1
|
Zhang J, He P, Wang W, Wang Y, Yang H, Hu Z, Song Y, Chang J, Yu B. Structure-Based Design of New LSD1/EGFR L858R/T790M Dual Inhibitors for Treating EGFR Mutant NSCLC Cancers. J Med Chem 2025; 68:5954-5972. [PMID: 40015914 DOI: 10.1021/acs.jmedchem.5c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Epigenetic changes, such as LSD1 dysregulation, contribute to acquired resistance in EGFR mutant NSCLCs and reduce the effectiveness of current therapeutics. To address the challenges, we herein reported the structure-based design of new LSD1/EGFR dual inhibitors, of which ZJY-54 represents the shortlisted lead compound with high potency, selectivity, and unique dual modes of action (namely irreversibly binding to EGFR but reversibly binding to LSD1). ZJY-54 effectively inhibited growth in both parent- and TKI-resistant NSCLC cells. In H1975 cells, ZJY-54 induced accumulation of H3K4me2 and H3K9me2, as well as inhibited phosphorylation of EGFR signaling. ZJY-54 showed favorable PK profiles and effectively inhibited tumor growth in the H1975 xenograft model. ZJY-54 represents the best-in-class LSD1/EGFR dual inhibitor and warrants further preclinical development for treating NSCLCs. These findings highlight the therapeutic potential of LSD1/EGFR dual inhibitors in drug-resistant cancers where EGFR and LSD1 were dysregulated.
Collapse
Affiliation(s)
- Jingya Zhang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Pengxing He
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenwen Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuxing Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Han Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaoxin Hu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Yihui Song
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Junbiao Chang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Yu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Yang J, Hawthorne L, Stack S, Blagg B, Ali A, Zorlutuna P. Engineered Age-Mimetic Breast Cancer Models Reveal Differential Drug Responses in Young and Aged Microenvironments. Adv Healthc Mater 2025; 14:e2404461. [PMID: 39821643 PMCID: PMC11960616 DOI: 10.1002/adhm.202404461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Indexed: 01/19/2025]
Abstract
Aging is one of the most significant risk factors for breast cancer. With the growing interest in the alterations of the aging breast tissue microenvironment, it is identified that aging is related to tumorigenesis, invasion, and drug resistance. However, current pre-clinical disease models often neglect the impact of aging and sometimes result in worse clinical outcomes. In this study, aged animal-generated materials are utilized to create and validate a novel age-mimetic breast cancer model that generates an aging microenvironment for cells and alters cells toward a more invasive phenotype found in the aged environment. Furthermore, the age-mimetic models are utilized for 3D breast cancer invasion assessment and high-throughput screening of over 700 drugs in the FDA-approved drug library. 36 potential effective drug targets as well as 34 potential drug targets with different drug responses in different age groups are identified, demonstrating the potential of this age-mimetic breast cancer model for further in-depth breast cancer studies and drug development.
Collapse
Affiliation(s)
- Jun Yang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Lauren Hawthorne
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Sharon Stack
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA
| | - Brian Blagg
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA
| | - Aktar Ali
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA
| | - Pinar Zorlutuna
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA
| |
Collapse
|
3
|
Mehta K, Hegde M, Girisa S, Vishwa R, Alqahtani MS, Abbas M, Shakibaei M, Sethi G, Kunnumakkara AB. Targeting RTKs/nRTKs as promising therapeutic strategies for the treatment of triple-negative breast cancer: evidence from clinical trials. Mil Med Res 2024; 11:76. [PMID: 39668367 PMCID: PMC11636053 DOI: 10.1186/s40779-024-00582-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/08/2024] [Indexed: 12/14/2024] Open
Abstract
The extensive heterogeneity and the limited availability of effective targeted therapies contribute to the challenging prognosis and restricted survival observed in triple-negative breast cancer (TNBC). Recent research indicates the aberrant expression of diverse tyrosine kinases (TKs) within this cancer, contributing significantly to tumor cell proliferation, survival, invasion, and migration. The contemporary paradigm shift towards precision medicine has highlighted TKs and their receptors as promising targets for pharmacotherapy against a range of malignancies, given their pivotal roles in tumor initiation, progression, and advancement. Intensive investigations have focused on various monoclonal antibodies (mAbs) and small molecule inhibitors that specifically target proteins such as epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor (VEGFR), cellular mesenchymal-epithelial transition factor (c-MET), human epidermal growth factor receptor 2 (HER2), among others, for combating TNBC. These agents have been studied both in monotherapy and in combination with other chemotherapeutic agents. Despite these advances, a substantial terrain of unexplored potential lies within the realm of TK targeted therapeutics, which hold promise in reshaping the therapeutic landscape. This review summarizes the various TK targeted therapeutics that have undergone scrutiny as potential therapeutic interventions for TNBC, dissecting the outcomes and revelations stemming from diverse clinical investigations. A key conclusion from the umbrella clinical trials evidences the necessity for in-depth molecular characterization of TNBCs for the maximum efficiency of TK targeted therapeutics, either as standalone treatments or a combination. Moreover, our observation highlights that the outcomes of TK targeted therapeutics in TNBC are substantially influenced by the diversity of the patient cohort, emphasizing the prioritization of individual patient genetic/molecular profiles for precise TNBC patient stratification for clinical studies.
Collapse
Affiliation(s)
- Kasshish Mehta
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Mehdi Shakibaei
- Department of Human-Anatomy, Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Ludwig-Maximilian-University, 80336, Munich, Germany
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India.
| |
Collapse
|
4
|
Yang J, Hawthorne L, Stack S, Blagg B, Ali A, Zorlutuna P. Engineered Age-Mimetic Breast Cancer Models Reveal Differential Drug Responses in Young and Aged Microenvironments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.06.616903. [PMID: 39416111 PMCID: PMC11482747 DOI: 10.1101/2024.10.06.616903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Aging is one of the most significant risk factors for breast cancer. With the growing interests in the alterations of the aging breast tissue microenvironment, it has been identified that aging is related to tumorigenesis, invasion, and drug resistance. However, current pre-clinical disease models often neglect the impact of aging and sometimes result in worse clinical outcomes. In this study, we utilized aged animal-generated materials to create and validate a novel age-mimetic breast cancer model that generates an aging microenvironment for cells and alters cells towards a phenotype found in the aged environment. Furthermore, we utilized the age-mimetic models for 3D breast cancer invasion assessment and high-throughput screening of over 700 drugs in the FDA-approved drug library. We identified 36 potential effective drug targets and 34 potential drug targets with different drug responses in different age groups, demonstrating the potential of this age-mimetic breast cancer model for further in-depth breast cancer studies and drug development.
Collapse
Affiliation(s)
- Jun Yang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Lauren Hawthorne
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Sharon Stack
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA
| | - Brian Blagg
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA
| | - Aktar Ali
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA
| | - Pinar Zorlutuna
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA
| |
Collapse
|
5
|
Dai S, Liu Y, Liu Z, Li R, Luo F, Li Y, Dai L, Peng X. Cancer-associated fibroblasts mediate resistance to anti-EGFR therapies in cancer. Pharmacol Res 2024; 206:107304. [PMID: 39002870 DOI: 10.1016/j.phrs.2024.107304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Over the last decade, epidermal growth factor receptor (EGFR)-targeted therapies have transformed the treatment landscape for patients with advanced solid tumors. Despite these advances, resistance to anti-EGFR therapies is still a significant clinical challenge. While cell-autonomous mechanisms of resistance are well-documented, they do not fully elucidate the complexity of drug resistance. Cancer-associated fibroblasts (CAFs), key mediators within the tumor microenvironment (TME), have emerged as pivotal players in cancer progression and chemoresistance. Recent evidence implicates CAFs in resistance to anti-EGFR therapies, suggesting they may undermine treatment efficacy. This review synthesizes current data, highlighting the critical role of CAFs in resistance pathogenesis and summarizing recent therapeutic strategies targeting CAFs. We underscore the challenges and advocate for the exploration of CAFs as a potential dual-targeted approach.
Collapse
Affiliation(s)
- Shuang Dai
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yingtong Liu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610041, China
| | - Zheran Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu Sichuan, China
| | - Ruidan Li
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu Sichuan, China
| | - Feng Luo
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Lei Dai
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu Sichuan, China.
| |
Collapse
|
6
|
Hammershøi Madsen AM, Løvendahl Eefsen RH, Nielsen D, Kümler I. Targeted Treatment of Metastatic Triple-Negative Breast Cancer: A Systematic Review. Breast J 2024; 2024:9083055. [PMID: 39742383 PMCID: PMC11257761 DOI: 10.1155/2024/9083055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/18/2024] [Accepted: 05/11/2024] [Indexed: 01/03/2025]
Abstract
Introduction Triple-negative breast cancer (TNBC) is a subgroup of breast cancer characterized by the absence of estrogen and the human epidermal 2 receptor and also a lack of targeted therapy options. Chemotherapy has so far been the only approved treatment option, and patients with metastatic cancer have a dismal prognosis with a median overall survival (OS) of approximately 14 months. Identification of druggable targets for metastatic TNBC is therefore of special interest. Methods A systematic search was performed, to review the existing evidence on targeted therapies in metastatic TNBC. Results A total of 37 phase 2/3 studies were identified, evaluating 29 different targeted agents. In this review, results on progression free survival (PFS) and OS are presented. Conclusion In most of the studies included, no improvement was observed for neither PFS nor OS; however, a few studies did show improvement with targeted agents and have led to new treatment options in subgroups of patients. The antibody drug conjugate, sacituzumab govitecan, demonstrated superior PFS and OS in comparison to chemotherapy. Immunotherapy with checkpoint inhibitors such as atezolizumab and pembrolizumab is now recommended as a first-line treatment option for patients with expression a PD-L1 positive tumor. Finally, the poly adenosine diphosphate-ribose polymerase (PARP) inhibitors talazoparib and olaparib are recommended, as first-line treatment options in patients with metastatic breast cancer and a germline BRCA mutation, but an immune checkpoint inhibitor should be considered for the subset of these patients who are PD-L1 positive.
Collapse
Affiliation(s)
- Anna Martha Hammershøi Madsen
- Department of Oncology 54 B1Herlev HospitalUniversity of Copenhagen, Herlev Ringvej 75, DK-2730, Copenhagen, Denmark
| | - Rikke Helene Løvendahl Eefsen
- Department of Oncology 54 B1Herlev HospitalUniversity of Copenhagen, Herlev Ringvej 75, DK-2730, Copenhagen, Denmark
| | - Dorte Nielsen
- Department of Oncology 54 B1Herlev HospitalUniversity of Copenhagen, Herlev Ringvej 75, DK-2730, Copenhagen, Denmark
| | - Iben Kümler
- Department of Oncology 54 B1Herlev HospitalUniversity of Copenhagen, Herlev Ringvej 75, DK-2730, Copenhagen, Denmark
| |
Collapse
|
7
|
Mustafa M, Abbas K, Alam M, Ahmad W, Moinuddin, Usmani N, Siddiqui SA, Habib S. Molecular pathways and therapeutic targets linked to triple-negative breast cancer (TNBC). Mol Cell Biochem 2024; 479:895-913. [PMID: 37247161 DOI: 10.1007/s11010-023-04772-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/18/2023] [Indexed: 05/30/2023]
Abstract
Cancer is a group of diseases characterized by uncontrolled cellular growth, abnormal morphology, and altered proliferation. Cancerous cells lose their ability to act as anchors, allowing them to spread throughout the body and infiltrate nearby cells, tissues, and organs. If these cells are not identified and treated promptly, they will likely spread. Around 70% of female breast cancers are caused by a mutation in the BRCA gene, specifically BRCA1. The absence of progesterone, oestrogen and HER2 receptors (human epidermal growth factor) distinguishes the TNBC subtype of breast cancer. There were approximately 6,85,000 deaths worldwide and 2.3 million new breast cancer cases in women in 2020. Breast cancer is the most common cancer globally, affecting 7.8 million people at the end of 2020. Compared to other cancer types, breast cancer causes more women to lose disability-adjusted life years (DALYs). Worldwide, women can develop breast cancer at any age after puberty, but rates increase with age. The maintenance of mammary stem cell stemness is disrupted in TNBC, governed by signalling cascades controlling healthy mammary gland growth and development. Interpreting these essential cascades may facilitate an in-depth understanding of TNBC cancer and the search for an appropriate therapeutic target. Its treatment remains challenging because it lacks specific receptors, which renders hormone therapy and medications ineffective. In addition to radiotherapy, numerous recognized chemotherapeutic medicines are available as inhibitors of signalling pathways, while others are currently undergoing clinical trials. This article summarizes the vital druggable targets, therapeutic approaches, and strategies associated with TNBC.
Collapse
Affiliation(s)
- Mohd Mustafa
- Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh, 202002, India
| | - Kashif Abbas
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Mudassir Alam
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Waleem Ahmad
- Department of Medicine, J.N. Medical College, Aligarh Muslim University, Aligarh, India
| | - Moinuddin
- Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh, 202002, India
| | - Nazura Usmani
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Shahid Ali Siddiqui
- Department of Radiotherapy, J.N. Medical College, Aligarh Muslim University, Aligarh, India
| | - Safia Habib
- Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
8
|
Duranti E, Cordani N, Villa C. Edaravone: A Novel Possible Drug for Cancer Treatment? Int J Mol Sci 2024; 25:1633. [PMID: 38338912 PMCID: PMC10855093 DOI: 10.3390/ijms25031633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Despite significant advancements in understanding the causes and progression of tumors, cancer remains one of the leading causes of death worldwide. In light of advances in cancer therapy, there has been a growing interest in drug repurposing, which involves exploring new uses for medications that are already approved for clinical use. One such medication is edaravone, which is currently used to manage patients with cerebral infarction and amyotrophic lateral sclerosis. Due to its antioxidant and anti-inflammatory properties, edaravone has also been investigated for its potential activities in treating cancer, notably as an anti-proliferative and cytoprotective drug against side effects induced by traditional cancer therapies. This comprehensive review aims to provide updates on the various applications of edaravone in cancer therapy. It explores its potential as a standalone antitumor drug, either used alone or in combination with other medications, as well as its role as an adjuvant to mitigate the side effects of conventional anticancer treatments.
Collapse
Affiliation(s)
| | | | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.D.); (N.C.)
| |
Collapse
|
9
|
Masci D, Naro C, Puxeddu M, Urbani A, Sette C, La Regina G, Silvestri R. Recent Advances in Drug Discovery for Triple-Negative Breast Cancer Treatment. Molecules 2023; 28:7513. [PMID: 38005235 PMCID: PMC10672974 DOI: 10.3390/molecules28227513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most heterogeneous and aggressive breast cancer subtypes with a high risk of death on recurrence. To date, TNBC is very difficult to treat due to the lack of an effective targeted therapy. However, recent advances in the molecular characterization of TNBC are encouraging the development of novel drugs and therapeutic combinations for its therapeutic management. In the present review, we will provide an overview of the currently available standard therapies and new emerging therapeutic strategies against TNBC, highlighting the promises that newly developed small molecules, repositioned drugs, and combination therapies have of improving treatment efficacy against these tumors.
Collapse
Affiliation(s)
- Domiziana Masci
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy; (D.M.); (A.U.)
| | - Chiara Naro
- Department of Neurosciences, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy; (C.N.); (C.S.)
- GSTeP-Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Michela Puxeddu
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (G.L.R.)
| | - Andrea Urbani
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy; (D.M.); (A.U.)
| | - Claudio Sette
- Department of Neurosciences, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy; (C.N.); (C.S.)
- GSTeP-Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Giuseppe La Regina
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (G.L.R.)
| | - Romano Silvestri
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (G.L.R.)
| |
Collapse
|
10
|
Zhang Z, Zhang R, Li D. Molecular Biology Mechanisms and Emerging Therapeutics of Triple-Negative Breast Cancer. Biologics 2023; 17:113-128. [PMID: 37767463 PMCID: PMC10520847 DOI: 10.2147/btt.s426392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that is conventionally characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2), accounting for approximately 15-20% of all breast cancers. Compared to other molecular phenotypes, TNBC is typically associated with high malignancy and poor prognosis. Cytotoxic agents have been the mainstay of treatment for the past few decades due to the lack of definitive targets and limited therapeutic interventions. However, recent developments have demonstrated that TNBC has peculiar molecular classifications and biomarkers, which provide the possibility of evolving treatment from basic cytotoxic chemotherapy to an expanding domain of targeted therapies. This review presents a framework for understanding the current clinical experience surrounding molecular biology mechanisms in TNBC (Figure 1). Including immunotherapy, polymerase (PARP) and PI3K/AKT pathway inhibitors, antibody-drug conjugates, and androgen receptor (AR) blockade. Additionally, the role of miRNA therapeutics targeting TNBC and potential strategies targeting cancer stem cells (CSCs) are discussed and highlighted. As more and more treatments arise on the horizon, we believe that patients with TNBC will have a new sense of hope.
Collapse
Affiliation(s)
- Zhiying Zhang
- Inner Mongolia Medical University, Department of Thyroid Breast Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, 010050, People’s Republic of China
| | - Rui Zhang
- Inner Mongolia Medical University, Department of Thyroid Breast Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, 010050, People’s Republic of China
| | - Donghai Li
- Inner Mongolia Medical University, Department of Thyroid Breast Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, 010050, People’s Republic of China
| |
Collapse
|
11
|
Önder CE, Ziegler TJ, Becker R, Brucker SY, Hartkopf AD, Engler T, Koch A. Advancing Cancer Therapy Predictions with Patient-Derived Organoid Models of Metastatic Breast Cancer. Cancers (Basel) 2023; 15:3602. [PMID: 37509265 PMCID: PMC10377262 DOI: 10.3390/cancers15143602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The poor outcome of metastasized breast cancer (BC) stresses the need for reliable personalized oncology and the significance of models recapitulating the heterogeneous nature of BC. Here, we cultured metastatic tumor cells derived from advanced BC patients with malignant ascites (MA) or malignant pleural effusion (MPE) using organoid technology. We identified the characteristics of tumor organoids by applying immunohistochemistry and mutation analysis. Tumor organoids preserved their expression patterns and hotspot mutations when compared to their original metastatic counterpart and are consequently a well-suited in vitro model for metastasized BC. We treated the tumor organoids to implement a reliable application for drug screenings of metastasized cells. Drug assays revealed that responses are not always in accord with expression patterns, pathway activation, and hotspot mutations. The discrepancy between characterization and functional testing underlines the relevance of linking IHC stainings and mutational analysis of metastasized BC with in vitro drug assays. Our metastatic BC organoids recapitulate the characteristics of their original sample derived from MA and MPE and serve as an invaluable tool that can be utilized in a preclinical setting for guiding therapy decisions.
Collapse
Affiliation(s)
- Cansu E Önder
- Research Institute for Women's Health, University of Tübingen, 72076 Tübingen, Germany
| | - Teresa J Ziegler
- Research Institute for Women's Health, University of Tübingen, 72076 Tübingen, Germany
| | - Ronja Becker
- Research Institute for Women's Health, University of Tübingen, 72076 Tübingen, Germany
| | - Sara Y Brucker
- Research Institute for Women's Health, University of Tübingen, 72076 Tübingen, Germany
- Department of Women's Health, University of Tübingen, 72076 Tübingen, Germany
| | - Andreas D Hartkopf
- Department of Women's Health, University of Tübingen, 72076 Tübingen, Germany
| | - Tobias Engler
- Department of Women's Health, University of Tübingen, 72076 Tübingen, Germany
| | - André Koch
- Research Institute for Women's Health, University of Tübingen, 72076 Tübingen, Germany
- Department of Women's Health, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
12
|
Subhan MA, Parveen F, Shah H, Yalamarty SSK, Ataide JA, Torchilin VP. Recent Advances with Precision Medicine Treatment for Breast Cancer including Triple-Negative Sub-Type. Cancers (Basel) 2023; 15:2204. [PMID: 37190133 PMCID: PMC10137302 DOI: 10.3390/cancers15082204] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Breast cancer is a heterogeneous disease with different molecular subtypes. Breast cancer is the second leading cause of mortality in woman due to rapid metastasis and disease recurrence. Precision medicine remains an essential source to lower the off-target toxicities of chemotherapeutic agents and maximize the patient benefits. This is a crucial approach for a more effective treatment and prevention of disease. Precision-medicine methods are based on the selection of suitable biomarkers to envision the effectiveness of targeted therapy in a specific group of patients. Several druggable mutations have been identified in breast cancer patients. Current improvements in omics technologies have focused on more precise strategies for precision therapy. The development of next-generation sequencing technologies has raised hopes for precision-medicine treatment strategies in breast cancer (BC) and triple-negative breast cancer (TNBC). Targeted therapies utilizing immune checkpoint inhibitors (ICIs), epidermal growth factor receptor inhibitor (EGFRi), poly(ADP-ribose) polymerase inhibitor (PARPi), antibody-drug conjugates (ADCs), oncolytic viruses (OVs), glucose transporter-1 inhibitor (GLUT1i), and targeting signaling pathways are potential treatment approaches for BC and TNBC. This review emphasizes the recent progress made with the precision-medicine therapy of metastatic breast cancer and TNBC.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Farzana Parveen
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Department of Pharmacy Services, DHQ Hospital Jhang 35200, Primary and Secondary Healthcare Department, Government of Punjab, Lahore 54000, Pakistan
| | - Hassan Shah
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | | | - Janaína Artem Ataide
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, SP, Brazil
| | - Valdimir P. Torchilin
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
13
|
Boyd DC, Zboril EK, Olex AL, Leftwich TJ, Hairr NS, Byers HA, Valentine AD, Altman JE, Alzubi MA, Grible JM, Turner SA, Ferreira-Gonzalez A, Dozmorov MG, Harrell JC. Discovering Synergistic Compounds with BYL-719 in PI3K Overactivated Basal-like PDXs. Cancers (Basel) 2023; 15:cancers15051582. [PMID: 36900375 PMCID: PMC10001201 DOI: 10.3390/cancers15051582] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Basal-like triple-negative breast cancer (TNBC) tumor cells are difficult to eliminate due to resistance mechanisms that promote survival. While this breast cancer subtype has low PIK3CA mutation rates when compared to estrogen receptor-positive (ER+) breast cancers, most basal-like TNBCs have an overactive PI3K pathway due to gene amplification or high gene expression. BYL-719 is a PIK3CA inhibitor that has been found to have low drug-drug interactions, which increases the likelihood that it could be useful for combinatorial therapy. Alpelisib (BYL-719) with fulvestrant was recently approved for treating ER+ breast cancer patients whose cancer had developed resistance to ER-targeting therapy. In these studies, a set of basal-like patient-derived xenograft (PDX) models was transcriptionally defined with bulk and single-cell RNA-sequencing and clinically actionable mutation profiles defined with Oncomine mutational profiling. This information was overlaid onto therapeutic drug screening results. BYL-719-based, synergistic two-drug combinations were identified with 20 different compounds, including everolimus, afatinib, and dronedarone, which were also found to be effective at minimizing tumor growth. These data support the use of these drug combinations towards cancers with activating PIK3CA mutations/gene amplifications or PTEN deficient/PI3K overactive pathways.
Collapse
Affiliation(s)
- David C. Boyd
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA
- Integrative Life Sciences Program, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Emily K. Zboril
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Amy L. Olex
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Tess J. Leftwich
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Nicole S. Hairr
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Holly A. Byers
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Aaron D. Valentine
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Julia E. Altman
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mohammad A. Alzubi
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA
- Integrative Life Sciences Program, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Jacqueline M. Grible
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Scott A. Turner
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | - Mikhail G. Dozmorov
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - J. Chuck Harrell
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence:
| |
Collapse
|
14
|
Song WM, Chia PL, Zhou X, Walsh M, Silva J, Zhang B. Pseudo-temporal dynamics of chemoresistant triple negative breast cancer cells reveal EGFR/HER2 inhibition as synthetic lethal during mid-neoadjuvant chemotherapy. iScience 2023; 26:106064. [PMID: 36824282 PMCID: PMC9942122 DOI: 10.1016/j.isci.2023.106064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/17/2022] [Accepted: 01/23/2023] [Indexed: 01/29/2023] Open
Abstract
In the absence of targetable hormonal axes, chemoresistance for triple-negative breast cancer (TNBC) often compromises patient outcomes. To investigate the underlying tumor dynamics, we performed trajectory analysis on the single-nuclei RNA-seq (snRNA-seq) of chemoresistant tumor clones during neoadjuvant chemotherapy (NAC). It revealed a common tumor trajectory across multiple patients with HER2-like expansions during NAC. Genome-wide CRISPR-Cas9 knock-out on mammary epithelial cells revealed chemosensitivity-promoting knock-outs were up-regulated along the tumor trajectory. Furthermore, we derived a consensus gene signature of TNBC chemoresistance by comparing the trajectory transcriptome with chemoresistant transcriptomes from TNBC cell lines and poor prognosis patient samples to predict FDA-approved drugs, including afatinib (pan-HER inhibitor), targeting the consensus signature. We validated the synergistic efficacy of afatinib and paclitaxel in chemoresistant TNBC cells and confirmed pharmacological suppression of the consensus signature. The study provides a dynamic model of chemoresistant tumor transcriptome, and computational framework for pharmacological intervention.
Collapse
Affiliation(s)
- Won-Min Song
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Pei-Ling Chia
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Martin Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jose Silva
- Department of Pathology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
15
|
Passalacqua MI, Rizzo G, Santarpia M, Curigliano G. 'Why is survival with triple negative breast cancer so low? insights and talking points from preclinical and clinical research'. Expert Opin Investig Drugs 2022; 31:1291-1310. [PMID: 36522800 DOI: 10.1080/13543784.2022.2159805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Triple negative breast cancer is typically related to poor prognosis, early metastasis, and high recurrence rate. Intrinsic and extrinsic biological features of TNBC and resistance mechanisms to conventional therapies can support its aggressive behavior, characterizing TNBC how extremely heterogeneous. Novel combination strategies are under investigation, including immunotherapeutic agents, anti-drug conjugates, PARP inhibitors, and various targeting agents, exploring, in the meanwhile, possible predictive biomarkers to correctly select patients for the optimal treatment for their specific subtype. AREAS COVERED This article examines the main malignity characteristics across different subtype, both histological and molecular, and the resistance mechanisms, both primary and acquired, to different drugs explored in the landscape of TNBC treatment, that lead TNBC to still has high mortality rate. EXPERT OPINION The complexity of TNBC is not only the main reason of its aggressivity, but its heterogeneity should be exploited in terms of therapeutics opportunities, combining agents with different mechanism of action, after a correct selection by biologic or molecular biomarkers. The main goal is to understand what TNBC really is and to act selectively on its characteristics, with a personalized anticancer treatment.
Collapse
Affiliation(s)
- Maria Ilenia Passalacqua
- Division of Early Drug Development for Innovative Therapies, Ieo, European Institute of Oncology Irccs, Milan, Italy.,Department of Oncology and Haemato-Oncology, University of Milano, Milan, Italy.,Medical Oncology Unit, Department of Human Pathology G Barresi, University of Messina, Messina, Italy
| | - Graziella Rizzo
- Division of Early Drug Development for Innovative Therapies, Ieo, European Institute of Oncology Irccs, Milan, Italy.,Department of Oncology and Haemato-Oncology, University of Milano, Milan, Italy.,Medical Oncology Unit, Department of Human Pathology G Barresi, University of Messina, Messina, Italy
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology G Barresi, University of Messina, Messina, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapies, Ieo, European Institute of Oncology Irccs, Milan, Italy.,Department of Oncology and Haemato-Oncology, University of Milano, Milan, Italy
| |
Collapse
|
16
|
Drago JZ, Ferraro E, Abuhadra N, Modi S. Beyond HER2: Targeting the ErbB receptor family in breast cancer. Cancer Treat Rev 2022; 109:102436. [PMID: 35870237 PMCID: PMC10478787 DOI: 10.1016/j.ctrv.2022.102436] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 11/28/2022]
Abstract
Targeting the HER2 oncogene represents one of the greatest advances in the treatment of breast cancer. HER2 is one member of the ERBB-receptor family, which includes EGFR (HER1), HER3 and HER4. In the presence or absence of underling genomic aberrations such as mutations or amplification events, intricate interactions between these proteins on the cell membrane lead to downstream signaling that encourages cancer growth and proliferation. In this Review, we contextualize efforts to pharmacologically target the ErbB receptor family beyond HER2, with a focus on EGFR and HER3. Preclinical and clinical efforts are synthesized. We discuss successes and failures of this approach to date, summarize lessons learned, and propose a way forward that invokes new therapeutic modalities such as antibody drug conjugates (ADCs), combination strategies, and patient selection through rational biomarkers.
Collapse
Affiliation(s)
- Joshua Z Drago
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weil Cornell Medicine, New York, NY, USA.
| | - Emanuela Ferraro
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nour Abuhadra
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weil Cornell Medicine, New York, NY, USA
| | - Shanu Modi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weil Cornell Medicine, New York, NY, USA
| |
Collapse
|
17
|
Hickish T, Mehta A, Liu MC, Huang CS, Arora RS, Chang YC, Yang Y, Vladimirov V, Jain M, Tsang J, Pemberton K, Sadrolhefazi B, Jin X, Tseng LM. Afatinib alone and in combination with vinorelbine or paclitaxel, in patients with HER2-positive breast cancer who failed or progressed on prior trastuzumab and/or lapatinib (LUX-Breast 2): an open-label, multicenter, phase II trial. Breast Cancer Res Treat 2022; 192:593-602. [PMID: 35138529 PMCID: PMC8960620 DOI: 10.1007/s10549-021-06449-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Resistance to HER2 (ErbB2)-targeted therapy may be mediated by other members of the ErbB family. We investigated the efficacy and safety of the irreversible ErbB family blocker, afatinib, alone as first-line therapy in the advanced setting and in combination with vinorelbine or paclitaxel for those who progressed on afatinib monotherapy, in female patients with metastatic breast cancer who had failed or progressed on prior HER2-targeted therapy in the early disease setting. METHODS In this phase II, single-arm, two-part study (ClinicalTrials.gov: NCT01271725), patients in part A received afatinib 40 mg/day in 21-day cycles until disease progression or intolerable adverse events (AEs). Patients with progressive disease could then receive afatinib plus weekly vinorelbine 25 mg/m2 or paclitaxel 80 mg/m2 until disease progression or intolerable AEs (part B). The primary endpoint was confirmed objective response rate (RECIST v1.1). RESULTS Eighty-seven patients were enrolled and 74 were treated in part A (median age: 51 years [range 27-76]; 31 [42%] estrogen receptor-positive, 26 [35%] progesterone receptor-positive). Of these, 39 (53%) patients went on to receive afatinib plus vinorelbine (13 patients) or paclitaxel (26 patients) in part B. Thirteen (18%) and 12 (31%) patients achieved an objective response in parts A and B, respectively. The most common treatment-related AEs with afatinib monotherapy (any/grade ≥ 3) were diarrhea (68%/8%) and rash (49%/4%). Combination therapy was generally well tolerated, with no additive toxicity observed. CONCLUSION Afatinib treatment, alone or in combination with vinorelbine or paclitaxel, was associated with objective responses in ≥ 18% of patients with metastatic breast cancer for whom prior HER2-targeted therapy has failed. Treatment-related AEs were generally manageable, with few grade ≥ 3 AEs reported. TRIAL REGISTRATION ClinicalTrials.gov, NCT01271725, registered 1 July 2011.
Collapse
Affiliation(s)
- Tamas Hickish
- Royal Bournemouth Hospital/Bournemouth University, Castle Ln E, Bournemouth, BH7 7DW, UK.
| | - Ajay Mehta
- Central India Cancer Research Institute, Nagpur, India
| | - Mei-Ching Liu
- Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan
| | | | | | | | - Youngsen Yang
- Division of Hematology-Oncology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Internal Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | | | | | - Janice Tsang
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | | | | | - Xidong Jin
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | | |
Collapse
|
18
|
Wang L, Zhai Q, Lu Q, Lee K, Zheng Q, Hong R, Wang S. Clinical genomic profiling to identify actionable alterations for very early relapsed triple-negative breast cancer patients in the Chinese population. Ann Med 2021; 53:1358-1369. [PMID: 34396843 PMCID: PMC8381897 DOI: 10.1080/07853890.2021.1966086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) represents about 19% of all breast cancer cases in the Chinese population. Lack of targeted therapy contributes to the poorer outcomes compared with other breast cancer subtypes. Comprehensive genomic profiling helps to explore the clinically relevant genomic alterations (CRGAs) and potential therapeutic targets in very-early-relapsed TNBC patients. METHODS Formalin-fixed paraffin-embedded (FFPE) tumour tissue specimens from 23 patients with very-early-relapsed TNBC and 13 patients with disease-free survival (DFS) more than 36 months were tested by FoundationOne CDx (F1CDx) in 324 genes and select gene rearrangements, along with genomic signatures including microsatellite instability (MSI) and tumour mutational burden (TMB). RESULTS In total, 137 CRGAs were detected in the 23 very-early-relapsed TNBC patients, averaging six alterations per sample. The mean TMB was 4 Muts/Mb, which was higher than that in non-recurrence patients, and is statistically significant. The top-ranked altered genes were TP53 (83%), PTEN (35%), RB1 (30%), PIK3CA (26%) and BRCA1 (22%). RB1 mutation carriers had shorter DFS. Notably, 100% of these patients had at least one CRGA, and 87% of patients had at least one actionable alteration. In pathway analysis, patients who carried a mutation in the cell cycle pathway were more likely to experience very early recurrence. Strikingly, we detected one patient with ERBB2 amplification and one patient with ERBB2 exon20 insertion, both of which were missed by immunohistochemistry (IHC). We also detected novel alterations of ROS1-EPHA7 fusion for the first time, which has not been reported in breast cancer before. CONCLUSIONS The comprehensive genomic profiling can identify novel treatment targets and address the limited options in TNBC patients. Therefore, incorporating F1CDx into TNBC may shed light on novel therapeutic opportunities for these very-early-relapsed TNBC patients.
Collapse
Affiliation(s)
- Liye Wang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Qinglian Zhai
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Qianyi Lu
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Kaping Lee
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Qiufan Zheng
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Ruoxi Hong
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Shusen Wang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| |
Collapse
|
19
|
Yu KD, Cai YW, Wu SY, Shui RH, Shao ZM. Estrogen receptor-low breast cancer: Biology chaos and treatment paradox. Cancer Commun (Lond) 2021; 41:968-980. [PMID: 34251757 PMCID: PMC8504145 DOI: 10.1002/cac2.12191] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/23/2021] [Accepted: 06/19/2021] [Indexed: 02/03/2023] Open
Abstract
Hormone receptor testing mainly serves the purpose of guiding treatment choices for breast cancer patients. Patients with estrogen receptor (ER)‐positive breast cancers show significant response to endocrine therapy. However, the methods to define ER status and eligibility for treatment remain controversial. Despite recent guidelines considering staining ≥1% of tumor nuclei by immunohistology as ER‐positive, it has raised concerns on the benefit of endocrine therapy for tumors with ER 1%‐10% expression, termed “ER‐low positive”. This subgroup accounts for 3% to 9% of all patients and is likely to have unique molecular features, and therefore distinct therapeutic response to endocrine therapy compared with ER‐high positive tumors. The latest guidelines did not provide detailed descriptions for those patients, resulting in inconsistent treatment strategies. Consequently, we aimed to resolve this dilemma comprehensively. This review discusses molecular traits and recent ER‐low positive breast cancer innovations, highlighting molecular‐targeted treatment rather than traditional unified endocrine therapy for future basic and clinical research.
Collapse
Affiliation(s)
- Ke-Da Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.,Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Yu-Wen Cai
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.,Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Song-Yang Wu
- Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Ruo-Hong Shui
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.,Shanghai Key Laboratory of Breast Cancer, Shanghai, 200032, P. R. China
| |
Collapse
|
20
|
Pathogenesis and Potential Therapeutic Targets for Triple-Negative Breast Cancer. Cancers (Basel) 2021; 13:cancers13122978. [PMID: 34198652 PMCID: PMC8232221 DOI: 10.3390/cancers13122978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/29/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a heterogeneous tumor characterized by early recurrence, high invasion, and poor prognosis. Currently, its treatment includes chemotherapy, which shows a suboptimal efficacy. However, with the increasing studies on TNBC subtypes and tumor molecular biology, great progress has been made in targeted therapy for TNBC. The new developments in the treatment of breast cancer include targeted therapy, which has the advantages of accurate positioning, high efficiency, and low toxicity, as compared to surgery, radiotherapy, and chemotherapy. Given its importance as cancer treatment, we review the latest research on the subtypes of TNBC and relevant targeted therapies.
Collapse
|
21
|
Sukumar J, Gast K, Quiroga D, Lustberg M, Williams N. Triple-negative breast cancer: promising prognostic biomarkers currently in development. Expert Rev Anticancer Ther 2021; 21:135-148. [PMID: 33198517 PMCID: PMC8174647 DOI: 10.1080/14737140.2021.1840984] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer associated with poor prognosis and limited treatment options. Validated prognostic and predictive biomarkers are needed to guide treatment decisions and prognostication.Areas covered: In this review, we discuss established and developing prognostic and predictive biomarkers in TNBC and associated emerging and approved therapies. Biomarkers reviewed include epidermal growth factor receptor (EGFR), vascular endothelial growth factors (VEGF), fibroblast growth factor receptor (FGFR), human epidermal growth factor receptor 2 (HER2), androgen receptor, NOTCH signaling, oxidative stress/redox signaling, microRNAs, TP53 mutation, breast cancer susceptibility gene 1 or 2 (BRCA1/2) mutation/homologous recombination deficiency (HRD), NTRK gene fusion, PI3K/AKT/mTOR, immune biomarkers (programmed death-ligand 1 (PDL1), tumor-infiltrating lymphocytes (TILs), tumor mutational burden (TMB), neoantigens, defects in DNA mismatch repair proteins (dMMR)/microsatellite instability-high (MSI-H)), circulating tumor cells/cell-free DNA, novel targets of antibody-drug conjugates, and residual disease.Expert opinion: Biomarker-driven care in the management of TNBC is increasing and has helped expand options for patients diagnosed with this subtype of breast cancer. Research efforts are ongoing to identify additional biomarkers and targeted treatment options with the ultimate goal of improving clinical outcomes and survivorship.
Collapse
Affiliation(s)
- Jasmine Sukumar
- Division of Medical Oncology, The Ohio State University Wexner Medical Center, James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| | - Kelly Gast
- Division of Medical Oncology, The Ohio State University Wexner Medical Center, James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| | - Dionisia Quiroga
- Division of Medical Oncology, The Ohio State University Wexner Medical Center, James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| | - Maryam Lustberg
- Division of Medical Oncology, The Ohio State University Wexner Medical Center, James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| | - Nicole Williams
- Division of Medical Oncology, The Ohio State University Wexner Medical Center, James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| |
Collapse
|
22
|
Meng Y, Yu B, Huang H, Peng Y, Li E, Yao Y, Song C, Yu W, Zhu K, Wang K, Yi D, Du J, Chang J. Discovery of Dosimertinib, a Highly Potent, Selective, and Orally Efficacious Deuterated EGFR Targeting Clinical Candidate for the Treatment of Non-Small-Cell Lung Cancer. J Med Chem 2021; 64:925-937. [PMID: 33459024 DOI: 10.1021/acs.jmedchem.0c02005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Osimertinib is a highly potent and selective third-generation epidermal growth factor receptor (EGFR) inhibitor, which provides excellent clinical benefits and is now a standard-of-care therapy for advanced EGFR mutation-positive non-small-cell lung cancer (NSCLC). However, AZ5104, a primary toxic metabolite of osimertinib, has caused unwanted toxicities. To address this unmet medical need, we initiated an iterative program focusing on structural optimizations of osimertinib and preclinical characterization, leading to the discovery of a highly potent, selective, and orally efficacious deuterated EGFR-targeting clinical candidate, dosimertinib. Preclinical studies revealed that dosimertinib demonstrated robust in vivo antitumor efficacy and favorable PK profiles, but with lower toxicity than osimertinib. These preclinical data support further clinical development of dosimertinib for the treatment of NSCLC. Dosimertinib has received official approval in China to initiate the phase I clinical trial (registration numbers: CXHL2000060 and CXHL2000061).
Collapse
Affiliation(s)
- Yonggang Meng
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - He Huang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Youmei Peng
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Ertong Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yongfang Yao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chuanjun Song
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Wenquan Yu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Kaikai Zhu
- Henan Metab Biopharma Co., Ltd., Zhengzhou Airport Economy Zone, Taiwan Science Park, Zhengzhou 450006, China
| | - Kai Wang
- Henan Metab Biopharma Co., Ltd., Zhengzhou Airport Economy Zone, Taiwan Science Park, Zhengzhou 450006, China
| | - Dongxu Yi
- Henan Metab Biopharma Co., Ltd., Zhengzhou Airport Economy Zone, Taiwan Science Park, Zhengzhou 450006, China
| | - Jinfa Du
- Henan Genuine Biotech Co., Ltd. 10 Fuxing Road, Xincheng District, Pingdingshan, Henan 467036, China
| | - Junbiao Chang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.,Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
23
|
Collins DM, Madden SF, Gaynor N, AlSultan D, Le Gal M, Eustace AJ, Gately KA, Hughes C, Davies AM, Mahgoub T, Ballot J, Toomey S, O'Connor DP, Gallagher WM, Holmes FA, Espina V, Liotta L, Hennessy BT, O'Byrne KJ, Hasmann M, Bossenmaier B, O'Donovan N, Crown J. Effects of HER Family-targeting Tyrosine Kinase Inhibitors on Antibody-dependent Cell-mediated Cytotoxicity in HER2-expressing Breast Cancer. Clin Cancer Res 2020; 27:807-818. [PMID: 33122343 DOI: 10.1158/1078-0432.ccr-20-2007] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/18/2020] [Accepted: 10/22/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Antibody-dependent cell-mediated cytotoxicity (ADCC) is one mechanism of action of the monoclonal antibody (mAb) therapies trastuzumab and pertuzumab. Tyrosine kinase inhibitors (TKIs), like lapatinib, may have added therapeutic value in combination with mAbs through enhanced ADCC activity. Using clinical data, we examined the impact of lapatinib on HER2/EGFR expression levels and natural killer (NK) cell gene signatures. We investigated the ability of three TKIs (lapatinib, afatinib, and neratinib) to alter HER2/immune-related protein levels in preclinical models of HER2-positive (HER2+) and HER2-low breast cancer, and the subsequent effects on trastuzumab/pertuzumab-mediated ADCC. EXPERIMENTAL DESIGN Preclinical studies (proliferation assays, Western blotting, high content analysis, and flow cytometry) employed HER2+ (SKBR3 and HCC1954) and HER2-low (MCF-7, T47D, CAMA-1, and CAL-51) breast cancer cell lines. NCT00524303 provided reverse phase protein array-determined protein levels of HER2/pHER2/EGFR/pEGFR. RNA-based NK cell gene signatures (CIBERSORT/MCP-counter) post-neoadjuvant anti-HER2 therapy were assessed (NCT00769470/NCT01485926). ADCC assays utilized flow cytometry-based protocols. RESULTS Lapatinib significantly increased membrane HER2 levels, while afatinib and neratinib significantly decreased levels in all preclinical models. Single-agent lapatinib increased HER2 or EGFR levels in 10 of 11 (91%) tumor samples. NK cell signatures increased posttherapy (P = 0.03) and associated with trastuzumab response (P = 0.01). TKI treatment altered mAb-induced NK cell-mediated ADCC in vitro, but it did not consistently correlate with HER2 expression in HER2+ or HER2-low models. The ADCC response to trastuzumab and pertuzumab combined did not exceed either mAb alone. CONCLUSIONS TKIs differentially alter tumor cell phenotype which can impact NK cell-mediated response to coadministered antibody therapies. mAb-induced ADCC response is relevant when rationalizing combinations for clinical investigation.
Collapse
Affiliation(s)
- Denis M Collins
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Leinster, Ireland.
| | - Stephen F Madden
- RCSI Division of Population Health Sciences, Royal College of Surgeons in Ireland, Beaux Lane House, Dublin, Ireland
| | - Nicola Gaynor
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Leinster, Ireland
| | - Dalal AlSultan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Leinster, Ireland.,RCSI Division of Population Health Sciences, Royal College of Surgeons in Ireland, Beaux Lane House, Dublin, Ireland
| | - Marion Le Gal
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Leinster, Ireland
| | - Alex J Eustace
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Leinster, Ireland
| | - Kathy A Gately
- Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital, Dublin, Ireland
| | - Clare Hughes
- Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital, Dublin, Ireland
| | - Anthony M Davies
- Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital, Dublin, Ireland
| | - Thamir Mahgoub
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Leinster, Ireland
| | - Jo Ballot
- Department of Medical Oncology, St Vincent's University Hospital, Dublin, Ireland
| | - Sinead Toomey
- RCSI Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Education & Research Centre, Beaumont Hospital, Beaumont, Dublin, Ireland
| | - Darran P O'Connor
- Royal College of Surgeons in Ireland, School of Pharmacy & Biomolecular Science, Dublin, Ireland
| | - William M Gallagher
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Frankie A Holmes
- Texas Oncology-Memorial Hermann Memorial City, US Oncology Research, Houston, -Texas
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Bryan T Hennessy
- RCSI Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Education & Research Centre, Beaumont Hospital, Beaumont, Dublin, Ireland.,Department of Medical Oncology, Beaumont Hospital, Dublin, Ireland
| | - Kenneth J O'Byrne
- Princess Alexandra Hospital, Translational Research Institute and Queensland University of Technology, Brisbane, Queensland, Australia
| | - Max Hasmann
- Roche Innovation Center Penzberg, Roche Diagnostics GmbH, Penzberg, Germany
| | | | - Norma O'Donovan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Leinster, Ireland
| | - John Crown
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Leinster, Ireland.,Department of Medical Oncology, St Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
24
|
Ge X, Zhou Q, Zhang Y, Zhou W, Wu Y, Zhen C, Zhang M, Fan F, Chen G, Zhao J, Liu H. [EGFR tyrosine kinase inhibitor HS-10296 induces autophagy and apoptosis in triplenegative breast cancer MDA-MB-231 cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:981-987. [PMID: 32895156 DOI: 10.12122/j.issn.1673-4254.2020.07.10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate the inhibitory effect of epidermal growth factor receptor tyrosine kinase inhibitor (EGFRTKI) HS-10296 on the proliferation of triple-negative breast cancer (TNBC) MDA-MB-231 cells and explore the possible molecular mechanism. METHODS MDA-MB-231 cells were treated with HS-10296 for 24, 48, or 72 h, and CCK-8 assay was used to assess the changes in the cell viability. The inhibitory effect of HS-10296 on cell proliferation was determined by clonogenic assay. JC-1 and flow cytometry were employed for analyzing the cell apoptosis, and the ultrastructure of the cells was observed under electron microscope. After pretreatment with autophagy inhibitor chloroquine (CQ), MDA-MB-231 cells were divided into control group, CQ treatment group, HS-10296 (4 and 6 μmol/L) treatment groups and combined treatment groups, and the sensitivity of the treated cells to HS-10296 was determined using CCK-8 assay. The effects of HS-10296 on EGFR pathway and apoptosis- and autophagy-related proteins in MDA-MB-231 cells were investigated using Western blotting. RESULTS HS-10296 significantly inhibited the proliferation of MDA-MB-231 cells with IC50 values at 24, 48 and 72 h of 8.393, 2.777 and 2.016 μmol/L, respectively. JC-1 and flow cytometry showed that HS-10296 induced obvious apoptosis of MDA-MB-231 cells, which showed an apoptosis rate of (21.63 ± 2.97)% following treatment with 8 μmol/L HS-10296. Autophagy vesicles were observed in the cells treated with HS-10296 under electron microscope. In MDA-MB-231 cells pretreated with CQ, inhibition of autophagy significantly enhanced HS-10296-induced cell death. Western blotting showed that the apoptosis-related protein caspase-3 was activated after HS-10296 treatment to cut its substrate PARP. The expression of autophagy-related protein light chain 3B (LC3B) was significantly enhanced after HS-10296 treatment (P < 0.01), which also resulted in inhibited phosphorylation of EGFR and AKT proteins in the cells. CONCLUSIONS HS-10296 can inhibit the proliferation and induce autophagy and apoptosis of MDA-MB-231 cells by inhibiting the EGFR/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Xianming Ge
- School of Pharmacy, Bengbu Medical College//Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, China
| | - Qiao Zhou
- School of Pharmacy, Bengbu Medical College//Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, China
| | - Yuhan Zhang
- School of Pharmacy, Bengbu Medical College//Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, China
| | - Wenjing Zhou
- School of Pharmacy, Bengbu Medical College//Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, China
| | - Yu Wu
- School of Pharmacy, Bengbu Medical College//Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, China
| | - Cheng Zhen
- School of Pharmacy, Bengbu Medical College//Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, China
| | - Mengxiao Zhang
- School of Pharmacy, Bengbu Medical College//Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, China
| | - Fangtian Fan
- School of Pharmacy, Bengbu Medical College//Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, China
| | - Gangsheng Chen
- School of Pharmacy, Bengbu Medical College//Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, China
| | - Junjun Zhao
- School of Pharmacy, Bengbu Medical College//Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, China
| | - Hao Liu
- School of Pharmacy, Bengbu Medical College//Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, China
| |
Collapse
|
25
|
Reddy TP, Choi DS, Anselme AC, Qian W, Chen W, Lantto J, Horak ID, Kragh M, Chang JC, Rosato RR. Simultaneous targeting of HER family pro-survival signaling with Pan-HER antibody mixture is highly effective in TNBC: a preclinical trial with PDXs. Breast Cancer Res 2020; 22:48. [PMID: 32414394 PMCID: PMC7227035 DOI: 10.1186/s13058-020-01280-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/15/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The human epidermal growth factor receptor (HER) family, notably EGFR, is overexpressed in most triple-negative breast cancer (TNBC) cases and provides cancer cells with compensatory signals that greatly contribute to the survival and development of resistance in response to therapy. This study investigated the effects of Pan-HER (Symphogen, Ballerup, Denmark), a novel mixture of six monoclonal antibodies directed against members of the HER family EGFR, HER2, and HER3, in a preclinical trial of TNBC patient-derived xenografts (PDXs). METHODS Fifteen low passage TNBC PDX tumor samples were transferred into the right mammary fat pad of mice for engraftment. When tumors reached an average size of 100-200 mm3, mice were randomized (n ≥ 6 per group) and treated following three 1-week cycles consisting of three times/week intraperitoneal (IP) injection of either formulation buffer (vehicle control) or Pan-HER (50 mg/kg). At the end of treatment, tumors were collected for Western blot, RNA, and immunohistochemistry analyses. RESULTS All 15 TNBC PDXs were responsive to Pan-HER treatment, showing significant reductions in tumor growth consistent with Pan-HER-mediated tumor downmodulation of EGFR and HER3 protein levels and significantly decreased activation of associated HER family signaling pathways AKT and ERK. Tumor regression was observed in five of the models, which corresponded to those PDX tumor models with the highest level of HER family activation. CONCLUSIONS The marked effect of Pan-HER in numerous HER family-dependent TNBC PDX models justifies further studies of Pan-HER in TNBC clinical trials as a potential therapeutic option.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Cell Proliferation/drug effects
- Disease Models, Animal
- Drug Resistance, Neoplasm
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Female
- Humans
- Mice
- Molecular Targeted Therapy
- Mutation
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-3/antagonists & inhibitors
- Receptor, ErbB-3/genetics
- Receptor, ErbB-3/metabolism
- Triple Negative Breast Neoplasms/drug therapy
- Triple Negative Breast Neoplasms/genetics
- Triple Negative Breast Neoplasms/metabolism
- Triple Negative Breast Neoplasms/pathology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Tejaswini P Reddy
- Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX, 77030, USA
- Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
| | - Dong S Choi
- Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Ann C Anselme
- Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX, 77030, USA
- Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
| | - Wei Qian
- Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Wen Chen
- Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Johan Lantto
- Symphogen A/S, Pederstrupvej 93, DK-2750, Ballerup, Denmark
| | - Ivan D Horak
- Symphogen A/S, Pederstrupvej 93, DK-2750, Ballerup, Denmark
| | - Michael Kragh
- Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
| | - Jenny C Chang
- Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Roberto R Rosato
- Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
26
|
Canonici A, Browne AL, Ibrahim MFK, Fanning KP, Roche S, Conlon NT, O’Neill F, Meiller J, Cremona M, Morgan C, Hennessy BT, Eustace AJ, Solca F, O’Donovan N, Crown J. Combined targeting EGFR and SRC as a potential novel therapeutic approach for the treatment of triple negative breast cancer. Ther Adv Med Oncol 2020; 12:1758835919897546. [PMID: 32064003 PMCID: PMC6987485 DOI: 10.1177/1758835919897546] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 12/06/2019] [Indexed: 12/31/2022] Open
Abstract
Background: Triple negative breast cancer (TNBC) is an aggressive subtype of breast
cancer with limited therapeutic options. Epidermal growth factor receptor
(EGFR) has been shown to be over-expressed in TNBC and represents a rational
treatment target. Methods: We examined single agent and combination effects for afatinib and dasatinib
in TNBC. We then determined IC50 and combination index values
using Calcusyn. Functional analysis of single and combination treatments was
performed using reverse phase protein array and cell cycle analysis.
Finally, we determined the anticancer effects of the combination in
vivo. Results: A total of 14 TNBC cell lines responded to afatinib with IC50
values ranging from 0.008 to 5.0 µM. Three cell lines, belonging to the
basal-like subtype of TNBC, were sensitive to afatinib. The addition of
afatinib enhanced response to the five other targeted therapies in HCC1937
and HDQP1 cells. The combination of afatinib with dasatinib caused the
greatest growth inhibition in both cell lines. The afatinib/dasatinib
combination was synergistic and/or additive in 13/14 TNBC cell lines.
Combined afatinib/dasatinib treatment induced G1 cell cycle arrest. Reverse
phase protein array results showed the afatinib/dasatinib combination
resulted in efficient inhibition of both pERK(T202/T204) and pAkt(S473)
signalling in BT20 cells, which was associated with the greatest
antiproliferative effects. High baseline levels of pSrc(Y416) and pMAPK(p38)
correlated with sensitivity to afatinib, whereas low levels of B-cell
lymphoma 2 (Bcl2) and mammalian target of rapamycin (mTOR) correlated with
synergistic growth inhibition by combined afatinib and dasatinib treatment.
In vivo, the combination treatment inhibited tumour
growth in a HCC1806 xenograft model. Conclusions: We demonstrate that afatinib combined with dasatinib has potential clinical
activity in TNBC but warrants further preclinical investigation.
Collapse
Affiliation(s)
- Alexandra Canonici
- National Institute for Cellular Biotechnology,
Dublin City University, Dublin, Ireland
| | - Alacoque L. Browne
- National Institute for Cellular Biotechnology,
Dublin City University, Dublin, Ireland
| | - Mohamed F. K. Ibrahim
- National Institute for Cellular Biotechnology,
Dublin City University, Dublin, Ireland
| | - Kevin P. Fanning
- National Institute for Cellular Biotechnology,
Dublin City University, Dublin, Ireland
| | - Sandra Roche
- National Institute for Cellular Biotechnology,
Dublin City University, Dublin, Ireland
| | - Neil T. Conlon
- National Institute for Cellular Biotechnology,
Dublin City University, Dublin, Ireland
| | - Fiona O’Neill
- National Institute for Cellular Biotechnology,
Dublin City University, Dublin, Ireland
| | - Justine Meiller
- National Institute for Cellular Biotechnology,
Dublin City University, Dublin, Ireland
| | - Mattia Cremona
- Medical Oncology Group, Department of Molecular
Medicine, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin,
Ireland
| | - Clare Morgan
- Medical Oncology Group, Department of Molecular
Medicine, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin,
Ireland
| | - Bryan T. Hennessy
- Medical Oncology Group, Department of Molecular
Medicine, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin,
Ireland
| | | | - Flavio Solca
- Boehringer Ingelheim RCV GmbH & Co KG,
Vienna, Austria
| | - Norma O’Donovan
- National Institute for Cellular Biotechnology,
Dublin City University, Dublin, Ireland
| | - John Crown
- National Institute for Cellular Biotechnology,
Dublin City University, Dublin, Ireland
- Department of Medical Oncology, St Vincent’s
University Hospital, Dublin, Ireland
| |
Collapse
|
27
|
Liu H, Ertay A, Peng P, Li J, Liu D, Xiong H, Zou Y, Qiu H, Hancock D, Yuan X, Huang W, Ewing RM, Downward J, Wang Y. SGLT1 is required for the survival of triple-negative breast cancer cells via potentiation of EGFR activity. Mol Oncol 2019; 13:1874-1886. [PMID: 31199048 PMCID: PMC6717760 DOI: 10.1002/1878-0261.12530] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/09/2019] [Accepted: 06/10/2019] [Indexed: 12/17/2022] Open
Abstract
Sodium/glucose cotransporter 1 (SGLT1), an essential active glucose transport protein that helps maintain high intracellular glucose levels, was previously shown to interact with epidermal growth factor receptor (EGFR); the SGLT1-EGFR interaction maintains intracellular glucose levels to promote survival of cancer cells. Here, we explore the role of SGLT1 in triple-negative breast cancer (TNBC), which is the most aggressive type of breast cancer. We performed TCGA analysis coupled to in vitro experiments in TNBC cell lines as well as in vivo xenografts established in the mammary fat pad of female nude mice. Tissue microarrays of TNBC patients with information of clinical-pathological parameters were also used to investigate the expression and function of SGLT1 in TNBC. We show that high levels of SGLT1 are associated with greater tumour size in TNBC. Knockdown of SGLT1 compromises cell growth in vitro and in vivo. We further demonstrate that SGLT1 depletion results in decreased levels of phospho-EGFR, and as a result, the activity of downstream signalling pathways (such as AKT and ERK) is inhibited. Hence, targeting SGLT1 itself or the EGFR-SGLT1 interaction may provide novel therapeutics against TNBC.
Collapse
Affiliation(s)
- Huiquan Liu
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ayse Ertay
- Biological Sciences, Faculty of Environmental and Life SciencesUniversity of SouthamptonUK
| | - Ping Peng
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Juanjuan Li
- Biological Sciences, Faculty of Environmental and Life SciencesUniversity of SouthamptonUK
| | - Dian Liu
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yanmei Zou
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hong Qiu
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | | | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wei‐Chien Huang
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan
- Center for Molecular MedicineChina Medical University and HospitalTaichungTaiwan
- Department of Biotechnology, College of Health ScienceAsia UniversityTaichungTaiwan
| | - Rob M. Ewing
- Biological Sciences, Faculty of Environmental and Life SciencesUniversity of SouthamptonUK
- Institute for Life SciencesUniversity of SouthamptonUK
| | | | - Yihua Wang
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Biological Sciences, Faculty of Environmental and Life SciencesUniversity of SouthamptonUK
- Institute for Life SciencesUniversity of SouthamptonUK
| |
Collapse
|
28
|
Tan Y, Cao K, Ren G, Qin Z, Zhao D, Li N, Chen X, Xia Y, Lu Y. Effects of the ABCB1 and ABCG2 polymorphisms on the pharmacokinetics of afatinib in healthy Chinese volunteers. Xenobiotica 2019; 50:237-243. [DOI: 10.1080/00498254.2019.1610585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yanan Tan
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kangna Cao
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Guanghui Ren
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhiying Qin
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Di Zhao
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ning Li
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xijing Chen
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yufeng Xia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yang Lu
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
29
|
McLaughlin RP, He J, van der Noord VE, Redel J, Foekens JA, Martens JWM, Smid M, Zhang Y, van de Water B. A kinase inhibitor screen identifies a dual cdc7/CDK9 inhibitor to sensitise triple-negative breast cancer to EGFR-targeted therapy. Breast Cancer Res 2019; 21:77. [PMID: 31262335 PMCID: PMC6604188 DOI: 10.1186/s13058-019-1161-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The effective treatment of triple-negative breast cancer (TNBC) remains a profound clinical challenge. Despite frequent epidermal growth factor receptor (EGFR) overexpression and reliance on downstream signalling pathways in TNBC, resistance to EGFR-tyrosine kinase inhibitors (TKIs) remains endemic. Therefore, the identification of targeted agents, which synergise with current therapeutic options, is paramount. METHODS Compound-based, high-throughput, proliferation screening was used to profile the response of TNBC cell lines to EGFR-TKIs, western blotting and siRNA transfection being used to examine the effect of inhibitors on EGFR-mediated signal transduction and cellular dependence on such pathways, respectively. A kinase inhibitor combination screen was used to identify compounds that synergised with EGFR-TKIs in TNBC, utilising sulphorhodamine B (SRB) assay as read-out for proliferation. The impact of drug combinations on cell cycle arrest, apoptosis and signal transduction was assessed using flow cytometry, automated live-cell imaging and western blotting, respectively. RNA sequencing was employed to unravel transcriptomic changes elicited by this synergistic combination and to permit identification of the signalling networks most sensitive to co-inhibition. RESULTS We demonstrate that a dual cdc7/CDK9 inhibitor, PHA-767491, synergises with multiple EGFR-TKIs (lapatinib, erlotinib and gefitinib) to overcome resistance to EGFR-targeted therapy in various TNBC cell lines. Combined inhibition of EGFR and cdc7/CDK9 resulted in reduced cell proliferation, accompanied by induction of apoptosis, G2-M cell cycle arrest, inhibition of DNA replication and abrogation of CDK9-mediated transcriptional elongation, in contrast to mono-inhibition. Moreover, high expression of cdc7 and RNA polymerase II Subunit A (POLR2A), the direct target of CDK9, is significantly correlated with poor metastasis-free survival in a cohort of breast cancer patients. RNA sequencing revealed marked downregulation of pathways governing proliferation, transcription and cell survival in TNBC cells treated with the combination of an EGFR-TKI and a dual cdc7/CDK9 inhibitor. A number of genes enriched in these downregulated pathways are associated with poor metastasis-free survival in TNBC. CONCLUSIONS Our results highlight that dual inhibition of cdc7 and CDK9 by PHA-767491 is a potential strategy for targeting TNBC resistant to EGFR-TKIs.
Collapse
Affiliation(s)
- Ronan P. McLaughlin
- Department of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | - Jichao He
- Department of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | - Vera E. van der Noord
- Department of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | - Jevin Redel
- Department of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | - John A. Foekens
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John W. M. Martens
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marcel Smid
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Yinghui Zhang
- Department of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | - Bob van de Water
- Department of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| |
Collapse
|
30
|
Niebecker R, Maas H, Staab A, Freiwald M, Karlsson MO. Modeling Exposure-Driven Adverse Event Time Courses in Oncology Exemplified by Afatinib. CPT Pharmacometrics Syst Pharmacol 2019; 8:230-239. [PMID: 30681293 PMCID: PMC6482278 DOI: 10.1002/psp4.12384] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/02/2019] [Indexed: 12/18/2022] Open
Abstract
Models were developed to characterize the relationship between afatinib exposure and diarrhea and rash/acne adverse event (AE) trajectories, and their predictive ability was assessed. Based on pooled data from seven phase II/III clinical studies including 998 patients, mixed-effects models for ordered categorical data were applied to describe daily AE severity. Clinical trial simulation aided by trial execution models was used for internal and external model evaluation. The final exposure-safety model consisted of longitudinal logistic regression models with first-order Markov elements for both AEs. Drug exposure was included as daily area under the concentration-time curve (AUC), and drug effects on the AEs were correlated. Clinical trial simulation allowed adequate prediction of maximum AE grades and AE severity time courses but overestimated the proportion of AE-dependent dose reductions and discontinuations. Both diarrhea and rash/acne were correlated with afatinib exposure. The developed modeling framework allows a prospective comparison of dosing strategies and study designs with respect to safety.
Collapse
Affiliation(s)
- Ronald Niebecker
- Translational Medicine and Clinical PharmacologyBoehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Hugo Maas
- Translational Medicine and Clinical PharmacologyBoehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Alexander Staab
- Translational Medicine and Clinical PharmacologyBoehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Matthias Freiwald
- Translational Medicine and Clinical PharmacologyBoehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Mats O. Karlsson
- Department of Pharmaceutical BiosciencesUppsala UniversityUppsalaSweden
| |
Collapse
|
31
|
Han P, Lei Y, Li D, Liu J, Yan W, Tian D. Ten years of research on the role of BVES/ POPDC1 in human disease: a review. Onco Targets Ther 2019; 12:1279-1291. [PMID: 30863095 PMCID: PMC6388986 DOI: 10.2147/ott.s192364] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Since the blood vessel epicardial substance or Popeye domain-containing protein 1 (BVES/POPDC1) was first identified in the developing heart by two independent laboratories in 1999, an increasing number of studies have investigated the structure, function, and related diseases of BVES/POPDC1. During the first 10 years following the discovery of BVES/POPDC1, studies focused mainly on its structure, expression patterns, and functions. Based on these studies, further investigations conducted over the previous decade examined the role of BVES/POPDC1 in human diseases, such as colitis, heart diseases, and human cancers. This review provides an overview of the structure and expression of BVES/POPDC1, mainly focusing on its potential role and mechanism through which it is involved in human cancers.
Collapse
Affiliation(s)
- Ping Han
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, ;
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, ;
| | - Dongxiao Li
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, ;
| | - Jingmei Liu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, ;
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, ;
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, ;
| |
Collapse
|
32
|
Varlitinib Downregulates HER/ERK Signaling and Induces Apoptosis in Triple Negative Breast Cancer Cells. Cancers (Basel) 2019; 11:cancers11010105. [PMID: 30658422 PMCID: PMC6356324 DOI: 10.3390/cancers11010105] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 01/15/2019] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a complex disease associated with the aggressive phenotype and poor prognosis. TNBC harbors heterogeneous molecular subtypes with no approved specific targeted therapy. It has been reported that HER receptors are overexpressed in breast cancer including TNBC. In this study, we evaluated the efficacy of varlitinib, a reversible small molecule pan-HER inhibitor in TNBC. Our results showed that varlitinib reduced cell viability and induced cell apoptosis in most TNBC cell lines but not in MDA-MB-231 cells. MEK and ERK inhibition overcame resistance to varlitinib in MDA-MB-231 cells. Varlitinib inhibited HER signaling which led to inhibition of migration, invasion and mammosphere formation of TNBC cells as well as significant suppression of tumor growth of MDA-MB-468 xenograft mouse model. In summary, these results suggest that HER signaling plays an important role in TNBC progression and that pan-HER inhibition is potentially an effective treatment for TNBC patients.
Collapse
|
33
|
Tang JY, Ho Y, Chang CY, Liu HL. Discovery of Novel Irreversible HER2 Inhibitors for Breast Cancer Treatment. ACTA ACUST UNITED AC 2019. [DOI: 10.4236/jbise.2019.124016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Al-Mahmood S, Sapiezynski J, Garbuzenko OB, Minko T. Metastatic and triple-negative breast cancer: challenges and treatment options. Drug Deliv Transl Res 2018; 8:1483-1507. [PMID: 29978332 PMCID: PMC6133085 DOI: 10.1007/s13346-018-0551-3] [Citation(s) in RCA: 334] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The major current conventional types of metastatic breast cancer (MBC) treatments include surgery, radiation, hormonal therapy, chemotherapy, or immunotherapy. Introducing biological drugs, targeted treatment and gene therapy can potentially reduce the mortality and improve the quality of life in patients with MBC. However, combination of several types of treatment is usually recommended. Triple negative breast cancer (TNBC) accounts for 10-20% of all cases of breast carcinoma and is characterized by the low expression of progesterone receptor (PR), estrogen receptor (ER), and human epidermal growth factor receptor 2 (HER2). Consequently, convenient treatments used for MBC that target these receptors are not effective for TNBC which therefore requires special treatment approaches. This review discusses the occurrence of MBC, the prognosis and predictive biomarkers of MBC, and focuses on the novel advanced tactics for treatment of MBC and TNBC. Nanotechnology-based combinatorial approach for the suppression of EGFR by siRNA and gifitinib is described.
Collapse
Affiliation(s)
- Sumayah Al-Mahmood
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854-8020, USA
| | - Justin Sapiezynski
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854-8020, USA
| | - Olga B Garbuzenko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854-8020, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854-8020, USA.
- Rutgers Cancer Institute, New Brunswick, NJ, 08903, USA.
- Environmental and Occupational Health Sciences Institute, Rutgers, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
35
|
Wu N, Zhang J, Zhao J, Mu K, Zhang J, Jin Z, Yu J, Liu J. Precision medicine based on tumorigenic signaling pathways for triple-negative breast cancer. Oncol Lett 2018; 16:4984-4996. [PMID: 30250564 PMCID: PMC6144355 DOI: 10.3892/ol.2018.9290] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 01/22/2018] [Indexed: 12/20/2022] Open
Abstract
As a clinically heterogeneous subtype of breast cancer, triple-negative breast cancer (TNBC) is associated with a poor clinical outcome and a high relapse rate. Conventional chemotherapy and radiotherapy are effective treatments for patients with TNBC. However, the prognosis of TNBC remains unsatisfactory. Therefore, a large volume of research has explored the molecular markers and oncogenic signaling pathways associated with TNBC, including the cell cycle, DNA damage response and androgen receptor (AR) signaling pathways, to identify more efficient targeted therapies. However, whether these predicted pathways are effective targets has yet to be confirmed. In the present review, potentially carcinogenic signaling pathways in TNBCs from previous reports were considered, and ultimately five tumorigenic signaling pathways were selected, specifically receptor tyrosine kinases and downstream signaling pathways, the epithelial-to-mesenchymal transition and associated pathways, the immunoregulatory tumor microenvironment, DNA damage repair pathways, and AR and coordinating pathways. The conclusions of the preclinical and clinical trials of each pathway were then consolidated. Although a number of signaling pathways in TNBC have been considered in preclinical and clinical trials, the aforementioned pathways account for the majority of the malignant behaviors of TNBC. Identifying the alterations to different carcinogenic signaling pathways and their association with the heterogeneity of TNBC may facilitate the development of optimal precision medical approaches for patients with TNBC, potentially improving the efficiency of anticancer therapy.
Collapse
Affiliation(s)
- Nan Wu
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Jinghua Zhang
- Department of Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China
| | - Jing Zhao
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Kun Mu
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Jun Zhang
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Zhao Jin
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Jinpu Yu
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Biotherapy Center, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Juntian Liu
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| |
Collapse
|
36
|
Xiang Z, Huang X, Wang J, Zhang J, Ji J, Yan R, Zhu Z, Cai W, Yu Y. Cross-Database Analysis Reveals Sensitive Biomarkers for Combined Therapy for ERBB2+ Gastric Cancer. Front Pharmacol 2018; 9:861. [PMID: 30123134 PMCID: PMC6085474 DOI: 10.3389/fphar.2018.00861] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022] Open
Abstract
Exploring ERBB2-related pathways will help us finding sensitive molecules and potential combined therapeutic targets of ERBB2-targeted therapy for ERBB2+ gastric cancer (GC). In this study, we performed a cross-databases study focused on ERBB2+ GC. The data of ERBB2+ GC deposited in the cancer genome atlas (TCGA), gene expression omnibus (GEO), InBio MapTM, cancer cell line encyclopedia (CCLE), and cancer therapeutics response portal (CTRP) were analyzed. The correlation of expression levels of candidate and IC50 of candidate genes-targeted drugs were verified on NCI-N87 and MKN-45 GC cell lines. We found that RARA, THRA, CACNB1, and TOP2A are drug sensitive biomarkers of ERBB2-targeted treatment with FDA-approved drugs. All these genes act through Myc signaling pathway. Myc is the downstream hub gene of both ERBB2 and RARA. The expression of RARA, THRA, and CACNB1 were negatively correlated with Myc activation, while ERBB2 and TOP2A positively correlated with Myc activation. SH3BGRL3, SH3BGRL, and NRG2 were identified as potential ligands of ERBB2. The ERBB2+ GC with RARA amplification demonstrated better prognosis than those without RARA amplification, while overexpression of NRG2 and SH3BGRL correlated with poor prognosis in ERBB2+ GC. About 90% of ERBB2+ GC was compatible with chromosome instability (CIN) subtype of TCGA, which overlaps with intestinal-type GC in Lauren classification. In validating experiments, combination of Lapatinib and all-trans retinoic acid (ATRA) synergistically suppresses cell growth, and accompanied by decreased expression of MYC. In conclusions, we identified several predicting biomarkers for ERBB2-targeted therapy and corresponding histological features of ERBB2+ GC. Combination of ERBB2 antagonist or RARA agonist may be effective synergistic regimens for ERBB2+ GC.
Collapse
Affiliation(s)
- Zhen Xiang
- Department of Surgery, Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai, China
| | - Xia Huang
- Department of Disease Prevention and Control, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiexuan Wang
- Department of Surgery, Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai, China
| | - Jun Zhang
- Department of Surgery, Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai, China
| | - Jun Ji
- Department of Surgery, Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai, China
| | - Ranlin Yan
- Department of Surgery, Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai, China
| | - Zhenggang Zhu
- Department of Surgery, Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai, China
| | - Wei Cai
- Department of Surgery, Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai, China
| | - Yingyan Yu
- Department of Surgery, Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai, China
| |
Collapse
|
37
|
Advances in targeting epidermal growth factor receptor signaling pathway in mammary cancer. Cell Signal 2018; 51:99-109. [PMID: 30071291 DOI: 10.1016/j.cellsig.2018.07.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/28/2018] [Accepted: 07/28/2018] [Indexed: 12/17/2022]
Abstract
Breast cancer is the most common malignancy among women worldwide. The role of epidermal growth factor receptor (EGFR) in many epithelial malignancies has been established, since it is dysregulated, overexpressed or mutated. Its overexpression has been associated with increased aggressiveness and metastatic potential in breast cancer. The well-established interplay between EGFR signaling pathway and estrogen receptors (ERs) as well as major extracellular matrix (ECM) mediators is crucial for regulating basic functional properties of breast cancer cells, including migration, proliferation, adhesion and invasion. EGFR activation leads to endocytosis of the receptor with implications in the regulation of downstream signaling effectors, the modulation of autophagy and cell survival. Therefore, EGFR is considered as a promising therapeutic target in breast cancer. Several anti-EGFR therapies (i.e. monoclonal antibodies and tyrosine kinase inhibitors) have been evaluated both in vitro and in vivo, making their way to clinical trials. However, the response rates of anti-EGFR therapies in the clinical trials is low mainly due to chemoresistance. Novel drug design, phytochemicals and microRNAs (miRNAs) are assessed as new therapeutic approaches against EGFR. The main goal of this review is to highlight the importance of targeting EGFR signaling pathway in terms of its crosstalk with ERs, the involvement of ECM effectors and epigenetics. Moreover, recent insights into the design of specialized delivery systems contributing in the development of novel diagnostic and therapeutic approaches in breast cancer are addressed.
Collapse
|
38
|
Shi Y, Jin J, Ji W, Guan X. Therapeutic landscape in mutational triple negative breast cancer. Mol Cancer 2018; 17:99. [PMID: 30007403 PMCID: PMC6046102 DOI: 10.1186/s12943-018-0850-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/03/2018] [Indexed: 02/08/2023] Open
Abstract
Triple negative breast cancer (TNBC) is a heterogeneous disease with aggressive behavior and poor prognosis. Genomic sequencing has detected a distinctive mutational portrait of both the germline and somatic alterations in TNBC, which is staggeringly different from other breast cancer subtypes. The clinical utility of sequencing germline BRCA1/2 genes has been well established in TNBC. However, for other predisposition genes, studies concerning the risk and penetrance to TNBC are relatively scarce. Very few recurrent mutations, including TP53 and PI3KCA mutations, together with a long tail of individually rare mutations occur in TNBC. These combined effects of genomic alterations drive TNBC progression. Given the complexity and heterogeneity of TNBC, clinical interpretation of the genomic alterations in TNBC may pave a new way for the treatment of TNBC. In this review, we summarized the germline and somatic mutation profiles of TNBC and discussed the current and upcoming therapeutic strategies targeting the mutant proteins or pathways to enable tailored-therapeutics.
Collapse
Affiliation(s)
- Yaqin Shi
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Juan Jin
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Wenfei Ji
- Department of Medical Oncology, Jinling Clinical College, Nanjing Medical University, Nanjing, 210002, China
| | - Xiaoxiang Guan
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China. .,Department of Medical Oncology, Jinling Clinical College, Nanjing Medical University, Nanjing, 210002, China. .,Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
39
|
Butti R, Das S, Gunasekaran VP, Yadav AS, Kumar D, Kundu GC. Receptor tyrosine kinases (RTKs) in breast cancer: signaling, therapeutic implications and challenges. Mol Cancer 2018; 17:34. [PMID: 29455658 PMCID: PMC5817867 DOI: 10.1186/s12943-018-0797-x] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 02/01/2018] [Indexed: 12/19/2022] Open
Abstract
Breast cancer is a multifactorial disease and driven by aberrant regulation of cell signaling pathways due to the acquisition of genetic and epigenetic changes. An array of growth factors and their receptors is involved in cancer development and metastasis. Receptor Tyrosine Kinases (RTKs) constitute a class of receptors that play important role in cancer progression. RTKs are cell surface receptors with specialized structural and biological features which respond to environmental cues by initiating appropriate signaling cascades in tumor cells. RTKs are known to regulate various downstream signaling pathways such as MAPK, PI3K/Akt and JAK/STAT. These pathways have a pivotal role in the regulation of cancer stemness, angiogenesis and metastasis. These pathways are also imperative for a reciprocal interaction of tumor and stromal cells. Multi-faceted role of RTKs renders them amenable to therapy in breast cancer. However, structural mutations, gene amplification and alternate pathway activation pose challenges to anti-RTK therapy.
Collapse
Affiliation(s)
- Ramesh Butti
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, SP Pune University Campus, Pune, 411007, India
| | - Sumit Das
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, SP Pune University Campus, Pune, 411007, India
| | - Vinoth Prasanna Gunasekaran
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, SP Pune University Campus, Pune, 411007, India
| | - Amit Singh Yadav
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, SP Pune University Campus, Pune, 411007, India
| | - Dhiraj Kumar
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77054, USA
| | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, SP Pune University Campus, Pune, 411007, India.
| |
Collapse
|
40
|
Chaikuad A, Koch P, Laufer SA, Knapp S. The Cysteinome of Protein Kinases as a Target in Drug Development. Angew Chem Int Ed Engl 2018; 57:4372-4385. [DOI: 10.1002/anie.201707875] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/20/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Apirat Chaikuad
- Nuffield Department of Clinical Medicine; Structural Genomics Consortium and Target Discovery Institute; University of Oxford, Old Road Campus Research Building; Roosevelt Drive Oxford OX3 7DQ UK
- Institute for Pharmaceutical Chemistry; Goethe-University; Max-von-Laue-Strasse 9 60438 Frankfurt am Main Germany
| | - Pierre Koch
- Department of Pharmaceutical/Medicinal Chemistry; Eberhard-Karls-University Tübingen; Auf der Morgenstelle 8 72076 Tübingen Germany
| | - Stefan A. Laufer
- Department of Pharmaceutical/Medicinal Chemistry; Eberhard-Karls-University Tübingen; Auf der Morgenstelle 8 72076 Tübingen Germany
- German Cancer Consortium DKTK, Standort Tübingen; Germany
| | - Stefan Knapp
- Nuffield Department of Clinical Medicine; Structural Genomics Consortium and Target Discovery Institute; University of Oxford, Old Road Campus Research Building; Roosevelt Drive Oxford OX3 7DQ UK
- German Cancer Consortium DKTK, Standort Frankfurt/Mainz; Germany
- Institute for Pharmaceutical Chemistry; Goethe-University; Max-von-Laue-Strasse 9 60438 Frankfurt am Main Germany
- Structural Genomics Consortium and Buchmann Institute for Molecular Life Sciences; Johann Wolfgang Goethe-University; Max-von-Laue-Strasse 15 60438 Frankfurt am Main Germany
| |
Collapse
|
41
|
Chaikuad A, Koch P, Laufer SA, Knapp S. Das Cysteinom der Proteinkinasen als Zielstruktur in der Arzneistoffentwicklung. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201707875] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Apirat Chaikuad
- Nuffield Department of Clinical Medicine; Structural Genomics Consortium and Target Discovery Institute; Universität Oxford, Old Road Campus Research Building; Roosevelt Drive Oxford OX3 7DQ Großbritannien
- Institut für pharmazeutische Chemie; Johann Wolfgang Goethe-Universität; Max-von-Laue-Straße 9 60438 Frankfurt am Main Deutschland
| | - Pierre Koch
- Institut für pharmazeutische und medizinische Chemie; Eberhard-Karls-Universität Tübingen; Auf der Morgenstelle 8 72076 Tübingen Deutschland
| | - Stefan A. Laufer
- Institut für pharmazeutische und medizinische Chemie; Eberhard-Karls-Universität Tübingen; Auf der Morgenstelle 8 72076 Tübingen Deutschland
- Deutsches Zentrum für translationale Krebsforschung, Standort; Tübingen Deutschland
| | - Stefan Knapp
- Nuffield Department of Clinical Medicine; Structural Genomics Consortium and Target Discovery Institute; Universität Oxford, Old Road Campus Research Building; Roosevelt Drive Oxford OX3 7DQ Großbritannien
- Deutsches Zentrum für translationale Krebsforschung, Standort Frankfurt/Mainz; Deutschland
- Institut für pharmazeutische Chemie; Johann Wolfgang Goethe-Universität; Max-von-Laue-Straße 9 60438 Frankfurt am Main Deutschland
- Structural Genomics Consortium and Buchmann Institute for Molecular Life Sciences; Johann Wolfgang Goethe-Universität; Max-von-Laue-Straße 15 60438 Frankfurt am Main Deutschland
| |
Collapse
|
42
|
Martel S, Maurer C, Lambertini M, Pondé N, De Azambuja E. Breast cancer treatment-induced cardiotoxicity. Expert Opin Drug Saf 2017; 16:1021-1038. [PMID: 28697311 DOI: 10.1080/14740338.2017.1351541] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Breast cancer is the most frequent cancer affecting women worldwide. In every setting, the majority of women are treated with an evergrowing arsenal of therapeutic agents that have greatly improved their outcomes. However, these therapies can also be associated with significant adverse events. Areas covered: This review aims to thoroughly describe the current state of the evidence regarding the potential cardiotoxicity of agents commonly used in the treatment of breast cancer. These include chemotherapeutic agents, anti-HER2 therapies and CDK4/6 and mTOR inhibitors. Furthermore, issues related to the risk stratification and monitoring tools are explored. Expert opinion: Anthracycline- and trastuzumab-related cardiac toxicities have been extensively studied. Substantial evidence is now available concerning additional anti-HER2 agents such as pertuzumab, T-DM1 and tyrosine kinase inhibitors; overall, the cardiotoxicity profile is reassuring. Cardiac events due to endocrine therapy are mostly ischemic and, in the context of prolonged therapy, need specific attention. Novel agents implicated in the treatment of hormone receptor-positive disease are potentially arrhythmogenic and the exact risk will need to be further refined. As for today, assessment of baseline risk factors prior to treatment initiation and cardiac imaging before and during treatment remains the optimal way to prevent cardiac dysfunction. Cardioprotective therapy in primary prevention is still a matter of debate.
Collapse
Affiliation(s)
- Samuel Martel
- a Clinique d'Oncologie Médicale, Institut Jules Bordet , Université Libre de Bruxelles (U.LB) , Brussels , Belgium.,b Département d'hémato-oncologie , CISSS Montérégie centre/Hôpital Charles Lemoyne, centre affilié de l'Université de Sherbrooke , Greenfield Park , Qc , Canada
| | - Christian Maurer
- a Clinique d'Oncologie Médicale, Institut Jules Bordet , Université Libre de Bruxelles (U.LB) , Brussels , Belgium.,c Department I of Internal Medicine and Center of Integrated Oncology Cologne Bonn , University of Cologne , Cologne , Germany
| | - Matteo Lambertini
- a Clinique d'Oncologie Médicale, Institut Jules Bordet , Université Libre de Bruxelles (U.LB) , Brussels , Belgium.,d Breast Cancer Translational Research Laboratory, Institut Jules Bordet , Université Libre de Bruxelles (U.L.B) , Brussels , Belgium
| | - Noam Pondé
- a Clinique d'Oncologie Médicale, Institut Jules Bordet , Université Libre de Bruxelles (U.LB) , Brussels , Belgium
| | - Evandro De Azambuja
- a Clinique d'Oncologie Médicale, Institut Jules Bordet , Université Libre de Bruxelles (U.LB) , Brussels , Belgium
| |
Collapse
|
43
|
Costa R, Shah AN, Santa-Maria CA, Cruz MR, Mahalingam D, Carneiro BA, Chae YK, Cristofanilli M, Gradishar WJ, Giles FJ. Targeting Epidermal Growth Factor Receptor in triple negative breast cancer: New discoveries and practical insights for drug development. Cancer Treat Rev 2017; 53:111-119. [DOI: 10.1016/j.ctrv.2016.12.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 12/23/2016] [Accepted: 12/24/2016] [Indexed: 12/25/2022]
|
44
|
Nakai K, Hung MC, Yamaguchi H. A perspective on anti-EGFR therapies targeting triple-negative breast cancer. Am J Cancer Res 2016; 6:1609-1623. [PMID: 27648353 PMCID: PMC5004067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 06/06/2023] Open
Abstract
Triple-negative breast cancer (TNBC), which lacks estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), accounts for about 15-20% of breast cancers and is the most aggressive breast cancer subtype. There are currently no effective therapies against metastatic TNBC. Compared with other breast cancer subtypes, EGFR is frequently overexpressed in TNBC and a potential therapeutic target for this disease. There are two types of EGFR inhibitors, small molecular tyrosine kinase inhibitor (TKI) and monoclonal antibody (mAb), for the treatment of cancers, such as non-small cell lung cancer and colorectal cancer. For breast cancer, however, the clinical trials of EGFR inhibitors have failed due to low response rates. Because a small portion of patients do demonstrate response to EGFR inhibitors, it may be necessary to stratify patients to enhance the efficacy of EGFR inhibitors in TNBC and to develop the effective combination therapy for this patient population. In this review, we describe some of the molecular mechanisms underlying EGFR inhibitor sensitivity and further discuss the possible therapeutic strategies to increase the efficacy of EGFR inhibitors in TNBC.
Collapse
Affiliation(s)
- Katsuya Nakai
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterUSA
- Department of Breast Oncology, Juntendo University School of MedicineBunkyo-ku, Tokyo, Japan
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterUSA
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University and HospitalTaichung 404, Taiwan
- Department of Biotechnology, Asia UniversityTaichung 413, Taiwan
| | - Hirohito Yamaguchi
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterUSA
| |
Collapse
|
45
|
Gui Y, Xu S, Yang X, Gu L, Zhang Z, Luo X, Chen L. A meta-analysis of biomarkers for the prognosis of triple-negative breast cancer patients. Biomark Med 2016; 10:771-90. [PMID: 27339713 DOI: 10.2217/bmm-2015-0064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Identification of biomarkers that has the ability to predict triple-negative breast cancer (TNBC) prognosis especially in patients undergoing chemotherapy is very important. Methods: The cohort studies that reported association between chemotherapy biomarker expression and survival outcome in TNBC patients were included in our analysis. Results: The promising markers that emerged for the prediction of disease-free survival and overall survival included Ki67, BRCA1 methylation and LC3B. Furthermore, Ki67 appeared to be also significantly associated with worse disease-free survival in TNBC patients who received anthracycline-based chemotherapy. Conclusion: This meta-analysis demonstrated that in TNBC patients receiving chemotherapy, Ki67 is a predictor for poor prognosis, BRCA1 methylation and LC3B are also potential prognostic markers. In addition, the TNBC patients with high Ki67 expression seems to display resistance to anthracycline-based chemotherapy.
Collapse
Affiliation(s)
- Yu Gui
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Shuman Xu
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xi Yang
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Lu Gu
- Burn Research Institute, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
- National Key Laboratory of Trauma & Burns, Chongqing Key Lab. of Disease Proteomics, Chongqing, China
| | - Ze Zhang
- Burn Research Institute, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
- National Key Laboratory of Trauma & Burns, Chongqing Key Lab. of Disease Proteomics, Chongqing, China
| | - Xiangdong Luo
- Burn Research Institute, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
- National Key Laboratory of Trauma & Burns, Chongqing Key Lab. of Disease Proteomics, Chongqing, China
| | - Li Chen
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
- National Key Laboratory of Trauma & Burns, Chongqing Key Lab. of Disease Proteomics, Chongqing, China
| |
Collapse
|
46
|
Martinello R, Milani A, Geuna E, Zucchini G, Aversa C, Nuzzo A, Montemurro F. Investigational ErbB-2 tyrosine kinase inhibitors for the treatment of breast cancer. Expert Opin Investig Drugs 2016; 25:393-403. [DOI: 10.1517/13543784.2016.1153063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
HER Specific TKIs Exert Their Antineoplastic Effects on Breast Cancer Cell Lines through the Involvement of STAT5 and JNK. PLoS One 2016; 11:e0146311. [PMID: 26735495 PMCID: PMC4703392 DOI: 10.1371/journal.pone.0146311] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/15/2015] [Indexed: 12/14/2022] Open
Abstract
Background HER-targeted tyrosine kinase inhibitors (TKIs) have demonstrated pro-apoptotic and antiproliferative effects in vitro and in vivo. The exact pathways through which TKIs exert their antineoplastic effects are, however, still not completely understood. Methods Using Milliplex assays, we have investigated the effects of the three panHER-TKIs lapatinib, canertinib and afatinib on signal transduction cascade activation in SKBR3, T47D and Jurkat neoplastic cell lines. The growth-inhibitory effect of blockade of HER and of JNK and STAT5 signaling was measured by proliferation- and apoptosis-assays using formazan dye labeling of viable cells, Western blotting for cleaved PARP-1 and immunolabeling for active caspase 3, respectively. Results All three HER-TKIs clearly inhibited proliferation and increased apoptosis in HER2 overexpressing SKBR3 cells, while their effect was less pronounced on HER2 moderately expressing T47D cells where they exerted only a weak antiproliferative and essentially no pro-apoptotic effect. Remarkably, phosphorylation/activation of JNK and STAT5A/B were inhibited by HER-TKIs only in the sensitive, but not in the resistant cells. In contrast, phosphorylation/activation of ERK/MAPK, STAT3, CREB, p70 S6 kinase, IkBa, and p38 were equally affected by HER-TKIs in both cell lines. Moreover, we demonstrated that direct pharmacological blockade of JNK and STAT5 abrogates cell growth in both HER-TKI-sensitive as well as -resistant breast cancer cells, respectively. Conclusion We have shown that HER-TKIs exert a HER2 expression-dependent anti-cancer effect in breast cancer cell lines. This involves blockade of JNK and STAT5A/B signaling, which have been found to be required for in vitro growth of these cell lines.
Collapse
|
48
|
Lehmann BD, Pietenpol JA. Clinical implications of molecular heterogeneity in triple negative breast cancer. Breast 2015; 24 Suppl 2:S36-40. [PMID: 26253813 PMCID: PMC4641762 DOI: 10.1016/j.breast.2015.07.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a molecularly heterogeneous disease lacking recurrent targetable alterations and thus therapeutic advances have been challenging. The absence of ER, PR and HER2 amplifications, leaves combination chemotherapy as the standard of care treatment option in the adjuvant, neoadjuvant and metastatic settings. Recently, multiple studies have shed some light on the heterogeneity of TNBC and identified distinct transcriptional subtypes with unique biologies. Herein we review the molecular heterogeneity and the impact on previous and future clinical trials.
Collapse
Affiliation(s)
- Brian D Lehmann
- Department of Biochemistry, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Preston Research Building, 2200 Pierce Avenue, Nashville, TN 37232, USA.
| | - Jennifer A Pietenpol
- Department of Biochemistry, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Preston Research Building, 2200 Pierce Avenue, Nashville, TN 37232, USA.
| |
Collapse
|
49
|
Teuwen LA, Van den Mooter T, Dirix L. Management of pulmonary toxicity associated with targeted anticancer therapies. Expert Opin Drug Metab Toxicol 2015; 11:1695-707. [PMID: 26293379 DOI: 10.1517/17425255.2015.1080687] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Targeted anticancer therapies act by interfering with defined molecular entities and/or biologic pathways. Because of their more specific mechanism of action, adverse events (AEs) on healthy tissues are intended to be minimal, resulting in a different toxicity profile from that observed with conventional cytotoxic chemotherapy. Pulmonary AEs are rare but potentially life-threatening and it is, therefore, critical to recognize early on and manage appropriately. AREAS COVERED In this review, we aim to offer an overview of both more frequent and rare pulmonary AEs caused by targeted anticancer therapies and discuss possible treatment algorithms. Anti-vascular endothelial growth factor, anti-human epidermal growth factor receptor and anti-CD20 therapy will be reviewed, as well as immune checkpoint inhibitors, anaplastic lymphoma kinase inhibitors and mammalian target of rapamycin inhibitors. EXPERT OPINION Novel agents used in the treatment of cancer have specific side-effects, the result of allergic reactions, on-target and off-target effects. Clinical syndromes associated with pulmonary toxicity vary from bronchospasms, hypersensitivity reactions, pneumonitis, acute respiratory distress, lung bleeding, pleural effusion to pneumothorax. Knowledge of risk factors, a high index of suspicion and a complete diagnostic work-up are essential for limiting the risk of these events becoming life threatening. The development of treatment algorithms is extremely helpful in managing these events. It is probable that these toxicities will be even more frequent with the introduction of combination therapies with the obvious challenge of discerning the responsible agent.
Collapse
Affiliation(s)
- Laure-Anne Teuwen
- a 1 Sint-Augustinus, Resident in Internal Medicine , Oosterveldlaan 24, 2610 Wilrijk-Antwerp, Belgium
| | - Tom Van den Mooter
- b 2 Sint-Augustinus, Resident in Medical Oncology , Oosterveldlaan 24, 2610 Wilrijk-Antwerp, Belgium
| | - Luc Dirix
- c 3 Sint-Augustinus, Medical Oncology , Oosterveldlaan 24, 2610 Wilrijk-Antwerp, Belgium +32 34 433 737 ; +32 34 430 09 ;
| |
Collapse
|
50
|
Giordano P, Manzo A, Montanino A, Costanzo R, Sandomenico C, Piccirillo MC, Daniele G, Normanno N, Carillio G, Rocco G, Bianco R, Perrone F, Morabito A. Afatinib: An overview of its clinical development in non-small-cell lung cancer and other tumors. Crit Rev Oncol Hematol 2015; 97:143-51. [PMID: 26318094 DOI: 10.1016/j.critrevonc.2015.08.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 07/08/2015] [Accepted: 08/06/2015] [Indexed: 12/11/2022] Open
Abstract
Afatinib is an oral, irreversible, tyrosine kinase inhibitor (TKI) of EGFR, HER2 and HER4. According to phase I studies, the recommended dose of afatinib was 50mg daily. Rash, acne, diarrhea and stomatitis were the most common adverse events. Afatinib failed to demonstrate an improvement in overall survival in unselected heavily pretreated NSCLC patients (Lux-Lung-1). On the contrary, the Lux-Lung-3 and -6 trials met the primary end point, demonstrating a significant increase in terms of PFS with afatinib compared with chemotherapy in the first line treatment of EGFR mutant patients. Moreover, in both studies, afatinib improved overall survival in patients with exon 19 EGFR deletion (31.7 vs 20.7 months; HR: 0.59, p=0.0001). The results of ongoing randomized trials should further clarify the efficacy of afatinib compared with first-generation TKIs in advanced NSCLC, its activity in the adjuvant and neoadjuvant settings, as well as its efficacy in other tumors.
Collapse
Affiliation(s)
- Pasqualina Giordano
- Medical Oncology Unit, Thoracic Department, Istituto Nazionale Tumori, "Fondazione G. Pascale" - IRCCS, Napoli, Italy; Clinical Trials Unit, Istituto Nazionale Tumori, "Fondazione G.Pascale" - IRCCS, Napoli, Italy
| | - Anna Manzo
- Medical Oncology Unit, Thoracic Department, Istituto Nazionale Tumori, "Fondazione G. Pascale" - IRCCS, Napoli, Italy
| | - Agnese Montanino
- Medical Oncology Unit, Thoracic Department, Istituto Nazionale Tumori, "Fondazione G. Pascale" - IRCCS, Napoli, Italy
| | - Raffaele Costanzo
- Medical Oncology Unit, Thoracic Department, Istituto Nazionale Tumori, "Fondazione G. Pascale" - IRCCS, Napoli, Italy
| | - Claudia Sandomenico
- Medical Oncology Unit, Thoracic Department, Istituto Nazionale Tumori, "Fondazione G. Pascale" - IRCCS, Napoli, Italy
| | | | - Gennaro Daniele
- Clinical Trials Unit, Istituto Nazionale Tumori, "Fondazione G.Pascale" - IRCCS, Napoli, Italy
| | - Nicola Normanno
- Cellular Biology and Biotherapy, Istituto Nazionale Tumori, "Fondazione G.Pascale" - IRCCS, Napoli, Italy; Centro di Ricerche Oncologiche di Mercogliano (CROM), Mercogliano, Avellino, Italy
| | - Guido Carillio
- Department of Oncology and Hematology, Azienda Ospedaliera Pugliese-Ciaccio, Catanzaro, Italy
| | - Gaetano Rocco
- Thoracic Surgery, Thoracic Department, Istituto Nazionale Tumori, "Fondazione G.Pascale" - IRCCS, Napoli, Italy
| | - Roberto Bianco
- Department of Clinical Medicine and Surgery, University Federico II, Napoli, Italy
| | - Francesco Perrone
- Clinical Trials Unit, Istituto Nazionale Tumori, "Fondazione G.Pascale" - IRCCS, Napoli, Italy
| | - Alessandro Morabito
- Medical Oncology Unit, Thoracic Department, Istituto Nazionale Tumori, "Fondazione G. Pascale" - IRCCS, Napoli, Italy.
| |
Collapse
|