, China
| | - Xiao-Lin Yang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College, Soochow University, Suzhou, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu, Yangzhou, China
| | - Zi-Jia Zhang
- Health Commission of Inner Mongolia Autonomous Region, Inner Mongolia Autonomous Region, Hohhot, China
| | - Rong Hai
- Health Commission of Inner Mongolia Autonomous Region, Inner Mongolia Autonomous Region, Hohhot, China
| | - Hai-Gang Ren
- Jiangsu Key laboratory of Translational Research and Therapy for Neuropsychiatric disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yu-Fang Pei
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, the first affiliated hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College, Soochow University, Suzhou, China
| |
Collapse
|
3
|
Rabl J. BRCA1-A and BRISC: Multifunctional Molecular Machines for Ubiquitin Signaling. Biomolecules 2020; 10:biom10111503. [PMID: 33142801 PMCID: PMC7692841 DOI: 10.3390/biom10111503] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
The K63-linkage specific deubiquitinase BRCC36 forms the core of two multi-subunit deubiquitination complexes: BRCA1-A and BRISC. BRCA1-A is recruited to DNA repair foci, edits ubiquitin signals on chromatin, and sequesters BRCA1 away from the site of damage, suppressing homologous recombination by limiting resection. BRISC forms a complex with metabolic enzyme SHMT2 and regulates the immune response, mitosis, and hematopoiesis. Almost two decades of research have revealed how BRCA1-A and BRISC use the same core of subunits to perform very distinct biological tasks.
Collapse
Affiliation(s)
- Julius Rabl
- Cryo-EM Knowledge Hub, ETH Zürich, Otto-Stern-Weg 3, HPM C51, 8093 Zürich, Switzerland
| |
Collapse
|
4
|
Jin F, Zhu Y, Chen J, Wang R, Wang Y, Wu Y, Zhou P, Song X, Ren Z, Dong J. BRE Promotes Esophageal Squamous Cell Carcinoma Growth by Activating AKT Signaling. Front Oncol 2020; 10:1407. [PMID: 32850455 PMCID: PMC7431625 DOI: 10.3389/fonc.2020.01407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/03/2020] [Indexed: 01/09/2023] Open
Abstract
Brain and reproductive organ-expressed protein (BRE) is aberrantly expressed in multiple cancers; however, its expression pattern in human esophageal squamous cell carcinoma (ESCC) and its role in ESCC progression remain unclear. In this study, we aimed to investigate the expression pattern of BRE in human ESCC and its role in ESCC progression. BRE was overexpressed in ESCC tissues compared with that in the adjacent non-tumor tissues. Forced expression of BRE was sufficient to enhance ESCC cell growth by promoting cell cycle progression and anti-apoptosis. Silencing of BRE suppressed these malignant phenotypes of ESCC cells. Mechanistic evaluation revealed that BRE overexpression activated the phosphorylation of AKT, and inhibition of the AKT pathway by MK2206 decreased the BRE-induced cell growth and apoptotic resistance in ESCC cells, highlighting the critical role of AKT signaling in mediating the effects of BRE. Moreover, the effects of BRE on ESCC cell growth and AKT activation were verified in a xenograft model in vivo. The present results show that BRE is overexpressed in ESCC tissues and contributes to the growth of ESCC cells by activating AKT signaling both in vitro and in vivo and provide insight into the role of BRE in AKT signaling and ESCC pathogenesis.
Collapse
Affiliation(s)
- Fujun Jin
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Yexuan Zhu
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Jingyi Chen
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Rongze Wang
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Yiliang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Yanting Wu
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Pengjun Zhou
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Xiaowei Song
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Zhe Ren
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Jun Dong
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China.,Department of Pathophysiology, School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Pun CCM, Lee KKH, Chui YL. C-terminal BRE inhibits cellular proliferation and increases sensitivity to chemotherapeutic drugs of MLL-AF9 acute myeloid leukemia cells. Leuk Lymphoma 2019; 60:3011-3019. [PMID: 31111759 DOI: 10.1080/10428194.2019.1616184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BRE (Brain and Reproductive Organ-Expressed) is an anti-apoptotic protein and a core component of DNA-repair BRCA1-A complex. Microarray-detected high BRE gene expression has been found to be associated with better patient survival in AML (acute myeloid leukemia) with MLL-AF9 translocation, and radiotherapy-treated non-familial breast cancer. A recent finding suggests that the high BRE gene expression in MLL-AF9 AML could be attributed to the additional expression of a transcript variant encoding a novel C-terminal BRE isoform. Using THP-1 as the MLL-AF9 AML cell model, we found that ectopic expression of the C-terminal BRE, which could not form an intact BRCA1-A complex, indeed increased cellular sensitivity to chemotherapeutic drugs and inhibited cell proliferation, while the complete opposite was achieved by the ectopic expression of full-length BRE. Our findings suggest that the C-terminal BRE-encoding transcript could be responsible for better patient survival and may have therapeutic potential for cancer.
Collapse
Affiliation(s)
| | - Kenneth Ka-Ho Lee
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Yiu-Loon Chui
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, China
| |
Collapse
|
6
|
BRE/BRCC45 regulates CDC25A stability by recruiting USP7 in response to DNA damage. Nat Commun 2018; 9:537. [PMID: 29416040 PMCID: PMC5803202 DOI: 10.1038/s41467-018-03020-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 01/12/2018] [Indexed: 01/07/2023] Open
Abstract
BRCA2 is essential for maintaining genomic integrity. BRCA2-deficient primary cells are either not viable or exhibit severe proliferation defects. Yet, BRCA2 deficiency contributes to tumorigenesis. It is believed that mutations in genes such as TRP53 allow BRCA2 heterozygous cells to overcome growth arrest when they undergo loss of heterozygosity. Here, we report the use of an insertional mutagenesis screen to identify a role for BRE (Brain and Reproductive organ Expressed, also known as BRCC45), known to be a part of the BRCA1-DNA damage sensing complex, in the survival of BRCA2-deficient mouse ES cells. Cell viability by BRE overexpression is mediated by deregulation of CDC25A phosphatase, a key cell cycle regulator and an oncogene. We show that BRE facilitates deubiquitylation of CDC25A by recruiting ubiquitin-specific-processing protease 7 (USP7) in the presence of DNA damage. Additionally, we uncovered the role of CDC25A in BRCA-mediated tumorigenesis, which can have implications in cancer treatment. Loss of BRCA2 leads to cancer formation. Here, the authors use an insertional mutagenesis approach and identify a multiprotein complex consisting of BRE, USP7 and CDC25A that can support the survival of BRCA2-deficient cells.
Collapse
|
7
|
Marneth AE, Prange KHM, Al Hinai ASA, Bergevoet SM, Tesi N, Janssen-Megens EM, Kim B, Sharifi N, Yaspo ML, Kuster J, Sanders MA, Stoetman ECG, Knijnenburg J, Arentsen-Peters TCJM, Zwaan CM, Stunnenberg HG, van den Heuvel-Eibrink MM, Haferlach T, Fornerod M, Jansen JH, Valk PJM, van der Reijden BA, Martens JHA. C-terminal BRE overexpression in 11q23-rearranged and t(8;16) acute myeloid leukemia is caused by intragenic transcription initiation. Leukemia 2017; 32:828-836. [PMID: 28871137 DOI: 10.1038/leu.2017.280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/16/2017] [Accepted: 08/10/2017] [Indexed: 01/05/2023]
Abstract
Overexpression of the BRE (brain and reproductive organ-expressed) gene defines a distinct pediatric and adult acute myeloid leukemia (AML) subgroup. Here we identify a promoter enriched for active chromatin marks in BRE intron 4 causing strong biallelic expression of a previously unknown C-terminal BRE transcript. This transcript starts with BRE intron 4 sequences spliced to exon 5 and downstream sequences, and if translated might code for an N terminally truncated BRE protein. Remarkably, the new BRE transcript was highly expressed in over 50% of 11q23/KMT2A (lysine methyl transferase 2A)-rearranged and t(8;16)/KAT6A-CREBBP cases, while it was virtually absent from other AML subsets and normal tissues. In gene reporter assays, the leukemia-specific fusion protein KMT2A-MLLT3 transactivated the intragenic BRE promoter. Further epigenome analyses revealed 97 additional intragenic promoter marks frequently bound by KMT2A in AML with C-terminal BRE expression. The corresponding genes may be part of a context-dependent KMT2A-MLLT3-driven oncogenic program, because they were higher expressed in this AML subtype compared with other groups. C-terminal BRE might be an important contributor to this program because in a case with relapsed AML, we observed an ins(11;2) fusing CHORDC1 to BRE at the region where intragenic transcription starts in KMT2A-rearranged and KAT6A-CREBBP AML.
Collapse
Affiliation(s)
- A E Marneth
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - K H M Prange
- Department of Molecular Biology, Faculty of Science, RIMLS, Radboud University, Nijmegen, The Netherlands
| | - A S A Al Hinai
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - S M Bergevoet
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - N Tesi
- Department of Molecular Biology, Faculty of Science, RIMLS, Radboud University, Nijmegen, The Netherlands
| | - E M Janssen-Megens
- Department of Molecular Biology, Faculty of Science, RIMLS, Radboud University, Nijmegen, The Netherlands
| | - B Kim
- Department of Molecular Biology, Faculty of Science, RIMLS, Radboud University, Nijmegen, The Netherlands
| | - N Sharifi
- Department of Molecular Biology, Faculty of Science, RIMLS, Radboud University, Nijmegen, The Netherlands
| | - M L Yaspo
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - J Kuster
- Department of Molecular Biology, Faculty of Science, RIMLS, Radboud University, Nijmegen, The Netherlands
| | - M A Sanders
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - E C G Stoetman
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - J Knijnenburg
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - T C J M Arentsen-Peters
- Pediatric Oncology/Hematology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - C M Zwaan
- Pediatric Oncology/Hematology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - H G Stunnenberg
- Department of Molecular Biology, Faculty of Science, RIMLS, Radboud University, Nijmegen, The Netherlands
| | - M M van den Heuvel-Eibrink
- Pediatric Oncology/Hematology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands.,Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - T Haferlach
- MLL Munich Leukemia Laboratory, Munich, Germany
| | - M Fornerod
- Pediatric Oncology/Hematology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - J H Jansen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - P J M Valk
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - B A van der Reijden
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - J H A Martens
- Department of Molecular Biology, Faculty of Science, RIMLS, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Fridley BL, Ghosh TM, Wang A, Raghavan R, Dai J, Goode EL, Lamba JK. Genome-Wide Study of Response to Platinum, Taxane, and Combination Therapy in Ovarian Cancer: In vitro Phenotypes, Inherited Variation, and Disease Recurrence. Front Genet 2016; 7:37. [PMID: 27047539 PMCID: PMC4801852 DOI: 10.3389/fgene.2016.00037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/04/2016] [Indexed: 11/13/2022] Open
Abstract
Background: The standard treatment for epithelial ovarian cancer (EOC) patients with advanced disease is carboplatin-paclitaxel combination therapy following initial debulking surgery, yet there is wide inter-patient variation in clinical response. We sought to identify pharmacogenomic markers related to carboplatin-paclitaxel therapy. Methods: The lymphoblastoid cell lines, derived from 74 invasive EOC patients seen at the Mayo Clinic, were treated with increasing concentrations of carboplatin and/or paclitaxel and assessed for in vitro drug response using MTT viability and caspase3/7 apoptosis assays. Drug response phenotypes IC50 (effective dose at which 50% of cells are viable) and EC50 (dose resulting in 50% induction of caspase 3/7 activity) were estimated for each patient to paclitaxel and carboplatin (alone and in combination). For each of the six drug response phenotypes, a genome-wide association study was conducted. Results: Statistical analysis found paclitaxel in vitro drug response phenotypes to be moderately associated with time to EOC recurrence (p = 0.008 IC50; p = 0.058 EC50). Although no pharmacogenomic associations were significant at p < 5 × 10−8, seven genomic loci were associated with drug response at p < 10−6, including at 4q21.21 for carboplatin, 4p16.1 and 5q23.2 for paclitaxel, and 3q24, 10q, 1q44, and 13q21 for combination therapy. Nearby genes of interest include FRAS1, MGC32805, SNCAIP, SLC9A9, TIAL1, ZNF731P, and PCDH20. Conclusions: These results suggest the existence of genetic loci associated with response to platinum-taxane therapies. Further research is needed to understand the mechanism by which these loci may impact EOC clinical response to this commonly used regimen.
Collapse
Affiliation(s)
- Brooke L Fridley
- Department of Biostatistics, University of Kansas Medical Center Kansas City, KS, USA
| | - Taraswi M Ghosh
- Department of Experimental and Clinical Pharmacology, University of Minnesota Minneapolis, MN, USA
| | - Alice Wang
- Department of Biostatistics, University of Kansas Medical Center Kansas City, KS, USA
| | - Rama Raghavan
- Department of Biostatistics, University of Kansas Medical Center Kansas City, KS, USA
| | - Junqiang Dai
- Department of Biostatistics, University of Kansas Medical Center Kansas City, KS, USA
| | - Ellen L Goode
- Department of Health Sciences Research, Mayo Clinic Rochester, MN, USA
| | - Jatinder K Lamba
- Department of Pharmacotherapy and Translational Research, University of Florida Gainesville, FL, USA
| |
Collapse
|
9
|
Li Y, Qi K, Zu L, Wang M, Wang Y, Zhou Q. Anti-apoptotic brain and reproductive organ-expressed proteins enhance cisplatin resistance in lung cancer cells via the protein kinase B signaling pathway. Thorac Cancer 2015; 7:190-8. [PMID: 27042221 PMCID: PMC4773300 DOI: 10.1111/1759-7714.12313] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 08/12/2015] [Indexed: 01/24/2023] Open
Abstract
Background Cisplatin‐based chemotherapy is the standard first‐line treatment for non‐small‐cell lung cancers (NSCLCs); however, the long‐term therapeutic effect is reduced by chemoresistance. Brain and reproductive organ‐expressed (BRE) proteins are overexpressed in several cancers and have an anti‐apoptotic function. However, their biological role in the development of the chemoresistant phenotype of human NSCLC remains unknown. We investigate the differential expression of the BRE gene in human lung adenocarcinoma cell lines A549 and the cisplatin‐resistant variant A549/cisplatin (DDP), and the mechanisms of cisplatin‐resistance induced by the BRE gene. Methods Cell counting kit‐8 assay was employed to determine the sensitivity of A549 and A549/DDP cell lines to cisplatin. BRE expression was measured using quantitative real time‐polymerase chain reaction and western blot analysis. The apoptosis rate of lung adenocarcinoma cells was determined by flow cytometry. Results BRE expression in A549 cells, derived from human lung cells, was markedly decreased compared with parental cisplatin‐resistant A549/DDP cells at messenger ribonucleic acid and protein levels. BRE overexpression in A549 significantly decreased sensitivity to DDP by inhibiting cell apoptosis. Conversely, BRE knockdown in A549/DDP cells increased their chemosensitivity. Importantly, we demonstrate that BRE overexpression induces the expression of phosphoprotein kinase B (p‐Akt) in lung cancer cells, while BRE silencing inhibits p‐Akt expression. Furthermore, downregulation of p‐Akt by LY294002 reversed the DDP resistance induced by BRE by increasing apoptosis. BRE enhances the DDP resistance of lung cancer cells through the Akt signaling pathway. Conclusion Our findings provide new insight into the mechanism of DDP resistance in NSCLC cells and suggest BRE as an attractive new target for NSCLC treatment.
Collapse
Affiliation(s)
- Yang Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute Tianjin Medical University General Hospital Tianjin China
| | - Kang Qi
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute Tianjin Medical University General Hospital Tianjin China
| | - Lingling Zu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute Tianjin Medical University General Hospital Tianjin China
| | - Min Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute Tianjin Medical University General Hospital Tianjin China
| | - Yuli Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute Tianjin Medical University General Hospital Tianjin China
| | - Qinghua Zhou
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute Tianjin Medical University General Hospital Tianjin China
| |
Collapse
|
10
|
Forker LJ, Choudhury A, Kiltie AE. Biomarkers of Tumour Radiosensitivity and Predicting Benefit from Radiotherapy. Clin Oncol (R Coll Radiol) 2015; 27:561-9. [PMID: 26119726 DOI: 10.1016/j.clon.2015.06.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 06/02/2015] [Indexed: 12/11/2022]
Abstract
Radiotherapy is an essential component of treatment for more than half of newly diagnosed cancer patients. The response to radiotherapy varies widely between individuals and although advances in technology have allowed the adaptation of radiotherapy fields to tumour anatomy, it is still not possible to tailor radiotherapy based on tumour biology. A biomarker of intrinsic radiosensitivity would be extremely valuable for individual dosing, aiding decision making between radical treatment options and avoiding toxicity of neoadjuvant or adjuvant radiotherapy in those unlikely to benefit. This systematic review summarises the current evidence for biomarkers under investigation as predictors of radiotherapy benefit. Only 10 biomarkers were identified as having been evaluated for their radiotherapy-specific predictive value in over 100 patients in a clinical setting, highlighting that despite a rich literature there were few high-quality studies for inclusion. The most extensively studied radiotherapy predictive biomarkers were the radiosensitivity index and MRE11; however, neither has been evaluated in a randomised controlled trial. Although these biomarkers show promise, there is not enough evidence to justify their use in routine practice. Further validation is needed before biomarkers can fulfil their potential and predict treatment outcomes for large numbers of patients.
Collapse
Affiliation(s)
- L J Forker
- Institute of Cancer Sciences, The University of Manchester, Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Manchester, UK; Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - A Choudhury
- Institute of Cancer Sciences, The University of Manchester, Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Manchester, UK; Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK.
| | - A E Kiltie
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Headington, Oxford, UK
| |
Collapse
|
11
|
Anti-apoptotic protein BRE/BRCC45 attenuates apoptosis through maintaining the expression of caspase inhibitor XIAP in mouse Lewis lung carcinoma D122 cells. Apoptosis 2014; 19:829-40. [PMID: 24395041 DOI: 10.1007/s10495-013-0963-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Brain and Reproductive Organ Expressed (BRE), or BRCC45, is a death receptor-associated antiapoptotic protein, which is also involved in DNA-damage repair, and K63-specific deubiquitination. BRE overexpression attenuates both death receptor- and stress-induced apoptosis, promotes experimental tumor growth, and is associated with human hepatocellular and esophageal carcinoma. How BRE mediates its antiapoptotic function is unknown. Here we report based on the use of a mouse Lewis lung carcinoma cell line D122 that BRE has an essential role in maintaining the cellular protein level of XIAP, which is the most potent endogenous inhibitor of the caspases functioning in both extrinsic and intrinsic apoptosis. shRNA-mediated exhaustive depletion of BRE sensitized D122 cells to apoptosis induced not only by etopoxide, but also by TNF-α even in the absence of cycloheximide, which blocks the synthesis of antiapoptotic proteins by TNF-α-activated NF-κB pathway. In BRE-depleted cells, protein level of XIAP was downregulated, but not the levels of other antiapoptotic proteins, cIAP-1, 2, and cFLIP, regulated by the same NF-κB pathway. Reconstitution of BRE restored XIAP levels and increased resistance to apoptosis. XIAP mRNA level was also reduced in the BRE-depleted cells, but the level of reduction was less profound than that of the protein level. However, BRE could not delay protein turnover of XIAP. Depletion of BRE also increased tumor cell apoptosis, and decreased both local and metastatic tumor growth. Taken together, these findings indicate that BRE and its XIAP-sustaining mechanism could represent novel targets for anti-cancer therapy.
Collapse
|
12
|
Langlands FE, Dodwell D, Hanby AM, Horgan K, Millican-Slater RA, Speirs V, Verghese ET, Smith L, Hughes TA. PSMD9 expression predicts radiotherapy response in breast cancer. Mol Cancer 2014; 13:73. [PMID: 24673853 PMCID: PMC4230020 DOI: 10.1186/1476-4598-13-73] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 03/24/2014] [Indexed: 01/02/2023] Open
Abstract
Background More than 50% of cancer patients are recommended to receive radiotherapy. Recommendations are based mainly on clinical and pathological factors and not intrinsic tumour radio-sensitivity. Use of radiotherapy according to predictive markers would potentially reduce costly over-treatment, and improve the treatment risk-benefit ratio and cancer outcomes. Tumour expression of the 26S proteasome has been reported to predict radiotherapy response: low expression was associated with higher rates of local recurrence after radiotherapy, suggesting that low proteasome expression and activity was associated with radio-resistance. However, this conclusion is at odds with the emerging use of proteasome inhibitors as radio-sensitizers. Our aim was to further analyse the relevance of 26S proteasome expression, focussing specifically on the PSMD9 subunit, in the largest clinical cohort to date, and to investigate the functional role of PSMD9 in radio-sensitivity in breast cancer cell lines. Methods We examined expression of PSMD9 using immunohistochemistry in a cohort of 157 breast cancer patients, including 32 cases (20.4%) that subsequently developed local recurrences. The value of expression as a prognostic or radiotherapy predictive marker was tested using Kaplan-Meier and Cox regression analyses. PSMD9 function was examined in breast cancer cell lines MCF7 and MDA-MB-231 using siRNA knock-downs and colony forming assays after irradiation. Results Low tumour PSMD9 expression was significantly associated with a reduced incidence of local recurrence in patients receiving adjuvant radiotherapy (univariate log rank p = 0.02; multivariate regression p = 0.009), but not in those treated without radiotherapy, suggesting that low PSMD9 expression was associated with relative tumour radio-sensitivity. In support of this, reduction of PSMD9 expression using siRNA in breast cancer cell lines in vitro sensitized cells to radiotherapy. Conclusions We conclude that PSMD9 expression may predict radiotherapy benefit, with low expression indicative of relative radio-sensitivity, the opposite of previous reports relating to 26S proteasome expression. Our conclusion is compatible with use of proteasome inhibitors as radio-sensitizers, and highlights PSMD9 as a potential target for radio-sensitizing drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Laura Smith
- Leeds Institutes of Molecular Medicine, University of Leeds, Leeds, UK.
| | | |
Collapse
|
13
|
Koumangoye RB, Nangami GN, Thompson PD, Agboto VK, Ochieng J, Sakwe AM. Reduced annexin A6 expression promotes the degradation of activated epidermal growth factor receptor and sensitizes invasive breast cancer cells to EGFR-targeted tyrosine kinase inhibitors. Mol Cancer 2013; 12:167. [PMID: 24354805 PMCID: PMC3922904 DOI: 10.1186/1476-4598-12-167] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 12/16/2013] [Indexed: 01/16/2023] Open
Abstract
Background The expression of annexin A6 (AnxA6) in AnxA6-deficient non-invasive tumor cells has been shown to terminate epidermal growth factor receptor (EGFR) activation and downstream signaling. However, as a scaffolding protein, AnxA6 may stabilize activated cell-surface receptors to promote cellular processes such as tumor cell motility and invasiveness. In this study, we investigated the contribution of AnxA6 in the activity of EGFR in invasive breast cancer cells and examined whether the expression status of AnxA6 influences the response of these cells to EGFR-targeted tyrosine kinase inhibitors (TKIs) and/or patient survival. Results We demonstrate that in invasive BT-549 breast cancer cells AnxA6 expression is required for sustained membrane localization of activated (phosho-Y1068) EGFR and consequently, persistent activation of MAP kinase ERK1/2 and phosphoinositide 3-kinase/Akt pathways. Depletion of AnxA6 in these cells was accompanied by rapid degradation of activated EGFR, attenuated downstream signaling and as expected enhanced anchorage-independent growth. Besides inhibition of cell motility and invasiveness, AnxA6-depleted cells were also more sensitive to the EGFR-targeted TKIs lapatinib and PD153035. We also provide evidence suggesting that reduced AnxA6 expression is associated with a better relapse-free survival but poorer distant metastasis-free and overall survival of basal-like breast cancer patients. Conclusions Together this demonstrates that the rapid degradation of activated EGFR in AnxA6-depleted invasive tumor cells underlies their sensitivity to EGFR-targeted TKIs and reduced motility. These data also suggest that AnxA6 expression status may be useful for the prediction of the survival and likelihood of basal-like breast cancer patients to respond to EGFR-targeted therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Amos M Sakwe
- Department of Biochemistry and Cancer Biology, Meharry Medical College, 1005 Dr, DB Todd Jr, Blvd, Nashville, TN 37208, USA.
| |
Collapse
|