1
|
Wang L, Wang Y, Li Y, Zhou L, Du J, Wang J, Liu S, Cao Y, Li Y, Yang W, Zhu T. Resistance mechanisms and prospects of trastuzumab. Front Oncol 2024; 14:1389390. [PMID: 39655080 PMCID: PMC11625751 DOI: 10.3389/fonc.2024.1389390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Breast cancer that overexpresses Human Epidermal Growth Factor Receptor 2 (HER2+) due to gene amplification or overexpression constitutes 15-20% of all breast cancer cases. Trastuzumab, the first FDA-approved monoclonal antibody targeting HER2, serves as the standard first-line treatment for HER2-positive advanced breast cancer, as recommended by multiple clinical guidelines.Currently, accumulated clinical evidence reveals a considerable degree of variability in the response of HER2+ breast cancer to trastuzumab treatment. Specifically, over 50% of patients either do not respond to or develop resistance against trastuzumab.The specific mechanisms of resistance to trastuzumab are currently unclear. This paper aims to review the existing research on the resistance mechanisms of trastuzumab, based on its target, from aspects such as genetic loci, molecular structure, signaling pathways, and the tumor microenvironment and to outline current research progress and new strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Ting Zhu
- The Third Affiliated Hospital of Anhui Medical University, Hefei first people’s
Hospital, Hefei, China
| |
Collapse
|
2
|
Gao Y, Shelling AN, Nolan E, Porter D, Leung E, Wu Z. Liposome-enabled bufalin and doxorubicin combination therapy for trastuzumab-resistant breast cancer with a focus on cancer stem cells. J Liposome Res 2024; 34:489-506. [PMID: 38269490 DOI: 10.1080/08982104.2024.2305866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024]
Abstract
Breast cancer stem cells (BCSCs) play a key role in therapeutic resistance in breast cancer treatments and disease recurrence. This study aimed to develop a combination therapy loaded with pH-sensitive liposomes to kill both BCSCs and the okbulk cancer cells using trastuzumab-sensitive and resistant human epidermal growth factor receptor 2 positive (HER2+) breast cancer cell models. The anti-BCSCs effect and cytotoxicity of all-trans retinoic acid, salinomycin, and bufalin alone or in combination with doxorubicin were compared in HER2+ cell line BT-474 and a validated trastuzumab-resistant cell line, BT-474R. The most potent anti-BCSC agent was selected and loaded into a pH-sensitive liposome system. The effects of the liposomal combination on BCSCs and bulk cancer cells were assessed. Compared with BT-474, the aldehyde dehydrogenase positive BCSC population was elevated in BT-474R (3.9 vs. 23.1%). Bufalin was the most potent agent and suppressed tumorigenesis of BCSCs by ∼50%, and showed strong synergism with doxorubicin in both BT-474 and BT-474R cell lines. The liposomal combination of bufalin and doxorubicin significantly reduced the BCSC population size by 85%, and inhibited both tumorigenesis and self-renewal, although it had little effect on the migration and invasiveness. The cytotoxicity against the bulk cancer cells was also enhanced by the liposomal combination than either formulation alone in both cell lines (p < 0.001). The liposomal bufalin and doxorubicin combination therapy may effectively target both BCSCs and bulk cancer cells for a better outcome in trastuzumab-resistant HER2+ breast cancer.
Collapse
Affiliation(s)
- Yu Gao
- Faculty of Medical and Health Sciences, School of Pharmacy, The University of Auckland, Auckland, New Zealand
| | - Andrew N Shelling
- Faculty of Medical and Health Sciences, School of Medicine, The University of Auckland, Auckland, New Zealand
| | - Emma Nolan
- Faculty of Medical and Health Sciences, Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - David Porter
- Auckland Regional Cancer and Blood Service, Auckland City Hospital, Auckland, New Zealand
| | - Euphemia Leung
- Faculty of Medical and Health Sciences, Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - Zimei Wu
- Faculty of Medical and Health Sciences, School of Pharmacy, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Karcini A, Mercier NR, Lazar IM. Proteomic assessment of SKBR3/HER2+ breast cancer cellular response to Lapatinib and investigational Ipatasertib kinase inhibitors. Front Pharmacol 2024; 15:1413818. [PMID: 39268460 PMCID: PMC11391243 DOI: 10.3389/fphar.2024.1413818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Modern cancer treatment strategies aim at achieving cancer remission by using targeted and personalized therapies, as well as harnessing the power of the immune system to recognize and eradicate the cancer cells. To overcome a relatively short-lived response due to resistance to the administered drugs, combination therapies have been pursued. Objective The objective of this study was to use high-throughput data generation technologies such as mass spectrometry and proteomics to investigate the broader implications, and to expand the outlook, of such therapeutic approaches. Specifically, we investigated the systems-level response of a breast cancer cell line model to a mixture of kinase inhibitors that has not been adopted yet as a standard therapeutic regime. Methods Two critical pathways that sustain the growth and survival of cancer cells, EGFR and PI3K/AKT, were inhibited in SKBR3/HER2+ breast cancer cells with Lapatinib (Tyr kinase inhibitor) and Ipatasertib (Ser/Thr kinase inhibitor), and the landscape of the affected biological processes was investigated with proteomic technologies. Results Over 800 proteins matched by three unique peptide sequences were affected by exposing the cells to the drugs. The work corroborated the anti-proliferative activity of Lapatinib and Ipatasertib and uncovered a range of impacted cancer-supportive hallmark processes, among which immune response, adhesion, and migration emerged as particularly relevant to the ability of drugs to effectively suppress the proliferation and dissemination of cancer cells. Changes in the expression of key cancer drivers such as oncogenes, tumor suppressors, EMT and angiogenesis regulators underscored the inhibitory effectiveness of drugs on cancer proliferation. The supplementation of Lapatinib with Ipatasertib further affected additional transcription factors and proteins involved in gene expression, trafficking, DNA repair, and development of multidrug resistance. Furthermore, over fifty of the impacted proteins represent approved or investigational targets in the DrugBank database, which through their protein-protein interaction networks can inform the selection of effective therapeutic partners. Conclusion Altogether, the exposure of SKBR3/HER2+ cells to Lapatinib and Ipatasertib kinase inhibitors uncovered a broad plethora of yet untapped opportunities that can be further explored for enhancing the anti-cancer effects of each drug as well as of many other multi-drug therapies that target the EGFR/ERBB2 and PI3K/AKT pathways.
Collapse
Affiliation(s)
- Arba Karcini
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Nicole R. Mercier
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Iulia M. Lazar
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
- Division of Systems Biology, Virginia Tech, Blacksburg, VA, United States
- Carilion School of Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
4
|
Karcini A, Mercier NR, Lazar IM. Proteomic Assessment of SKBR3/HER2+ Breast Cancer Cellular Response to Lapatinib and Investigational Ipatasertib Kinase Inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587656. [PMID: 38617302 PMCID: PMC11014527 DOI: 10.1101/2024.04.02.587656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Modern cancer treatment approaches aim at achieving cancer remission by using targeted and personalized therapies, as well as harnessing the power of the immune system to recognize and eliminate the cancer cells. To overcome a relatively short-lived response due to the development of resistance to the administered drugs, combination therapies have been pursued, as well. To expand the outlook of combination therapies, the objective of this study was to use high-throughput data generation technologies such as mass spectrometry and proteomics to investigate the response of HER2+ breast cancer cells to a mixture of two kinase inhibitors that has not been adopted yet as a standard treatment regime. The broader landscape of biological processes that are affected by inhibiting two major pathways that sustain the growth and survival of cancer cells, i.e., EGFR and PI3K/AKT, was investigated by treating SKBR3/HER2+ breast cancer cells with Lapatinib or a mixture of Lapatinib/Ipatasertib small molecule drugs. Changes in protein expression and/or activity in response to the drug treatments were assessed by using two complementary quantitative proteomic approaches based on peak area and peptide spectrum match measurements. Over 900 proteins matched by three unique peptide sequences (FDR<0.05) were affected by the exposure of cells to the drugs. The work corroborated the anti-proliferative activity of Lapatinib and Ipatasertib, and, in addition to cell cycle and growth arrest processes enabled the identification of several multi-functional proteins with roles in cancer-supportive hallmark processes. Among these, immune response, adhesion and migration emerged as particularly relevant to the ability to effectively suppress the proliferation and dissemination of cancer cells. The supplementation of Lapatinib with Ipatasertib further affected the expression or activity of additional transcription factors and proteins involved in gene expression, trafficking, DNA repair, and development of multidrug resistance. Furthermore, over fifty of the affected proteins represented approved or investigational targets in the DrugBank database, which through their protein-protein interaction networks can inform the selection of effective therapeutic partners. Altogether, our findings exposed a broad plethora of yet untapped opportunities that can be further explored for enhancing the anti-cancer effects of each drug as well as of many other multi-drug therapies that target the EGFR/ERBB2 and PI3K/AKT pathways. The data are available via ProteomeXchange with identifier PXD051094.
Collapse
Affiliation(s)
- Arba Karcini
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060; Department of Biological Sciences, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA 24061
| | - Nicole R. Mercier
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060; Department of Biological Sciences, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA 24061
| | - Iulia M. Lazar
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060; Department of Biological Sciences, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA 24061
- Fralin Life Sciences Institute, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA 24061
- Division of Systems Biology, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA 24061
- Carilion School of Medicine, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA 24061
| |
Collapse
|
5
|
Chen S, Zhang G, Liu Y, Yang C, He Y, Guo Q, Du Y, Gao F. Anchoring of hyaluronan glycocalyx to CD44 reduces sensitivity of HER2-positive gastric cancer cells to trastuzumab. FEBS J 2024; 291:1719-1731. [PMID: 38275079 DOI: 10.1111/febs.17069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/28/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Trastuzumab is widely used in human epidermal growth factor receptor 2 (HER2)-positive gastric cancer (GC) therapy, but ubiquitous resistance limits its clinical application. In this study, we first showed that CD44 antigen is a significant predictor of overall survival for patients with HER2-positive GC. Next, we found that CD44 could be co-immunoprecipitated and co-localized with HER2 on the membrane of GC cells. By analyzing the interaction between CD44 and HER2, we identified that CD44 could upregulate HER2 protein by inhibiting its proteasome degradation. Notably, the overexpression of CD44 could decrease the sensitivity of HER2-positive GC cells to trastuzumab. Further mechanistic study showed that CD44 upregulation could induce its ligand, hyaluronan (HA), to deposit on the cancer cell surface, resulting in covering up the binding sites of trastuzumab to HER2. Removing the HA glycocalyx restored sensitivity of the cells to trastuzumab. Collectively, our findings suggested a role for CD44 in regulating trastuzumab sensitivity and provided novel insights into HER2-targeted therapy.
Collapse
Affiliation(s)
- Si Chen
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Guoliang Zhang
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Yiwen Liu
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Cuixia Yang
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Yiqing He
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Qian Guo
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Yan Du
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Feng Gao
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
6
|
Vo TH, EL-Sherbieny Abdelaal E, Jordan E, O'Donovan O, McNeela EA, Mehta JP, Rani S. miRNAs as biomarkers of therapeutic response to HER2-targeted treatment in breast cancer: A systematic review. Biochem Biophys Rep 2024; 37:101588. [PMID: 38088952 PMCID: PMC10711031 DOI: 10.1016/j.bbrep.2023.101588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/19/2023] [Indexed: 06/16/2024] Open
Abstract
Breast cancer is the most common type of lethal cancer in women globally. Women have a 1 in 8 chance of developing breast cancer in their lifetime. Among the four primary molecular subtypes (luminal A, luminal B, HER2+, and triple-negative), HER2+ accounts for 20-25 % of all breast cancer and is rather aggressive. Although the treatment outcome of HER2+ breast cancer patients has been significantly improved with anti-HER2 agents, primary and acquired drug resistance present substantial clinical issues, limiting the benefits of HER2-targeted treatment. MicroRNAs (miRNAs) play a central role in regulating acquired drug resistance. miRNA are single-stranded, non-coding RNAs of around 20-25 nucleotides, known for essential roles in regulating gene expression at the post-transcriptional level. Increasing evidence has demonstrated that miRNA-mediated alteration of gene expression is associated with tumorigenesis, metastasis, and tumor response to treatment. Comprehensive knowledge of miRNAs as potential markers of drug response can help provide valuable guidance for treatment prognosis and personalized medicine for breast cancer patients.
Collapse
Affiliation(s)
- Thanh Hoa Vo
- Department of Science, School of Science and Computing, South East Technological University, Cork Road, Waterford, X91 K0EK, Ireland
- Pharmaceutical and Molecular Biotechnology Research Center, South East Technological University, Cork Road, X91 K0EK, Waterford, Ireland
| | | | - Emmet Jordan
- Department of Oncology, University Hospital Waterford, Dunmore Road, X91 ER8E, Waterford, Ireland
| | - Orla O'Donovan
- Department of Science, School of Science and Computing, South East Technological University, Cork Road, Waterford, X91 K0EK, Ireland
- Pharmaceutical and Molecular Biotechnology Research Center, South East Technological University, Cork Road, X91 K0EK, Waterford, Ireland
| | - Edel A. McNeela
- Department of Science, School of Science and Computing, South East Technological University, Cork Road, Waterford, X91 K0EK, Ireland
- Pharmaceutical and Molecular Biotechnology Research Center, South East Technological University, Cork Road, X91 K0EK, Waterford, Ireland
| | - Jai Prakash Mehta
- Department of Applied Science, South East Technological University, Kilkenny Road, R93 V960, Carlow, Ireland
| | - Sweta Rani
- Department of Science, School of Science and Computing, South East Technological University, Cork Road, Waterford, X91 K0EK, Ireland
- Pharmaceutical and Molecular Biotechnology Research Center, South East Technological University, Cork Road, X91 K0EK, Waterford, Ireland
| |
Collapse
|
7
|
Wu X, Huang S, He W, Song M. Emerging insights into mechanisms of trastuzumab resistance in HER2-positive cancers. Int Immunopharmacol 2023; 122:110602. [PMID: 37437432 DOI: 10.1016/j.intimp.2023.110602] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/19/2023] [Accepted: 07/02/2023] [Indexed: 07/14/2023]
Abstract
HER2 is an established therapeutic target in breast, gastric, and gastroesophageal junction carcinomas with HER2 overexpression or genomic alterations. The humanized monoclonal antibody trastuzumab targeting HER2 has substantially improved the clinical outcomes of HER2-positive patients, yet the inevitable intrinsic or acquired resistance to trastuzumab limits its clinical benefit, necessitating the elucidation of resistance mechanisms to develop alternate therapeutic strategies. This review presents an overview of trastuzumab resistance mechanisms involving signaling pathways, cellular metabolism, cell plasticity, and tumor microenvironment, particularly discussing the prospects of developing rational combinations to improve patient outcomes.
Collapse
Affiliation(s)
- Xiaoxue Wu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Shuting Huang
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Weiling He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Department of Gastrointestinal Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China.
| | - Mei Song
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
8
|
Zhao M, Liu J, Tang Y, Zhang L, Ge X, Chen M, Wen Q, Zhu L, Ma Q. Hyaluronidase responsive second near-infrared fluorescent nanocomplex for combined HER2 blockade and chemotherapy of HER2+ breast cancer. BIOMATERIALS ADVANCES 2022; 141:213115. [PMID: 36115156 DOI: 10.1016/j.bioadv.2022.213115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/22/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
The human epidermal growth factor receptor-2-positive (HER2+) type is aggressive and has poor prognosis. Although anti-HER2 therapy alone or in combination with other treatment regimens showed significant improvement in survival outcomes, breast cancer patients are still suffering from tumor relapse and severe dose-limiting side effects. Thus, there is still an unmet challenge to develop effective therapeutic agents for HER2+ breast cancer treatment with minimized side effects. Herein, we produced a stimuli-responsive and tumor-targeted hyaluronic acid (HA) nanocomplex that combined HER2 blockade and chemotherapy for effective HER2+ breast cancer therapy. A hydrophobic NIR-II dye, IR1048, was covalently linked with HA to form a spherical HA-IR1048 nanoparticle (HINP), with Herceptin conjugated on the surface and paclitaxel (PTX) encapsulated inside. The fluorescent signals from the yielding Her-HINP/PTX are quenched originally, but a strong NIR-II signal is generated when HINP is degraded by the hyaluronidase that is overexpressed in breast tumors, thus allowing the tracking and visualization of Herceptin and PTX accumulation. Her-HINP/PTX peaked in HER2+ tumors at 24 h post injection as imaged by NIR-II fluorescent imaging. A significantly improved tumor growth inhibition effect was observed after five systemic treatments compared to single PTX (3.71 ± 0.41 times) or Herceptin (5.98 ± 0.51 times) treatment in a HER2-overexpressed breast cancer mouse model with prolonged survival. Collectively, the designed Her-HINP/PTX presents a new hyaluronidase-responsive and HER2 blockade nanoformulation that can visualize the accumulation of nanocomplexes and release drugs inside tumors for combined HER2+ breast cancer therapy with a great promise for translational study. STATEMENT OF SIGNIFICANCE: The high expressions of a protein called human epidermal growth factor receptor 2 (HER2) in breast tumors make this subtype of cancer aggressive. Currently, chemotherapy combined with a HER2 antibody, Herceptin, is a preferred approach for HER2-positive breast cancer therapy. However, these breast cancer patients still suffer from tumor relapse and severe side effects because various therapeutic agents have inherent different biodistributions, resulting in insufficient treatment effects and unfavorable normal organ uptake of these therapeutic agents. Herein, we produced a nanocomplex carrying both Herceptin and chemotherapy drug to simultaneously deliver two drugs into tumors for efficient HER2+ tumor treatment with minimized side effects, providing new insights for designing a combined therapy strategy.
Collapse
Affiliation(s)
- Min Zhao
- Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Junzhi Liu
- Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Yuting Tang
- Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Lumeng Zhang
- Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Xiaoguang Ge
- Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University, Changchun 130033, China; MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Minglong Chen
- Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Qiang Wen
- Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University, Changchun 130033, China.
| | - Lei Zhu
- Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University, Changchun 130033, China.
| | - Qingjie Ma
- Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University, Changchun 130033, China.
| |
Collapse
|
9
|
Park S, Park JM, Park M, Ko D, Kim S, Seo J, Nam KD, Jung E, Farrand L, Kim YJ, Kim JY, Seo JH. β-Escin overcomes trastuzumab resistance in HER2-positive breast cancer by targeting cancer stem-like features. Cancer Cell Int 2022; 22:289. [PMID: 36127671 PMCID: PMC9490928 DOI: 10.1186/s12935-022-02713-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/09/2022] [Indexed: 11/15/2022] Open
Abstract
Background The emergence of de novo or intrinsic trastuzumab resistance is exceedingly high in breast cancer that is HER2 positive and correlates with an abundant cancer stem cell (CSC)-like population. We sought to examine the capacity of β-escin, an anti-inflammatory drug, to address trastuzumab resistance in HER2-positive breast cancer cells. Methods The effect of β-escin on trastuzumab-resistant and -sensitive cell lines in vitro was evaluated for apoptosis, expression of HER2 family members, and impact on CSC-like properties. An in vivo model of trastuzumab-resistant JIMT-1 was used to examine the efficacy and toxicity of β-escin. Results β-escin induced mitochondrial-mediated apoptosis accompanied by reactive oxygen species (ROS) production and increased active p18Bax fragmentation, leading to caspase-3/-7 activation. Attenuation of CSC-related features by β-escin challenge was accompanied by marked reductions in CD44high/CD24low stem-like cells and aldehyde dehydrogenase 1 (ALDH1) activity as well as hindrance of mammosphere formation. β-escin administration also significantly retarded tumor growth and angiogenesis in a trastuzumab-resistant JIMT-1 xenograft model via downregulation of CSC-associated markers and intracellular domain HER2. Importantly, β-escin selectively inhibited malignant cells and was less toxic to normal mammary cells, and no toxic effects were found in liver and kidney function in animals. Conclusions Taken together, our findings highlight β-escin as a promising candidate for the treatment of trastuzumab-resistant HER2-positive breast cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02713-9.
Collapse
Affiliation(s)
- Soeun Park
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Jung Min Park
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Minsu Park
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Dongmi Ko
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Seongjae Kim
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Juyeon Seo
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Kee Dal Nam
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Eunsun Jung
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea
| | - Lee Farrand
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Yoon-Jae Kim
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea. .,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea. .,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea.
| | - Ji Young Kim
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea. .,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea.
| | - Jae Hong Seo
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea. .,Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul, 02841, Republic of Korea. .,Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, 97 Gurodong-gil, Guro-gu, Seoul, 08308, Republic of Korea.
| |
Collapse
|
10
|
Chen Y, Xu J, Pan W, Xu X, Ma X, Chu Y, Wang L, Pang S, Li Y, Zou B, Zhou G, Gu J. Galectin‐3 enhances trastuzumab resistance by regulating cancer malignancy and stemness in
HER2
‐positive breast cancer cells. Thorac Cancer 2022; 13:1961-1973. [PMID: 35599381 PMCID: PMC9250839 DOI: 10.1111/1759-7714.14474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose The aim of this study was to explore the role of galectin‐3 in human epidermal growth factor receptor 2 (HER2)‐positive breast cancer cells and the potential mechanism. Methods Kaplan–Meier (KM)‐plot and The Cancer Genome Atlas (TCGA) databases were used to study the role of galectin‐3 in the prognosis of HER2‐positive breast cancer. The effects of galectin‐3 on cell proliferation, migration, invasion, and colony formation ability in HER2‐positive breast cancer cells were examined. The relationship between galectin‐3 and important components in the HER2 pathways, including HER2, epidermal growth factor receptor (EGFR), protein kinase B (AKT), and phosphatase and tensin homolog (PTEN), was further studied. Lentivirus and CRISPR/Cas9 were used to construct stable cell lines. Cell counting kit‐8 (CCK‐8) and apoptosis assays were used to study the relationship between galectin‐3 and trastuzumab. The effect of galectin‐3 on cell stemness was studied by mammosphere formation assay. The effects of galectin‐3 on stemness biomarkers and the Notch1 pathway were examined. Tumorigenic models were used to evaluate the effects of galectin‐3 on tumorigenesis and the therapeutic effect of trastuzumab in vivo. Results HER2‐positive breast cancer patients with a high expression level of LGALS3 (the gene encoding galectin‐3) messenger RNA (mRNA) showed a poor prognosis. Galectin‐3 promoted cancer malignancy through phosphoinositide 3‐kinase (PI3K)/AKT signaling pathway activation and upregulated stemness by activating the Notch1 signaling pathway in HER2‐positive breast cancer cells. These two factors contributed to the enhancement of trastuzumab resistance in cells. Knockout of LGALS3 had a synergistic therapeutic effect with trastuzumab both in vitro and in vivo. Conclusions Galectin‐3 may represent a prognostic predictor and therapeutic target for HER2‐positive breast cancer.
Collapse
Affiliation(s)
- Yuqiu Chen
- Research Institute of General Surgery, Affiliated Jinling Hospital Medical School of Nanjing University Nanjing China
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine Medical School of Nanjing University Nanjing China
| | - Jiawei Xu
- Research Institute of General Surgery, Affiliated Jinling Hospital Medical School of Nanjing University Nanjing China
| | - Wang Pan
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine Medical School of Nanjing University Nanjing China
| | - Xiaofan Xu
- Research Institute of General Surgery, Affiliated Jinling Hospital Medical School of Nanjing University Nanjing China
| | - Xueping Ma
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine Medical School of Nanjing University Nanjing China
| | - Ya'nan Chu
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine Medical School of Nanjing University Nanjing China
| | - Lu Wang
- Research Institute of General Surgery, Affiliated Jinling Hospital Medical School of Nanjing University Nanjing China
| | - Shuyun Pang
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine Medical School of Nanjing University Nanjing China
| | - Yujiao Li
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine Medical School of Nanjing University Nanjing China
| | - Bingjie Zou
- Key Laboratory of Drug Quality Control and Pharmacovigilance of Ministry of Education, School of Pharmacy China Pharmaceutical University Nanjing China
| | - Guohua Zhou
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine Medical School of Nanjing University Nanjing China
- Department of Clinical Pharmacy, Jinling Hospital, School of Pharmacy Southern Medical University Guangzhou China
| | - Jun Gu
- Research Institute of General Surgery, Affiliated Jinling Hospital Medical School of Nanjing University Nanjing China
| |
Collapse
|
11
|
The C-terminal HSP90 inhibitor NCT-58 kills trastuzumab-resistant breast cancer stem-like cells. Cell Death Dis 2021; 7:354. [PMID: 34775489 PMCID: PMC8590693 DOI: 10.1038/s41420-021-00743-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022]
Abstract
N-terminal HSP90 inhibitors in development have had issues arising from heat shock response (HSR) induction and off-target effects. We sought to investigate the capacity of NCT-58, a rationally-synthesized C-terminal HSP90 inhibitor, to kill trastuzumab-resistant HER2-positive breast cancer stem-like cells. NCT-58 does not induce the HSR due to its targeting of the C-terminal region and elicits anti-tumor activity via the simultaneous downregulation of HER family members as well as inhibition of Akt phosphorylation. NCT-58 kills the rapidly proliferating bulk tumor cells as well as the breast cancer stem-like population, coinciding with significant reductions in stem/progenitor markers and pluripotent transcription factors. NCT-58 treatment suppressed growth and angiogenesis in a trastuzumab-resistant xenograft model, concomitant with downregulation of ICD-HER2 and HSF-1/HSP70/HSP90. These findings warrant further investigation of NCT-58 to address trastuzumab resistance in heterogeneous HER2-positive cancers.
Collapse
|
12
|
Garrido-Cano I, Pattanayak B, Adam-Artigues A, Lameirinhas A, Torres-Ruiz S, Tormo E, Cervera R, Eroles P. MicroRNAs as a clue to overcome breast cancer treatment resistance. Cancer Metastasis Rev 2021; 41:77-105. [PMID: 34524579 PMCID: PMC8924146 DOI: 10.1007/s10555-021-09992-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/02/2021] [Indexed: 12/31/2022]
Abstract
Breast cancer is the most frequent cancer in women worldwide. Despite the improvement in diagnosis and treatments, the rates of cancer relapse and resistance to therapies remain higher than desirable. Alterations in microRNAs have been linked to changes in critical processes related to cancer development and progression. Their involvement in resistance or sensitivity to breast cancer treatments has been documented by different in vivo and in vitro experiments. The most significant microRNAs implicated in modulating resistance to breast cancer therapies are summarized in this review. Resistance to therapy has been linked to cellular processes such as cell cycle, apoptosis, epithelial-to-mesenchymal transition, stemness phenotype, or receptor signaling pathways, and the role of microRNAs in their regulation has already been described. The modulation of specific microRNAs may modify treatment response and improve survival rates and cancer patients' quality of life. As a result, a greater understanding of microRNAs, their targets, and the signaling pathways through which they act is needed. This information could be useful to design new therapeutic strategies, to reduce resistance to the available treatments, and to open the door to possible new clinical approaches.
Collapse
Affiliation(s)
| | | | | | - Ana Lameirinhas
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
| | | | - Eduardo Tormo
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain.,Center for Biomedical Network Research On Cancer, CIBERONC-ISCIII, 28029, Madrid, Spain
| | | | - Pilar Eroles
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain. .,Center for Biomedical Network Research On Cancer, CIBERONC-ISCIII, 28029, Madrid, Spain. .,Department of Physiology, University of Valencia, 46010, Valencia, Spain.
| |
Collapse
|
13
|
Al-Akhrass H, Conway JRW, Poulsen ASA, Paatero I, Kaivola J, Padzik A, Andersen OM, Ivaska J. A feed-forward loop between SorLA and HER3 determines heregulin response and neratinib resistance. Oncogene 2021; 40:1300-1317. [PMID: 33420373 PMCID: PMC7892347 DOI: 10.1038/s41388-020-01604-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/23/2020] [Accepted: 12/03/2020] [Indexed: 01/29/2023]
Abstract
Current evidence indicates that resistance to the tyrosine kinase-type cell surface receptor (HER2)-targeted therapies is frequently associated with HER3 and active signaling via HER2-HER3 dimers, particularly in the context of breast cancer. Thus, understanding the response to HER2-HER3 signaling and the regulation of the dimer is essential to decipher therapy relapse mechanisms. Here, we investigate a bidirectional relationship between HER2-HER3 signaling and a type-1 transmembrane sorting receptor, sortilin-related receptor (SorLA; SORL1). We demonstrate that heregulin-mediated signaling supports SorLA transcription downstream of the mitogen-activated protein kinase pathway. In addition, we demonstrate that SorLA interacts directly with HER3, forming a trimeric complex with HER2 and HER3 to attenuate lysosomal degradation of the dimer in a Ras-related protein Rab4-dependent manner. In line with a role for SorLA in supporting the stability of the HER2 and HER3 receptors, loss of SorLA compromised heregulin-induced cell proliferation and sensitized metastatic anti-HER2 therapy-resistant breast cancer cells to neratinib in cancer spheroids in vitro and in vivo in a zebrafish brain xenograft model.
Collapse
Affiliation(s)
- Hussein Al-Akhrass
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland.
| | - James R W Conway
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Annemarie Svane Aavild Poulsen
- Danish Research Institute of Translational Neuroscience (DANDRITE) Nordic-EMBL Partnership, Department of biomedicine, Aarhus University, Aarhus, Denmark
| | - Ilkka Paatero
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Jasmin Kaivola
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Artur Padzik
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Olav M Andersen
- Danish Research Institute of Translational Neuroscience (DANDRITE) Nordic-EMBL Partnership, Department of biomedicine, Aarhus University, Aarhus, Denmark
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland.
| |
Collapse
|
14
|
Madani Tonekaboni SA, Beri G, Haibe-Kains B. Pathway-Based Drug Response Prediction Using Similarity Identification in Gene Expression. Front Genet 2020; 11:1016. [PMID: 33033492 PMCID: PMC7509171 DOI: 10.3389/fgene.2020.01016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
Lapatinib and trastuzumab (Herceptin) are targeted therapies designed for patients with HER2+ breast tumors. Although these therapies improved survival rates of patients with this tumor type, not all the patients harboring HER2 amplification respond to these drugs. The NeoALTTO clinical trial was designed to test whether a higher response rate can be achieved by combining lapatinib and trastuzumab. Although the combination therapy showed almost double the response rate compared to the monotherapies, 40% of the patients did not respond to the treatment. In this study, we sought to identify biomarkers of HER2+ breast cancer patients' response to drugs relying on gene expression profiles of tumors. We show that univariate gene expression-based biomarkers are significant but weak predictors of drug response. We further show that pathway activities, estimated from gene expression patterns quantified using the recent transcriptional similarity coefficient (TSC) between the tumor samples, yield high predictive value for therapy response (concordance index >0.8, p < 0.05). Moreover, machine learning models, built using multiple algorithms including logistic regression, naive Bayes, random forest, k-nearest neighbor, and support vector machine, for predicting drug response in the NeoALTTO clinical trial, resulted in lower performance compared to our pathway-based approach. Our results indicate that transcriptional similarity of biological pathways can be used to predict lapatinib and trastuzumab response in HER2+ breast cancer.
Collapse
Affiliation(s)
- Seyed Ali Madani Tonekaboni
- Princess Margaret Cancer Centre, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Gangesh Beri
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Department of Computer Science, University of Toronto, Toronto, ON, Canada.,Ontario Institute of Cancer Research, Toronto, ON, Canada.,Vector Institute, Toronto, ON, Canada
| |
Collapse
|
15
|
Roosta Y, Sanaat Z, Nikanfar AR, Dolatkhah R, Fakhrjou A. Predictive Value of CD44 for Prognosis in Patients with Breast Cancer. Asian Pac J Cancer Prev 2020; 21:2561-2567. [PMID: 32986353 PMCID: PMC7779424 DOI: 10.31557/apjcp.2020.21.9.2561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Indexed: 11/25/2022] Open
Abstract
Background: Breast Cancer (BC), is one of the most common malignancies around the world. CD44 expression correlates with cell proliferation, infiltration, angiogenesis, metastasis and prognosis in breast cancer but the exact mechanism of CD44 function is still not clear. The present study evaluates the expression of CD44 in primary HER2-positive breast cancer. The results can be used to determine the disease-free and overall survival of patients with breast cancer. Methods: We studied specimens from 100 patients with HER2-positive invasive breast cancer between March 2011 and June 2019. Immunohistochemical staining for CD44 was performed in all the specimens. Their CD44 association with clinicopathologic parameters and prognosis was evaluated. Results: The high CD44 was expression in 68(68%) of the patients and Low expression in 32(32%). CD44 expression was significantly associated with stage (p=0.007). There were no significant associations between the DFS, OS and other clinicopathologic parameters except for the stage, respectively (HR= 3.67, 95% CI =1.16-11.56, P = 0.03) (HR= 0.8.56, 95% CI =2.22-32.90, P = 0.002).20% of patients had died by the end of the follow-up. There were no significant association between DFS, OS and CD44 expression, respectively. (Log-rank p=0.13). (Log-rank p=0.10). Conclusion: The results from this study suggest that CD44 is clinically associated with stage of breast cancers. From the survival analysis, there was no statistical difference in overall survival and disease free survival with respect to CD44 expression. Further studies larger sample sizes are recommended for further investigation.
Collapse
Affiliation(s)
- Yousef Roosta
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Sanaat
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Reza Nikanfar
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Dolatkhah
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ashraf Fakhrjou
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Srivastava T, Joshi T, Jiang Y, Heruth DP, Rezaiekhaligh MH, Novak J, Staggs VS, Alon US, Garola RE, El-Meanawy A, McCarthy ET, Zhou J, Boinpelly VC, Sharma R, Savin VJ, Sharma M. Upregulated proteoglycan-related signaling pathways in fluid flow shear stress-treated podocytes. Am J Physiol Renal Physiol 2020; 319:F312-F322. [PMID: 32628542 DOI: 10.1152/ajprenal.00183.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The ultrafiltrate flow over the major processes and cell body generates fluid flow shear stress (FFSS) on podocytes. Hyperfiltration-associated increase in FFSS can lead to podocyte injury and detachment. Previously, we showed that FFSS-induced upregulation of the cyclooxygenase 2 (COX2)-PGE2-prostaglandin E receptor 2 (EP2) axis in podocytes activates Akt-glycogen synthase kinase-3β-β-catenin and MAPK/ERK signaling in response to FFSS. Integrative MultiOmics Pathway Resolution (IMPRes) is a new bioinformatic tool that enables simultaneous time-series analysis of more than two groups to identify pathways and molecular connections. In the present study, we used previously characterized COX2 [prostaglandin-endoperoxide synthase 2 (Ptgs2)], EP2 (Ptger2), and β1-catenin (Ctnnb1) as "seed genes" from an array data set of four groups analyzed over a time course. The 3 seed genes shared 7 pathways and 50 genes of 14 pathways and 89 genes identified by IMPRes. A composite of signaling pathways highlighted the temporal molecular connections during mechanotransduction signaling in FFSS-treated podocytes. We investigated the "proteoglycans in cancer" and "galactose metabolism" pathways predicted by IMPRes. A custom-designed PCR array validated 60.7% of the genes predicted by IMPRes analysis, including genes for the above-named pathways. Further validation using Western blot analysis showed increased expression of phosho-Erbb2, phospho-mammalian target of rapamycin (mTOR), CD44, and hexokinase II (Hk2); decreased total Erbb2, galactose mutarotase (Galm), and β-1,4-galactosyltransferase 1 (B4galt1); and unchanged total mTOR and AKT3. These findings corroborate our previously reported results. This study demonstrates the potential of the IMPRes method to identify novel pathways. Identifying the "proteoglycans in cancer" and "galactose metabolism" pathways has generated a lead to study the significance of FFSS-induced glycocalyx remodeling and possible detachment of podocytes from the glomerular matrix.
Collapse
Affiliation(s)
- Tarak Srivastava
- Section of Nephrology, Children's Mercy Hospital and University of Missouri, Kansas City, Missouri.,Midwest Veterans' Biomedical Research Foundation, Kansas City, Missouri.,Department of Oral and Craniofacial Sciences, University of Missouri School of Dentistry, Kansas City, Missouri
| | - Trupti Joshi
- Department of Health Management and Informatics and University of Missouri Informatics Institute, University of Missouri, Columbia, Missouri.,Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri.,MU Data Science and Informatics Institute, University of Missouri, Columbia, Missouri
| | - Yuexu Jiang
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Daniel P Heruth
- Children's Mercy Research Institute, Children's Mercy Hospital and University of Missouri, Kansas City, Missouri
| | - Mohamed H Rezaiekhaligh
- Section of Nephrology, Children's Mercy Hospital and University of Missouri, Kansas City, Missouri
| | - Jan Novak
- Department of Microbiology, University of Alabama, Birmingham, Alabama
| | - Vincent S Staggs
- Biostatistics and Epidemiology Core, Children's Mercy Kansas City, Department of Pediatrics, University of Missouri, Kansas City, Missouri
| | - Uri S Alon
- Section of Nephrology, Children's Mercy Hospital and University of Missouri, Kansas City, Missouri
| | - Robert E Garola
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital and University of Missouri, Kansas City
| | - Ashraf El-Meanawy
- Division of Nephrology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ellen T McCarthy
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Jianping Zhou
- Midwest Veterans' Biomedical Research Foundation, Kansas City, Missouri.,Kansas City Veterans Affairs Medical Center, Kansas City, Missouri
| | - Varun C Boinpelly
- Midwest Veterans' Biomedical Research Foundation, Kansas City, Missouri.,Kansas City Veterans Affairs Medical Center, Kansas City, Missouri
| | - Ram Sharma
- Midwest Veterans' Biomedical Research Foundation, Kansas City, Missouri.,Kansas City Veterans Affairs Medical Center, Kansas City, Missouri
| | - Virginia J Savin
- Midwest Veterans' Biomedical Research Foundation, Kansas City, Missouri.,Kansas City Veterans Affairs Medical Center, Kansas City, Missouri
| | - Mukut Sharma
- Midwest Veterans' Biomedical Research Foundation, Kansas City, Missouri.,Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas.,Kansas City Veterans Affairs Medical Center, Kansas City, Missouri
| |
Collapse
|
17
|
Pereira C, Ferreira D, Mendes N, Granja PL, Almeida GM, Oliveira C. Expression of CD44v6-Containing Isoforms Influences Cisplatin Response in Gastric Cancer Cells. Cancers (Basel) 2020; 12:cancers12040858. [PMID: 32252293 PMCID: PMC7226224 DOI: 10.3390/cancers12040858] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/22/2020] [Accepted: 03/31/2020] [Indexed: 12/17/2022] Open
Abstract
CD44v6-containing isoforms are frequently de novo expressed in gastric cancer (GC). Whether CD44v6 has a central role in GC transformation and/or progression, whether it conditions response to therapy or whether it is only a bystander marker is still not known. Therefore, we aimed to clarify the role of CD44v6 in GC. We generated GC isogenic cell lines stably expressing CD44s or CD44v6 and tested them for different cancer hallmarks and response to cisplatin, and we further confirmed our findings in cells that endogenously express CD44v6. No correlation between overexpression of CD44v6 and the tested cancer hallmarks was observed, suggesting CD44v6 is not a driver of GC progression. Upon cisplatin treatment, CD44v6+ cells survive better and have lower apoptosis levels than CD44v6− cells, possibly due to concomitant activation of STAT3 and P38. In co-culture experiments, we discovered that CD44v6+ cells are involved in GC cell overgrowth after cisplatin treatment. In conclusion, we show that CD44v6 expression increases cell survival in response to cisplatin treatment in GC cells and that these cells override CD44v6-negative cells after cisplatin-treatment. This suggests that tumor expression of CD44v6-containing variants may condition the outcome of GC patients treated with chemotherapy.
Collapse
Affiliation(s)
- Carla Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.P.); (D.F.); (N.M.); (P.L.G.)
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Daniel Ferreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.P.); (D.F.); (N.M.); (P.L.G.)
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-180 Porto, Portugal
| | - Nuno Mendes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.P.); (D.F.); (N.M.); (P.L.G.)
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Pedro L. Granja
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.P.); (D.F.); (N.M.); (P.L.G.)
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-180 Porto, Portugal
- ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Gabriela M. Almeida
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.P.); (D.F.); (N.M.); (P.L.G.)
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- FMUP - Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- Correspondence: (G.M.A.); (C.O.); Tel.: +351-225-570-785 (C.O.)
| | - Carla Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.P.); (D.F.); (N.M.); (P.L.G.)
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- FMUP - Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- Correspondence: (G.M.A.); (C.O.); Tel.: +351-225-570-785 (C.O.)
| |
Collapse
|
18
|
Huang L, Tang X, Shi X, Su L. miR-532-5p promotes breast cancer proliferation and migration by targeting RERG. Exp Ther Med 2019; 19:400-408. [PMID: 31853317 DOI: 10.3892/etm.2019.8186] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/04/2019] [Indexed: 02/06/2023] Open
Abstract
Aberrant expression of microRNAs (miRNAs/miRs) mediates the initiation and progression of breast cancer. Therefore, it is important to investigate the molecular mechanisms of miRNAs and their effects on breast cancer progression. In the present study, miR-532-5p was highly expressed in breast cancer tissues compared with normal tissues. In addition, expression of ras-related and estrogen-regulated growth inhibitor (RERG), a tumor suppressor in breast cancer, was negatively correlated with miR-532-5p expression. Inhibition of miR-532-5p significantly elevated RERG at both mRNA and protein levels and inactivated the mitogen-activated protein kinase (MAPK)/ERK signaling pathway. Overexpression of miR-532-5p decreased RERG expression and activated the MAPK/ERK signaling in breast cancer cell line MDA-MB-231. Bioinformatic analysis indicated that RERG 3'-untraslated region contained a putative binding site for miR-532-5p. Dual luciferase assay further validated RERG as a target gene of miR-532-5p. Notably, downregulation of miR-532-5p inhibited MDA-MB-231 cell proliferation and migration, which was partially attenuated upon RERG knockdown. In conclusion, the current study revealed an oncogenic role of miR-532-5p in breast cancer cells via direct targeting of RERG expression.
Collapse
Affiliation(s)
- Lei Huang
- Department of Breast and Thyroid Surgery, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Xiaoqiao Tang
- Department of Breast and Thyroid Surgery, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Xianbiao Shi
- Department of Breast and Thyroid Surgery, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Lei Su
- Department of Breast and Thyroid Surgery, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
19
|
Clinical Theragnostic Relationship between Drug-Resistance Specific miRNA Expressions, Chemotherapeutic Resistance, and Sensitivity in Breast Cancer: A Systematic Review and Meta-Analysis. Cells 2019; 8:cells8101250. [PMID: 31615089 PMCID: PMC6830093 DOI: 10.3390/cells8101250] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 12/12/2022] Open
Abstract
Awareness of breast cancer has been increasing due to early detection, but the advanced disease has limited treatment options. There has been growing evidence on the role of miRNAs involved in regulating the resistance in several cancers. We performed a comprehensive systematic review and meta-analysis on the role of miRNAs in influencing the chemoresistance and sensitivity of breast cancer. A bibliographic search was performed in PubMed and Science Direct based on the search strategy, and studies published until December 2018 were retrieved. The eligible studies were included based on the selection criteria, and a detailed systematic review and meta-analysis were performed based on PRISMA guidelines. A random-effects model was utilised to evaluate the combined effect size of the obtained hazard ratio and 95% confidence intervals from the eligible studies. Publication bias was assessed with Cochran’s Q test, I2 statistic, Orwin and Classic fail-safe N test, Begg and Mazumdar rank correlation test, Duval and Tweedie trim and fill calculation and the Egger’s bias indicator. A total of 4584 potential studies were screened. Of these, 85 articles were eligible for our systematic review and meta-analysis. In the 85 studies, 188 different miRNAs were studied, of which 96 were upregulated, 87 were downregulated and 5 were not involved in regulation. Overall, 24 drugs were used for treatment, with doxorubicin being prominently reported in 15 studies followed by Paclitaxel in 11 studies, and 5 drugs were used in combinations. We found only two significant HR values from the studies (miR-125b and miR-4443) and our meta-analysis results yielded a combined HR value of 0.748 with a 95% confidence interval of 0.508–1.100; p-value of 0.140. In conclusion, our results suggest there are different miRNAs involved in the regulation of chemoresistance through diverse drug genetic targets. These biomarkers play a crucial role in guiding the effective diagnostic and prognostic efficiency of breast cancer. The screening of miRNAs as a theragnostic biomarker must be brought into regular practice for all diseases. We anticipate that our study serves as a reference in framing future studies and clinical trials for utilising miRNAs and their respective drug targets.
Collapse
|
20
|
Yang F, Fu Z, Yang M, Sun C, Li Y, Chu J, Zhang Y, Li W, Huang X, Li J, Wu H, Ding X, Yin Y. Expression pattern of microRNAs related with response to trastuzumab in breast cancer. J Cell Physiol 2019; 234:16102-16113. [PMID: 30770556 DOI: 10.1002/jcp.28268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Although an immense effort has been made to develop a novel biomarker for response to trastuzumab, no reliable biomarkers are available to guide management, expect for HER2. The aim of this study was to examine the relationship between microRNA (miRNA) expression and resistance to trastuzumab. METHODS Differentially expressed miRNAs between trastuzumab-resistant and trastuzumab-sensitive cell lines were analyzed using microarrays. We performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses to determine the functions of differentially expressed miRNA and their targeted genes. Furthermore, the protein-protein interactions (PPI) network was analyzed. Serum samples were collected from patients with HER2-positive breast cancer who were treated with trastuzumab. We validated the miRNAs expression levels by quantitative reverse-transcription polymerase chain reaction (qRT-PCR) in these serums. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the predictive performance of the miRNA. RESULTS Using miRNA microarrays, 151 miRNAs that significant differentially expressed between the trastuzumab-resistant and sensitive cells were identified, including 46 upregulated and 105 downregulated miRNAs. Results of real-time PCR confirmed seven miRNAs in cell lines. PI3K-Akt signaling pathway was involved in regulating biological function according to KEGG analysis. Compared with the serums of trastuzumab-sensitive patients, three miRNAs, namely miR-200b, miR-135b, and miR-29a, were identified to be upregulated, and miR-224 was downregulated in the trastuzumab-resistant serums. ROC analysis showed that four miRNAs were correlated with trastuzumab resistance. Furthermore, three subnetwork modules of PPI network were obtained. CONCLUSION The results indicated that miRNAs were reliable predictive biomarkers for response to trastuzumab.
Collapse
Affiliation(s)
- Fan Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,The First Clinical College of Nanjing Medical University, Nanjing, China
| | - Ziyi Fu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Maternal and Child Health Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Mengzhu Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,The First Clinical College of Nanjing Medical University, Nanjing, China
| | - Chunxiao Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,The First Clinical College of Nanjing Medical University, Nanjing, China
| | - Yongfei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,The First Clinical College of Nanjing Medical University, Nanjing, China
| | - Jiahui Chu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,The First Clinical College of Nanjing Medical University, Nanjing, China
| | - Yanhong Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,The First Clinical College of Nanjing Medical University, Nanjing, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Huang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Wu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaorong Ding
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,The First Clinical College of Nanjing Medical University, Nanjing, China
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Zhou J, Du Y, Lu Y, Luan B, Xu C, Yu Y, Zhao H. CD44 Expression Predicts Prognosis of Ovarian Cancer Patients Through Promoting Epithelial-Mesenchymal Transition (EMT) by Regulating Snail, ZEB1, and Caveolin-1. Front Oncol 2019; 9:802. [PMID: 31497537 PMCID: PMC6712994 DOI: 10.3389/fonc.2019.00802] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/07/2019] [Indexed: 12/24/2022] Open
Abstract
Objectives: CD44, a transmembrane glycoprotein, is involved in the generation of a stem cell niche and maintaining stem cell quiescence. The aim of this study was to evaluate its contribution to ovarian cancer prognosis and progression, as well as explore the possible mechanisms. Materials and Methods: The expression of CD44 in tissue microarray of 90 ovarian cancer patients was detected by immunohistochemistry. Kaplan-Meier method and Cox proportional hazard model were used to evaluate the factors associated with 5-year overall survival and disease-free survival. CD44 was knocked down by small interfering RNA, the expression of Snail, ZEB1, and Caveolin-1 in a stable Snail-expressing ovarian cancer cell line HO8910PM-Snail (HOPM-Snail) and its control cell line HO8910PM-vector (HOPM) was detected by western blotting analysis. Cell clone formation, migration, and invasion of HOPM-Snail and HOPM cells with CD44 silencing were examined by 3-D culture assay, wound healing assay, and transwell assay, respectively. Results: Over-expression of CD44 was associated with advanced histological grade (p = 0.014) and FIGO stage (p = 0.001). Multivariate analysis showed that CD44 expression was an independent prognostic factor to predict both overall survival (p = 0.004) and disease-free survival (p = 0.025) of ovarian cancer patients. Down-regulation of CD44 expression by small silencing RNA abrogated both basal Snail expression and TGF-β1-induced Snail expression in HOPM and HOPM-Snail cells. In addition, CD44 knockdown caused a decrease in ZEB1 expression. RPPA data indicated that Caveolin-1 may be another regulative target of CD44, and western blotting analysis confirmed that CD44 knockdown caused an increase in Caveolin-1 expression. However, there was no noticeable reciprocal regulation among ZEB1, Caveolin-1, and Snail. Moreover, CD44 knockdown caused a decrease in cell clone formation, migration, and invasion of HOPM and HOPM-Snail cells. Conclusions: As both Snail and ZEB1 are crucial inducers of epithelial-to-mesenchymal transition (EMT), our data suggested that CD44 may be crucial for the EMT process of ovarian cancer. Therefore, CD44 may be a potential prognostic marker as well as treatment target for ovarian cancer.
Collapse
Affiliation(s)
- Jiayi Zhou
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yan Du
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yiling Lu
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Baoxin Luan
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Congjian Xu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yinhua Yu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Hongbo Zhao
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
22
|
Hyaluronan-CD44 axis orchestrates cancer stem cell functions. Cell Signal 2019; 63:109377. [PMID: 31362044 DOI: 10.1016/j.cellsig.2019.109377] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023]
Abstract
The prominent role of CD44 in tumor cell signaling together with its establishment as a cancer stem cell (CSC) marker for various tumor entities imply a key role for CD44 in CSC functional properties. Hyaluronan, the main ligand of CD44, is a major constituent of CSC niche and, therefore, the hyaluronan-CD44 signaling axis is of functional importance in this special microenvironment. This review aims to provide recent advances in the importance of hyaluronan-CD44 interactions in the acquisition and maintenance of a CSC phenotype. Hyaluronan-CD44 axis has a substantial impact on stemness properties of CSCs and drug resistance through induction of EMT program, oxidative stress resistance, secretion of extracellular vesicles/exosomes and epigenetic control. Potential therapeutic approaches targeting CSCs based on the hyaluronan-CD44 axis are also presented.
Collapse
|
23
|
Islam SS, Uddin M, Noman ASM, Akter H, Dity NJ, Basiruzzman M, Uddin F, Ahsan J, Annoor S, Alaiya AA, Al-Alwan M, Yeger H, Farhat WA. Antibody-drug conjugate T-DM1 treatment for HER2+ breast cancer induces ROR1 and confers resistance through activation of Hippo transcriptional coactivator YAP1. EBioMedicine 2019; 43:211-224. [PMID: 31085100 PMCID: PMC6558306 DOI: 10.1016/j.ebiom.2019.04.061] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023] Open
Abstract
Background A newly developed drug trastuzumab emtansine (T-DM1) has improved the survival of breast cancer (BC) patients. Despite an impressive initial clinical response, a subgroup of patient develop resistance and present therapeutic challenges. The underlying resistance mechanisms are not fully investigated. We report that T-DM1 treatment modulates the expression of ROR1 (type 1 receptor tyrosine kinase-like orphan receptor) and induces self-renewal of cancer stem cells (CSCs) leading to therapeutic resistance. Methods Using BC patient tumor samples, and BC cell lines we gained insight into the T-DM1 treatment induced ROR1 overexpression and resistance. In vitro sphere forming assays and in vivo extreme dilution assays were employed to analyze the stemness and self-renewal capacity of the cells. A series of molecular expression and protein assays including qRT-PCR, FACS-sorting, ELISA, immunostaining, Western blotting were used to provide evidence. Findings Exposure of cells to T-DM1 shifted ROR1 expression from low to high, enriched within the CSC subpopulation, coincident with increased Bmi1 and stemness factors. T-DM1 induced ROR1 cells showed high spheroid and tumor forming efficiency in vitro and in an animal model exhibiting shorter tumor-free time. Mechanistically, the overexpression of ROR1 is partly induced by the activation of YAP1 and its target genes. Silencing of ROR1 and YAP1 by pharmacologic inhibitors and/or sh/siRNA inhibited spheroid formation, the initiation of tumors and the capacity for self-renewal and ROR1 overexpression. Interpretations The results presented here indicate that simultaneous targeting of ROR1 and YAP1 may suppress CSC self-renewal efficacy and inhibit tumor progression in BC. In this manner such treatments may overcome the T-DM1 mediated therapeutic resistance and improve clinical outcome. Fund This study was supported by Neurogen Technologies for interdisciplinary research.
Collapse
Affiliation(s)
- Syed S Islam
- Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia; Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada; Park View Specialized Hospital, Chittagong, Bangladesh.
| | - Mohammed Uddin
- Mohammed Bin Rashid University of Medicine and Health Sciences, College of Medicine, Dubai, United Arab Emirates; The Centre for Applied Genomics, Department of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Abu Shadat M Noman
- Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
| | - Hosneara Akter
- Neurogen Technologies Ltd, Genetics and Genome Biology Department, Dhaka, Bangladesh
| | - Nusrat J Dity
- Neurogen Technologies Ltd, Genetics and Genome Biology Department, Dhaka, Bangladesh
| | - Mohammad Basiruzzman
- Neurogen Technologies Ltd, Genetics and Genome Biology Department, Dhaka, Bangladesh
| | - Furkan Uddin
- Neurogen Technologies Ltd, Genetics and Genome Biology Department, Dhaka, Bangladesh
| | - Jahanara Ahsan
- Holy Family Red Crescent Medical College, Dhaka, Bangladesh
| | - Sunera Annoor
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Ayodele A Alaiya
- Stem Cell and Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Monther Al-Alwan
- Stem Cell and Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Herman Yeger
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Walid A Farhat
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Chen DD, Ji JA, Yan HC, Huang GH, Fang XJ. Effect of CD44st and HER2 expression on the postoperative prognosis of breast cancer patients. Onco Targets Ther 2019; 12:577-585. [PMID: 30697055 PMCID: PMC6339464 DOI: 10.2147/ott.s180972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objective CD44st is a member of the CD44 family; abnormal expression of some CD44 isoforms are closely associated with axillary lymph node metastasis, cancer progression, and patients’ prognosis. The objective of this study is to investigate the correlation between the expression of CD44st and HER2 in breast cancer and the effect on patients’ prognosis. Methods Primers were designed to target the CD44st mRNA (Gene Bank No FJ216964) which has been newly identified in a drug-resistant breast cancer cell line. The expression of CD44st and HER2 mRNA and proteins in cancerous and paracancerous tissue of postoperative breast cancer patients was detected and compared. Tissue samples were obtained from 102 cases of invasive ductal carcinoma, 19 cases of intraductal carcinoma, and 11 cases of medullary carcinoma. The correlation between CD44st and HER2 expression and clinical pathological features was examined. Results The expression rate of CD44st mRNA and protein in breast cancer tissue was 64.4% (85/132), while HER2 mRNA and protein was expressed in 22.0% (29/106) of the samples. The expression of CD44st and HER2 were low in paracancerous tissue. In breast cancer tissue, the expression rate of HER2 mRNA and protein in the CD44st-positive group was 28.2% (24/85), and 10.6% (5/47) in the CD44st-negative group. This difference was statistically significant (P=0.015). Sequencing analysis showed that the amplified CD44st gene in this study was the same as that which was previously discovered in the drug-resistant breast cancer cell line. A linear correlation was found between the expression of CD44st and HER2 (r=0.972, r2=0.945, F=2,213.51, P<0.001). The expression of CD44st and HER2 was also closely associated with luminal cancer subtypes, lymph node metastasis, and TNM stage (P<0.05), but not associated with age, pathological type, or tumor size (P>0.05). The median overall survival in the CD44st high-expression group was 51.85 months (95% CI: 48.48–55.22), which was significantly shorter than that in the CD44st low-expression group (57.61 months; 95% CI: 55.54–59.68, P=0.032). Conclusion CD44st is closely related to the expression of HER2. The expression of CD44st affects patient prognosis and is associated with lymph node metastasis, TNM staging, and molecular subtyping.
Collapse
Affiliation(s)
- Dan Dan Chen
- Department of Oncology, The Second People's Hospital of Lianyungang (Lianyungang Hospital affiliated to Bengbu Medical College), Lianyungang, Jiangsu 222000, China, ;
| | - Jun An Ji
- Department of Medical Oncology, The Gan Yu District Hospital of Lianyungang, Lianyungang, Jiangsu 222000, China
| | - Hai Cui Yan
- Department of Oncology, The Second People's Hospital of Lianyungang (Lianyungang Hospital affiliated to Bengbu Medical College), Lianyungang, Jiangsu 222000, China, ;
| | - Guan Hong Huang
- Department of Oncology, The Second People's Hospital of Lianyungang (Lianyungang Hospital affiliated to Bengbu Medical College), Lianyungang, Jiangsu 222000, China, ;
| | - Xin Jian Fang
- Department of Oncology, The Second People's Hospital of Lianyungang (Lianyungang Hospital affiliated to Bengbu Medical College), Lianyungang, Jiangsu 222000, China, ;
| |
Collapse
|
25
|
Li Y, Chu J, Feng W, Yang M, Zhang Y, Zhang Y, Qin Y, Xu J, Li J, Vasilatos SN, Fu Z, Huang Y, Yin Y. EPHA5 mediates trastuzumab resistance in HER2-positive breast cancers through regulating cancer stem cell-like properties. FASEB J 2019; 33:4851-4865. [PMID: 30620624 DOI: 10.1096/fj.201701561rrrr] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Trastuzumab is a successful, rationally designed therapy that provides significant clinical benefit for human epidermal growth factor receptor-2 (HER2)-positive breast cancer patients. However, about half of individuals with HER2-positive breast cancer do not respond to trastuzumab treatment because of various resistance mechanisms, including but not limited to: 1) shedding of the HER2 extracellular domain, 2) steric hindrance ( e.g., MUC4 and MUC1), 3) parallel pathway activation (this is the general mechanism cited in the quote above), 4) perturbation of downstream signaling events ( e.g., PTEN loss or PIK3CA mutation), and 5) immunologic mechanisms (such as FcR polymorphisms). EPHA5, a receptor tyrosine kinase, has been demonstrated to act as an anticancer agent in several cancer cell types. In this study, deletion of EPHA5 can significantly increase the resistance of HER2-positive breast cancer patients to trastuzumab. To investigate how EPHA5 deficiency induces trastuzumab resistance, clustered regularly interspaced short palindromic repeat technology was used to create EPHA5-deficient variants of breast cancer cells. EPHA5 deficiency effectively increases breast cancer stem cell (BCSC)-like properties, including NANOG, CD133+, E-cadherin expression, and the CD44+/CD24-/low phenotype, concomitantly enhancing mammosphere-forming ability. EPHA5 deficiency also caused significant aggrandized tumor malignancy in trastuzumab-sensitive xenografts, coinciding with the up-regulation of BCSC-related markers and intracellular Notch1 and PTEN/AKT signaling pathway activation. These findings highlight that EPHA5 is a potential prognostic marker for the activity of Notch1 and better sensitivity to trastuzumab in HER2-positive breast cancer. Moreover, patients with HER2-positive breast cancers expressing high Notch1 activation and low EPHA5 expression could be the best candidates for anti-Notch1 therapy.-Li, Y., Chu, J., Feng, W., Yang, M., Zhang, Y., Zhang, Y., Qin, Y., Xu, J., Li, J., Vasilatos, S. N., Fu, Z., Huang, Y., Yin, Y. EPHA5 mediates trastuzumab resistance in HER2-positive breast cancers through regulating cancer stem cell-like properties.
Collapse
Affiliation(s)
- Yongfei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and.,Department of Breast Diseases, Jiangsu Province Hospital of Traditional Chinese Medicine (TMC)/Affiliated Hospital of Nanjing University of TCM, Nanjing, China
| | - Jiahui Chu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wanting Feng
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mengzhu Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanhong Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanqiu Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ye Qin
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and
| | - Juan Xu
- Nanjing Maternal and Child Health Medical Institute, Affiliated Obstetrics and Gynecology Hospital, Nanjing Medical University, Nanjing, China
| | - Jun Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shauna N Vasilatos
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and
| | - Ziyi Fu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Maternal and Child Health Medical Institute, Affiliated Obstetrics and Gynecology Hospital, Nanjing Medical University, Nanjing, China
| | - Yi Huang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Ahmad A. Current Updates on Trastuzumab Resistance in HER2 Overexpressing Breast Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1152:217-228. [PMID: 31456185 DOI: 10.1007/978-3-030-20301-6_10] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Trastuzumab represents the predominant therapy to target breast cancer subtype marked by HER2 amplification. It has been in use for two decades and its continued importance is underlined by recent FDA approvals of its biosimilar and conjugated versions. Progression to an aggressive disease with acquisition of resistance to trastuzumab remains a major clinical concern. In addition to a number of cellular signaling pathways being investigated, focus in recent years has also shifted to epigenetic and non-coding RNA basis of acquired resistance against trastuzumab. This article provides a succinct discussion on the most recent advances in our understanding of such factors.
Collapse
Affiliation(s)
- Aamir Ahmad
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA.
| |
Collapse
|
27
|
Self-targeted knockdown of CD44 improves cisplatin sensitivity of chemoresistant non-small cell lung cancer cells. Cancer Chemother Pharmacol 2018; 83:399-410. [DOI: 10.1007/s00280-018-3737-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/25/2018] [Indexed: 02/07/2023]
|
28
|
Pegram MD, Zong Y, Yam C, Goetz MP, Moulder SL. Innovative Strategies: Targeting Subtypes in Metastatic Breast Cancer. Am Soc Clin Oncol Educ Book 2018; 38:65-77. [PMID: 30231328 DOI: 10.1200/edbk_200715] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metastatic breast cancer continues to be a life-threatening diagnosis that impacts hundreds of thousands of patients around the world. Targeted therapies are usually associated with less toxicity compared with cytotoxic chemotherapies and often induce response or durable disease control in estrogen receptor (ER) and/or HER2+ breast cancers. Drugs that target CDK 4/6 either alone or in combination with endocrine therapy have demonstrated substantial improvements in progression-free survival (PFS) compared with endocrine monotherapy. Most recently, PARP inhibitors have shown longer PFS compared with physician's choice of chemotherapy in BRCA-associated cancers, leading to the first U.S. Food and Drug Administration (FDA) approval of a targeted therapy with the potential to benefit a subgroup of patients with triple-negative breast cancer (TNBC). Finally, newer drug delivery strategies using antibody drug conjugates have also allowed a "targeted approach" to deliver moderate to extremely potent cytotoxins directly to sites of metastatic disease, with less toxicity.
Collapse
Affiliation(s)
- Mark D Pegram
- From the Stanford Comprehensive Cancer, Stanford, CA; The University of Texas MD Anderson Cancer Center, Houston, TX; Mayo Clinic Cancer Center, Rochester, MN
| | - Yu Zong
- From the Stanford Comprehensive Cancer, Stanford, CA; The University of Texas MD Anderson Cancer Center, Houston, TX; Mayo Clinic Cancer Center, Rochester, MN
| | - Clinton Yam
- From the Stanford Comprehensive Cancer, Stanford, CA; The University of Texas MD Anderson Cancer Center, Houston, TX; Mayo Clinic Cancer Center, Rochester, MN
| | - Matthew P Goetz
- From the Stanford Comprehensive Cancer, Stanford, CA; The University of Texas MD Anderson Cancer Center, Houston, TX; Mayo Clinic Cancer Center, Rochester, MN
| | - Stacy L Moulder
- From the Stanford Comprehensive Cancer, Stanford, CA; The University of Texas MD Anderson Cancer Center, Houston, TX; Mayo Clinic Cancer Center, Rochester, MN
| |
Collapse
|
29
|
Voutsadakis IA. HER2 in stemness and epithelial-mesenchymal plasticity of breast cancer. Clin Transl Oncol 2018; 21:539-555. [PMID: 30306401 DOI: 10.1007/s12094-018-1961-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023]
Abstract
Breast cancer had been the first non-hematologic malignancy where sub-types based on molecular characterization had entered clinical practice. HER2 over-expression, due to either gene amplification or protein up-regulation, defines one of these sub-types and is clinically exploited by addition of HER2-targeted treatments to the regimens of treatment. Nevertheless, in many occasions HER2-positive cancers are resistant or become refractory to these therapies. Several mechanisms, such as activation of alternative pathways or loss of expression of the receptor in cancer cells, have been proposed as the cause of these therapeutic failures. Cancer stem cells (CSCs, alternatively called tumor-initiating cells) comprise a small percentage of the tumor cells, but are capable of reconstituting and propagating tumors due to their superior intrinsic capacity for regeneration, survival and resistance to therapies. CSCs possess circuits enabling epigenetic plasticity which endow them with the ability to alternate between epithelial and mesenchymal states. This paper will discuss the expression and regulation of HER2 in CSCs of the different sub-types of breast cancer and relationships of the receptor with both the circuits of stemness and epithelial-mesenchymal plasticity. Therapeutic repercussions of the relationship of HER2-initiated signaling with stemness networks will also be proposed.
Collapse
Affiliation(s)
- I A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, 750 Great Northern Road, Sault Ste. Marie, ON, P6B 0A8, Canada. .,Section of Internal Medicine, Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, ON, Canada.
| |
Collapse
|
30
|
Ying Zhi L, Xu Z, Ning L, Jia Jin L, Hai Cui Y, Hong HG, Fang XJ. A correlation study of the expression of HA-CD44st and HER-2 in breast cancer. Onco Targets Ther 2018; 11:5677-5688. [PMID: 30254460 PMCID: PMC6141113 DOI: 10.2147/ott.s160531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background This study investigated the effect of hyaluronic acid (HA)-CD44st on the invasive ability of human breast cancer MCF-7 cells and the correlation between the expression of CD44st and human epidermal growth factor receptor-2 (HER-2) in postoperative breast cancer patients. Materials and methods MCF-7 cells transfected with the eukaryotic expression vector pcDNA3.1-CD44st (MCF/CD44st) were used to examine the effect of the activation of the HA-CD44st-transforming growth factor β (TGFβ)-phosphatidylinositol-3-kinase (PI3K) signaling pathway on the invasive ability of MCF-7 cells. The expression of proteins related to this signaling pathway was assessed by flow cytometry, reverse transcription-polymerase chain reaction, and Western blotting, and the role of AP-1 in the pathway was investigated by electrophoretic mobility shift assay. The effect of pathway activation on the invasion of MCF-7 cells was assessed by Transwell assay, and CD44 expression in breast cancer tissue was detected by immunohistochemistry. Quantitative reverse transcription-polymerase chain reaction was used to detect the expression of CD44st and HER-2 in breast cancer tissue and their correlation was investigated. Results HA significantly upregulated HER-2 and TGFβ in MCF-7/CD44st cells, increased p-AKT expression and AP-1 activity, and promoted the invasive ability of tumor cells. CD44st mRNA expression had significant difference between breast cancer tissues and adjacent normal tissues (P < 0.05), and high expression of CD44st mRNA was closely correlated with HER-2 expression in breast cancer tissues. Conclusion Binding of HA to the CD44st receptor may regulate the invasiveness of MCF-7 cells through the CD44st/TGFβ/PI3K/AP-1 signaling pathway with increased expression of TGFβ and HER-2. The expression of CD44st mRNA is correlated with HER-2 expression in postoperative breast cancer patients.
Collapse
Affiliation(s)
- Lu Ying Zhi
- Department of Medical Oncology, the Second People's Hospital of Lianyungang (Lianyungang Hospital Affiliated to Bengbu Medical College), Lianyungang, Jiangsu 222000, People's Republic of China, ;
| | - Zhang Xu
- Molecular Biology Laboratory, Medical College, Jiangsu University, Jiangsu 2012013, People's Republic of China
| | - Li Ning
- Department of Surgery, the First People's Hospital of Lianyungang, Jiangsu 222000, People's Republic of China
| | - Li Jia Jin
- Department of Medical Oncology, the Second People's Hospital of Lianyungang (Lianyungang Hospital Affiliated to Bengbu Medical College), Lianyungang, Jiangsu 222000, People's Republic of China, ; .,Department of Information Center, the Second People's Hospital of Lianyungang (Lianyungang Hospital Affiliated to Bengbu Medical College), Lianyungang, Jiangsu 222000, People's Republic of China
| | - Yan Hai Cui
- Department of Medical Oncology, the Second People's Hospital of Lianyungang (Lianyungang Hospital Affiliated to Bengbu Medical College), Lianyungang, Jiangsu 222000, People's Republic of China, ;
| | - Huang Guan Hong
- Department of Medical Oncology, the Second People's Hospital of Lianyungang (Lianyungang Hospital Affiliated to Bengbu Medical College), Lianyungang, Jiangsu 222000, People's Republic of China, ;
| | - Xin Jian Fang
- Department of Medical Oncology, the Second People's Hospital of Lianyungang (Lianyungang Hospital Affiliated to Bengbu Medical College), Lianyungang, Jiangsu 222000, People's Republic of China, ;
| |
Collapse
|
31
|
Yu C, Xue P, Zhang L, Pan R, Cai Z, He Z, Sun J, Zheng M. Prediction of key genes and pathways involved in trastuzumab-resistant gastric cancer. World J Surg Oncol 2018; 16:174. [PMID: 30134903 PMCID: PMC6106878 DOI: 10.1186/s12957-018-1475-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 08/09/2018] [Indexed: 12/29/2022] Open
Abstract
Background Trastuzumab has been prevailingly accepted as a beneficial treatment for gastric cancer (GC) by targeting human epidermal growth factor receptor 2 (HER2)-positive. However, the therapeutic resistance of trastuzumab remains a major obstacle, restricting the therapeutic efficacy. Therefore, identifying potential key genes and pathways is crucial to maximize the overall clinical benefits. Methods The gene expression profile GSE77346 was retrieved to identify the differentially expressed genes (DEGs) associated with the trastuzumab resistance in GC. Next, the DEGs were annotated by the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The DEGs-coded protein-protein interaction (PPI) networks and the prognostic values of the 20 hub genes were determined. Correlation of the hub genes were analyzed in The Cancer Genome Atlas. The prognostic values of hub genes were further validated by Kaplan-Meier (KM) plotter. Results A total of 849 DEGs were identified, with 374 in upregulation and 475 in downregulation. Epithelium development was the most significantly enriched term in biological processes while membrane-bounded vesicle was in cellular compartments and cell adhesion molecular binding was in molecular functions. Pathways in cancer and ECM-receptor interaction were the most significantly enriched for all DEGs. Among the PPI networks, 20 hub genes were defined, including CD44 molecule (CD44), HER-2, and cadherin 1 (CDH1). Six hub genes were associated with favorable OS while eight were associated with poor OS. Mechanistically, 2′-5′-oligoadenylate synthetase 1, 3 (OAS1, OAS3) and CDH1 featured high degrees and strong correlations with other hub genes. Conclusions This bioinformatics analysis identified key genes and pathways for potential targets and survival predictors for trastuzumab treatment in GC. Electronic supplementary material The online version of this article (10.1186/s12957-018-1475-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chaoran Yu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, People's Republic of China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, People's Republic of China
| | - Pei Xue
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, People's Republic of China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, People's Republic of China
| | - Luyang Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, People's Republic of China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, People's Republic of China
| | - Ruijun Pan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, People's Republic of China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, People's Republic of China
| | - Zhenhao Cai
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, People's Republic of China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, People's Republic of China
| | - Zirui He
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, People's Republic of China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, People's Republic of China
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, People's Republic of China. .,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, People's Republic of China.
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, People's Republic of China. .,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
32
|
Li J, Choi PS, Chaffer CL, Labella K, Hwang JH, Giacomelli AO, Kim JW, Ilic N, Doench JG, Ly SH, Dai C, Hagel K, Hong AL, Gjoerup O, Goel S, Ge JY, Root DE, Zhao JJ, Brooks AN, Weinberg RA, Hahn WC. An alternative splicing switch in FLNB promotes the mesenchymal cell state in human breast cancer. eLife 2018; 7:37184. [PMID: 30059005 PMCID: PMC6103745 DOI: 10.7554/elife.37184] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing of mRNA precursors represents a key gene expression regulatory step and permits the generation of distinct protein products with diverse functions. In a genome-scale expression screen for inducers of the epithelial-to-mesenchymal transition (EMT), we found a striking enrichment of RNA-binding proteins. We validated that QKI and RBFOX1 were necessary and sufficient to induce an intermediate mesenchymal cell state and increased tumorigenicity. Using RNA-seq and eCLIP analysis, we found that QKI and RBFOX1 coordinately regulated the splicing and function of the actin-binding protein FLNB, which plays a causal role in the regulation of EMT. Specifically, the skipping of FLNB exon 30 induced EMT by releasing the FOXC1 transcription factor. Moreover, skipping of FLNB exon 30 is strongly associated with EMT gene signatures in basal-like breast cancer patient samples. These observations identify a specific dysregulation of splicing, which regulates tumor cell plasticity and is frequently observed in human cancer. As the human body develops, countless cells change from one state into another. Two important cell states are known as epithelial and mesenchymal. Cells in the epithelial state tend to be tightly connected and form barriers, like skin cells. Mesenchymal state cells are loosely organized, move around more and make up connective tissues. Some cells alternate between these states via an epithelial-to-mesenchymal transition (EMT for short) and back again. Without this transition, certain organs would not develop and wounds would not heal. Yet, cancer cells also use this transition to spread to distant sites of the body. Such cancers are often the most aggressive, and therefore the most deadly. The epithelial-to-mesenchymal transition is dynamically regulated in a reversible manner. For example, the genes for some proteins might only be active in the epithelial state and further reinforce this state by turning on other ‘epithelial genes’. Alternatively, there might be differences in the processing of mRNA molecules – the intermediate molecules between DNA and protein – that result in the production of different proteins in epithelial and mesenchymal cells. Li, Choi et al. wanted to know which of the thousands of human genes can endow epithelial state cells with mesenchymal characteristics. A better understanding of the switch could help to prevent cancers undergoing an epithelial-to-mesenchymal transition. From a large-scale experiment in human breast cancer cells, Li, Choi et al. found that a group of proteins that bind and modify mRNA molecules are important for the epithelial-to-mesenchymal transition. Two proteins in particular promoted the transition, most likely by binding to the mRNA of a third protein called FLNB and removing a small piece of it. FLNB normally works to prevent the epithelial-to-mesenchymal transition, but the smaller protein encoded by the shorter mRNA promoted the transition by turning on ‘mesenchymal genes’. This switching between different FLNB proteins happens in some of the more aggressive breast cancers, which also contain mesenchymal cells. Finding out which FLNB protein is made in a given cancer may provide an indication of its aggressiveness. Also, looking for drugs that can target the mRNA-binding proteins or FLNB may one day lead to new treatments for some of the most aggressive breast cancers.
Collapse
Affiliation(s)
- Ji Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Peter S Choi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Christine L Chaffer
- Whitehead Institute for Biomedical Research and MIT, Cambridge, United States.,Garvan Institute of Medical Research, Sydney, Australia
| | - Katherine Labella
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States
| | - Justin H Hwang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Andrew O Giacomelli
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Jong Wook Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Nina Ilic
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Seav Huong Ly
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Chao Dai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Kimberly Hagel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States
| | - Andrew L Hong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Ole Gjoerup
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Shom Goel
- Harvard Medical School, Boston, United States.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
| | - Jennifer Y Ge
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, United States
| | - David E Root
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Jean J Zhao
- Harvard Medical School, Boston, United States.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
| | - Angela N Brooks
- University of California, Santa Cruz, Santa Cruz, United States
| | - Robert A Weinberg
- Whitehead Institute for Biomedical Research and MIT, Cambridge, United States
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| |
Collapse
|
33
|
Carrascal MA, Silva M, Ferreira JA, Azevedo R, Ferreira D, Silva AMN, Ligeiro D, Santos LL, Sackstein R, Videira PA. A functional glycoproteomics approach identifies CD13 as a novel E-selectin ligand in breast cancer. Biochim Biophys Acta Gen Subj 2018; 1862:2069-2080. [PMID: 29777742 DOI: 10.1016/j.bbagen.2018.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/12/2018] [Accepted: 05/15/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND The glycan moieties sialyl-Lewis-X and/or -A (sLeX/A) are the primary ligands for E-selectin, regulating subsequent tumor cell extravasation into distant organs. However, the nature of the glycoprotein scaffolds displaying these glycans in breast cancer remains unclear and constitutes the focus of the present investigation. METHODS We isolated glycoproteins that bind E-selectin from the CF1_T breast cancer cell line, derived from a patient with ductal carcinoma. Proteins were identified using bottom-up proteomics approach by nanoLC-orbitrap LTQ-MS/MS. Data were curated using bioinformatics tools to highlight clinically relevant glycoproteins, which were validated by flow cytometry, Western blot, immunohistochemistry and in-situ proximity ligation assays in clinical samples. RESULTS We observed that the CF1_T cell line expressed sLeX, but not sLeA and the E-selectin reactivity was mainly on N-glycans. MS and bioinformatics analysis of the targeted glycoproteins, when narrowed down to the most clinically relevant species in breast cancer, identified CD44 glycoprotein (HCELL) and CD13 as key E-selectin ligands. Additionally, the co-expression of sLeX-CD44 and sLeX-CD13 was confirmed in clinical breast cancer tissue samples. CONCLUSIONS Both CD44 and CD13 glycoforms display sLeX in breast cancer and bind E-selectin, suggesting a key role in metastasis development. Such observations provide a novel molecular rationale for developing targeted therapeutics. GENERAL SIGNIFICANCE While HCELL expression in breast cancer has been previously reported, this is the first study indicating that CD13 functions as an E-selectin ligand in breast cancer. This observation supports previous associations of CD13 with metastasis and draws attention to this glycoprotein as an anti-cancer target.
Collapse
Affiliation(s)
- M A Carrascal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Portugal; CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - M Silva
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal; Departments of Dermatology and Medicine, Brigham & Women's Hospital, and Program of Excellence in Glycosciences, Harvard Medical School, USA
| | - J A Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal; Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; International Iberian Nanotechnology Laboratory, Braga, Portugal; Department of Pathology and Immunology, ICBAS-UP, Porto, Portugal
| | - R Azevedo
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - D Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - A M N Silva
- REQUIMTE-LAQV/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Portugal
| | - D Ligeiro
- Centro de Sangue e Transplantação de Lisboa, Instituto Português de Sangue e Transplantação, IP, Lisboa, Portugal
| | - L L Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - R Sackstein
- Departments of Dermatology and Medicine, Brigham & Women's Hospital, and Program of Excellence in Glycosciences, Harvard Medical School, USA
| | - P A Videira
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Portugal; CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal; Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
| |
Collapse
|
34
|
Hu W, Tan C, He Y, Zhang G, Xu Y, Tang J. Functional miRNAs in breast cancer drug resistance. Onco Targets Ther 2018; 11:1529-1541. [PMID: 29593419 PMCID: PMC5865556 DOI: 10.2147/ott.s152462] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Owing to improved early surveillance and advanced therapy strategies, the current death rate due to breast cancer has decreased; nevertheless, drug resistance and relapse remain obstacles on the path to successful systematic treatment. Multiple mechanisms responsible for drug resistance have been elucidated, and miRNAs seem to play a major part in almost every aspect of cancer progression, including tumorigenesis, metastasis, and drug resistance. In recent years, exosomes have emerged as novel modes of intercellular signaling vehicles, initiating cell–cell communication through their fusion with target cell membranes, delivering functional molecules including miRNAs and proteins. This review particularly focuses on enumerating functional miRNAs involved in breast cancer drug resistance as well as their targets and related mechanisms. Subsequently, we discuss the prospects and challenges of miRNA function in drug resistance and highlight valuable approaches for the investigation of the role of exosomal miRNAs in breast cancer progression and drug resistance.
Collapse
Affiliation(s)
- Weizi Hu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University.,Nanjing Medical University Affiliated Cancer Hospital
| | - Chunli Tan
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University.,Nanjing Medical University Affiliated Cancer Hospital
| | - Yunjie He
- The First Clinical School of Nanjing Medical University
| | - Guangqin Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University
| | - Yong Xu
- Nanjing Medical University Affiliated Cancer Hospital.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University
| |
Collapse
|
35
|
Wege AK, Weber F, Kroemer A, Ortmann O, Nimmerjahn F, Brockhoff G. IL-15 enhances the anti-tumor activity of trastuzumab against breast cancer cells but causes fatal side effects in humanized tumor mice (HTM). Oncotarget 2018; 8:2731-2744. [PMID: 27835865 PMCID: PMC5356837 DOI: 10.18632/oncotarget.13159] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/13/2016] [Indexed: 01/06/2023] Open
Abstract
Cancer immunotherapy has been shown to enhance established treatment regimens. We evaluated the potential reinforcing effect of IL-15 in trastuzumab treated humanized tumor mice (HTM) which were generated by concurrent transplantation of neonatal NOD-scid IL2Rγnull mice with human hematopoietic stem cells (HSC) and HER2 positive breast cancer cells (metastasizing SK-BR-3, solid tumor forming BT474). We found that trastuzumab treatment efficacy mainly depends on the immediate anti-tumorigenic cellular effect which is significantly enhanced by tumor interacting immune cells upon cotransplantion of HSC. However, trastuzumab treatment caused elevated CD44 expression on tumor cells that metastasized into the lung and liver but did not hinder tumor cell dissemination into the bone marrow. Moreover, in a number of SK-BR-3-transplanted animals disseminated CD44high/CD24low tumor cells lost trastuzumab sensitivity. Concerning the FcγRIIIa polymorphism, trastuzumab treatment efficiency in HTM was higher in mice with NK-cells harboring the high affinity FcγRIIIa compared to those with low affinity FcγRIIIa. In contrast, IL-15 caused the strongest NK-cell activation in heterozygous low affinity FcγRIIIa animals. Although IL-15 enhanced the trastuzumab mediated tumor defense, an unspecific immune stimulation resulted in preterm animal death due to systemic inflammation. Overall, treatment studies based on “patient-like” HTM revealed critical and adverse immune-related mechanisms which must be managed prior to clinical testing.
Collapse
Affiliation(s)
- Anja K Wege
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Florian Weber
- Institute of Pathology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Alexander Kroemer
- MedStar Georgetown Transplant Institute, Georgetown University Hospital, Washington, DC, USA
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Falk Nimmerjahn
- Institute of Genetics, Department of Biology, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Gero Brockhoff
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
36
|
Belfiore L, Saunders DN, Ranson M, Thurecht KJ, Storm G, Vine KL. Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: Challenges and opportunities. J Control Release 2018; 277:1-13. [PMID: 29501721 DOI: 10.1016/j.jconrel.2018.02.040] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 01/03/2023]
Abstract
The development of therapeutic resistance to targeted anticancer therapies remains a significant clinical problem, with intratumoral heterogeneity playing a key role. In this context, improving the therapeutic outcome through simultaneous targeting of multiple tumor cell subtypes within a heterogeneous tumor is a promising approach. Liposomes have emerged as useful drug carriers that can reduce systemic toxicity and increase drug delivery to the tumor site. While clinically used liposomal drug formulations show marked therapeutic advantages over free drug formulations, ligand-functionalized liposomes that can target multiple tumor cell subtypes may further improve the therapeutic efficacy by facilitating drug delivery to a broader population of tumor cells making up the heterogeneous tumor tissue. Ligand-directed liposomes enable the so-called active targeting of cell receptors via surface-attached ligands that direct drug uptake into tumor cells or tumor-associated stromal cells, and so can increase the selectivity of drug delivery. Despite promising preclinical results demonstrating improved targeting and anti-tumor effects of ligand-directed liposomes, there has been limited translation of this approach to the clinic. Key challenges for translation include the lack of established methods to scale up production and comprehensively characterize ligand-functionalized liposome formulations, as well as the inadequate recapitulation of in vivo tumors in the preclinical models currently used to evaluate their performance. Herein, we discuss the utility of recent ligand-directed liposome approaches, with a focus on dual-ligand liposomes, for the treatment of solid tumors and examine the drawbacks limiting their progression to clinical adoption.
Collapse
Affiliation(s)
- Lisa Belfiore
- Illawarra Health and Medical Research Institute, Centre for Medical and Molecular Bioscience, School of Biological Sciences, University of Wollongong, Wollongong, Australia
| | - Darren N Saunders
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Marie Ranson
- Illawarra Health and Medical Research Institute, Centre for Medical and Molecular Bioscience, School of Biological Sciences, University of Wollongong, Wollongong, Australia
| | - Kristofer J Thurecht
- Australian Institute for Bioengineering and Nanotechnology (AIBN), Centre for Advanced Imaging (CAI), Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Australia
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, CG, The Netherlands
| | - Kara L Vine
- Illawarra Health and Medical Research Institute, Centre for Medical and Molecular Bioscience, School of Biological Sciences, University of Wollongong, Wollongong, Australia.
| |
Collapse
|
37
|
Kim YJ, Sung D, Oh E, Cho Y, Cho TM, Farrand L, Seo JH, Kim JY. Flubendazole overcomes trastuzumab resistance by targeting cancer stem-like properties and HER2 signaling in HER2-positive breast cancer. Cancer Lett 2018; 412:118-130. [DOI: 10.1016/j.canlet.2017.10.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 12/15/2022]
|
38
|
Singla H, Ludhiadch A, Kaur RP, Chander H, Kumar V, Munshi A. Recent advances in HER2 positive breast cancer epigenetics: Susceptibility and therapeutic strategies. Eur J Med Chem 2017; 142:316-327. [DOI: 10.1016/j.ejmech.2017.07.075] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022]
|
39
|
Li X, Grigalavicius M, Li Y, Li X, Zhong Y, Huang R, Yu D, Berge V, Goscinski MA, Kvalheim G, Nesland JM, Suo Z. MtDNA depletion influences the transition of CD44 subtypes in human prostate cancer DU145 cells. Tumour Biol 2017; 39:1010428317713671. [PMID: 28789597 DOI: 10.1177/1010428317713671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Our earlier study revealed that long-term ethidium bromide application causes mitochondrial DNA depletion in human prostate cancer DU145 cell line (DU145MtDP), and this DU145MtDP subline appears to have expanded CD44Bright cell population than its parental wild type DU145 cells (DU145WT). Increasing evidence suggests that CD44Bright cells are highly cancer stem cell like, but it is not clear about their dynamic transition between CD44Dim and CD44Bright phenotypes in prostate cancer cells, and how it is affected by mitochondrial DNA depletion. To address these questions, four cell subpopulations were isolated from both DU145WT and DU145MtDP cell lines based on their CD44 expression level and mitochondrial membrane potential. The cell motility and colony formation capability of the fluorescence activated cell sorting–sorted cell subpopulations were further examined. It was discovered in the DU145WT cells that CD44Dim cells could transit into both CD44Dim and CD44Bright phenotypes and that CD44Bright cells were prone to sustain their CD44Bright phenotype as renewal. However, such transition principle was altered in the DU145MtDP cells, in which CD44Bright cells showed similar capability to sustain a CD44Bright phenotype, while the transition of CD44Dim cells to CD44Bright were suppressed. It is concluded that mitochondrial DNA depletion in the human prostate cancer DU145 cells influences their renewal and CD44 subphenotype transition. Such alterations may be the driving force for the enrichment of CD44Bright DU145 cells after the mitochondrial DNA depletion, although the molecular mechanisms remain unclear.
Collapse
Affiliation(s)
- Xiaoran Li
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Pathology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Mantas Grigalavicius
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Yaqing Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xiaoli Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yali Zhong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Ruixia Huang
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital and University of Oslo, Norway
| | - Dandan Yu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Viktor Berge
- Department of Urology, The Norwegian Radium Hospital, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Mariusz Adam Goscinski
- Department of Surgery, The Norwegian Radium Hospital, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Gunnar Kvalheim
- Department of Cell Therapy, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Jahn M Nesland
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Pathology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Zhenhe Suo
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Pathology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
40
|
Bartel CA, Jackson MW. HER2-positive breast cancer cells expressing elevated FAM83A are sensitive to FAM83A loss. PLoS One 2017; 12:e0176778. [PMID: 28463969 PMCID: PMC5413028 DOI: 10.1371/journal.pone.0176778] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/17/2017] [Indexed: 01/24/2023] Open
Abstract
HER2-positive breast cancer (HER2+ BC) is an aggressive subtype with a poor prognosis. Although the antibody trastuzumab, which targets the HER2 growth factor receptor, has improved survival rates, patients often present with de novo resistance or acquire resistance after an initial response. Identifying new ways to target HER2 signaling will be critical for overcoming trastuzumab resistance. FAM83A is a novel oncogene identified by its ability to confer resistance to EGFR therapies, a receptor closely related to HER2. Moreover, a prior study identified hyper-tyrosine phosphorylated FAM83A in trastuzumab-resistant HER2+ BC. Here, we find that FAM83A expression is elevated in 36% of HER2+ BC tumors. In a panel of HER2+ BC cell lines, FAM83A expression is significantly increased in the trastuzumab-resistant derivatives relative to parental controls. shRNA-mediated ablation of FAM83A in the panel of HER2+ BC cell lines suppresses HER2+ BC cell growth in both 2D and 3D cell cultures, elevates apoptosis markers, and suppresses PI3K signaling. Growth inhibition following FAM83A knock-down, however, was independent of trastuzumab sensitivity, suggesting that FAM83A is a key signaling component in HER2+ BCs that could serve as a novel therapeutic target in both trastuzumab-resistant and trastuzumab-sensitive cancers.
Collapse
Affiliation(s)
- Courtney A. Bartel
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Mark W. Jackson
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
41
|
GDNF induces RET–SRC–HER2-dependent growth in trastuzumab-sensitive but SRC-independent growth in resistant breast tumor cells. Breast Cancer Res Treat 2017; 162:231-241. [DOI: 10.1007/s10549-016-4078-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/08/2016] [Indexed: 01/09/2023]
|
42
|
miR-217 and CAGE form feedback loop and regulates the response to anti-cancer drugs through EGFR and HER2. Oncotarget 2016; 7:10297-321. [PMID: 26863629 PMCID: PMC4891121 DOI: 10.18632/oncotarget.7185] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/23/2016] [Indexed: 02/07/2023] Open
Abstract
MicroRNA array analysis revealed that miR-217 expression was decreased in anti-cancer drug-resistant Malme3MR cancer cells. CAGE, a cancer/testis antigen, was predicted as a target of miR-217. Luciferase activity and ChIP assays revealed a negative feedback relationship between CAGE and miR-217. miR-217 and CAGE oppositely regulated the response to anti-cancer drugs such as taxol, gefitinib and trastuzumab, an inhibitor of HER2. miR-217 negatively regulated the tumorigenic, metastatic, angiogenic, migration and invasion potential of cancer cells. The xenograft of Malme3MR cells showed an increased expression of pEGFRY845. CAGE and miR-217 inhibitor regulated the expression of pEGFRY845. CAGE showed interactions with EGFR and HER2 and regulated the in vivo sensitivity to trastuzumab. The down-regulation of EGFR or HER2 enhanced the sensitivity to anti-cancer drugs. CAGE showed direct regulation of HER2 and was necessary for the interaction between EGFR and HER2 in Malme3MR cells. miR-217 inhibitor induced interactions of CAGE with EGFR and HER2 in Malme3M cells. The inhibition of EGFR by CAGE-binding GTGKT peptide enhanced the sensitivity to gefitinib and trastuzumab and prevented interactions of EGFR with CAGE and HER2. Our results show that miR-217-CAGE feedback loop serves as a target for overcoming resistance to various anti-cancer drugs, including EGFR and HER2 inhibitors.
Collapse
|
43
|
Mao L, Sun AJ, Wu JZ, Tang JH. Involvement of microRNAs in HER2 signaling and trastuzumab treatment. Tumour Biol 2016; 37:15437–15446. [PMID: 27734339 DOI: 10.1007/s13277-016-5405-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 09/13/2016] [Indexed: 12/21/2022] Open
Abstract
The prognostic value of HER2 has been demonstrated in many human cancer types such us breast cancer, gastric cancer and ovarian cancer. Trastuzumab is the first anti-HER2 monoclonal antibody that has remarkably improved outcomes of patients with HER2-positive breast cancer. For HER2-positive metastatic gastric cancers, the addition of trastuzumab to traditional chemotherapy also significantly prolonged overall survival. However, intrinsic and acquired resistance to trastuzumab is common and results in disease progression. HER2 signaling network and mechanisms underlying the resistance have been broadly investigated in order to develop strategy to overcome the dilemma. Increasing evidence indicates that microRNAs (miRNA), a group of small non-coding RNAs, are involved in HER2 signaling and trastuzumab treatment. This review summarizes all the miRNAs that target HER2 and describes their activity on biological processes. Moreover, miRNAs that regulate trastuzumab resistance and relevant molecular mechanisms are highlighted. MiRNA signatures associated with HER2, miRNAs that mediate trastuzumab activity, and potential miRNA biomarkers of trastuzumab sensitivity are also discussed.
Collapse
Affiliation(s)
- Ling Mao
- Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China
- Department of Thyroid and Breast Surgery, Huai'an Second People's Hospital, Xuzhou medical university, Huai'an, China
| | - Ai-Jun Sun
- Department of Thyroid and Breast Surgery, Huai'an Second People's Hospital, Xuzhou medical university, Huai'an, China
| | - Jian-Zhong Wu
- Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China
| | - Jin-Hai Tang
- Department of General Surgery, the Affiliated Jiangsu Cancer Hospital, Nanjing Medical University, 42Bai Zi Ting Road, Nanjing, Jiangsu, 210000, China.
| |
Collapse
|
44
|
Zhao S, Chen C, Chang K, Karnad A, Jagirdar J, Kumar AP, Freeman JW. CD44 Expression Level and Isoform Contributes to Pancreatic Cancer Cell Plasticity, Invasiveness, and Response to Therapy. Clin Cancer Res 2016; 22:5592-5604. [PMID: 27267855 PMCID: PMC5143222 DOI: 10.1158/1078-0432.ccr-15-3115] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/06/2016] [Accepted: 05/10/2016] [Indexed: 02/06/2023]
Abstract
PURPOSE A subpopulation of pancreatic ductal adenocarcinoma (PDAC) cells is thought to be inherently resistant to chemotherapy or to give rise to tumor cells that become resistant during treatment. Here we determined the role of CD44 expression and its isoforms as a marker and potential target for tumor cells that give rise to invasive and gemcitabine-resistant tumors. EXPERIMENTAL DESIGN RT-PCR, Western blotting, and DNA sequencing was used to determine CD44 isoform and expression levels. Flow cytometry was used to sort cells on the basis of their CD44 expression level. CD44 expression was knocked down using shRNA. Tumorigenic properties were determined by clonogenic and Matrigel assays, IHC, tumor growth in vivo using luciferase imaging and by tumor weight. RESULTS We identified an invasive cell population that gives rise to gemcitabine-resistant tumors. These cancer cells express a high level of CD44 standard isoform and have an EMT phenotype (CD44s/EMT). In vivo, CD44s/EMT engraft and expand rapidly and give rise to tumors that express high levels of CD44 isoforms that contain multiple exon variants. CD44low-expressing cells show continued sensitivity to gemcitabine in vivo and knockdown of CD44 in CD44s/EMT cells increases sensitivity to gemcitabine and decreases invasiveness. CONCLUSIONS PDAC cells expressing high levels of CD44s with a mesenchymal-like phenotype were highly invasive and developed gemcitabine resistance in vivo Thus, initial targeting CD44 or reversing the CD44high phenotype may improve therapeutic response. Clin Cancer Res; 22(22); 5592-604. ©2016 AACR.
Collapse
Affiliation(s)
- Shujie Zhao
- Department of Medicine, Division of Medical Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Chen Chen
- Department of Medicine, Division of Medical Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Katherine Chang
- Department of Medicine, Division of Medical Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Experimental and Developmental Therapeutics Program, Cancer Therapy and Research Center, San Antonio, Texas
| | - Anand Karnad
- Department of Medicine, Division of Medical Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Experimental and Developmental Therapeutics Program, Cancer Therapy and Research Center, San Antonio, Texas
| | - Jaishree Jagirdar
- Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Addanki P Kumar
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Research and Development, Audie Murphy Veterans Administration Hospital, San Antonio, Texas
| | - James W Freeman
- Department of Medicine, Division of Medical Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas.
- Experimental and Developmental Therapeutics Program, Cancer Therapy and Research Center, San Antonio, Texas
- Research and Development, Audie Murphy Veterans Administration Hospital, San Antonio, Texas
| |
Collapse
|
45
|
Wei F, Wang Q, Su Q, Huang H, Luan J, Xu X, Wang J. miR-373 Inhibits Glioma Cell U251 Migration and Invasion by Down-Regulating CD44 and TGFBR2. Cell Mol Neurobiol 2016; 36:1389-1397. [PMID: 26858153 PMCID: PMC11482453 DOI: 10.1007/s10571-016-0338-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/25/2016] [Indexed: 01/07/2023]
Abstract
Glioblastoma multiforme (GBM) is the most malignant glioma, unveiling the underlying mechanisms of its aggressiveness could promote the discovery of potential targets for effective treatment. MicroRNAs (miRNAs) are important participants in both development and disease, its involvement in cancers has long been recognized. In this study, we investigated the role of miRNA-373 (miR-373) in GBM cell line U251, demonstrated that although miR-373 does not affect cell growth of U251, it inhibits migration and invasion of U251. Forced expression of miR-373 down-regulates the expressions CD44 and TGFBR2, while knockdown of CD44 and TGFBR2 presents the similar phenotype as miR-373 overexpression, suggesting that CD44 and TGFBR2 are functional targets of miR-373, down-regulation of CD44 and TGFBR2 by miR-373 are partly responsible for the migration, and invasion suppressive role of miR-373 in U251.
Collapse
Affiliation(s)
- Furong Wei
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, 18877 Jingshi Road, 250062, Jinan, Shandong, China
| | - Qianrong Wang
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, China
| | - Qinghong Su
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, 18877 Jingshi Road, 250062, Jinan, Shandong, China
| | - Haiyan Huang
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, 18877 Jingshi Road, 250062, Jinan, Shandong, China
| | - Junwen Luan
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, 18877 Jingshi Road, 250062, Jinan, Shandong, China
| | - Xiaoqun Xu
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, 18877 Jingshi Road, 250062, Jinan, Shandong, China.
| | - Junfu Wang
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, 18877 Jingshi Road, 250062, Jinan, Shandong, China.
| |
Collapse
|
46
|
Roles and targeting of the HAS/hyaluronan/CD44 molecular system in cancer. Matrix Biol 2016; 59:3-22. [PMID: 27746219 DOI: 10.1016/j.matbio.2016.10.001] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/02/2016] [Accepted: 10/03/2016] [Indexed: 02/07/2023]
Abstract
Synthesis, deposition, and interactions of hyaluronan (HA) with its cellular receptor CD44 are crucial events that regulate the onset and progression of tumors. The intracellular signaling pathways initiated by HA interactions with CD44 leading to tumorigenic responses are complex. Moreover, HA molecules may perform dual functions depending on their concentration and size. Overexpression of variant isoforms of CD44 (CD44v) is most commonly linked to cancer progression, whereas their loss is associated with inhibition of tumor growth. In this review, we highlight that the regulation of HA synthases (HASes) by post-translational modifications, such as O-GlcNAcylation and ubiquitination, environmental factors and the action of microRNAs is important for HA synthesis and secretion in the tumor microenvironment. Moreover, we focus on the roles and interactions of CD44 with various proteins that reside extra- and intracellularly, as well as on cellular membranes with particular reference to the CD44-HA axis in cancer stem cell functions, and the importance of CD44/CD44v6 targeting to inhibit tumorigenesis.
Collapse
|
47
|
Martin-Castillo B, Lopez-Bonet E, Cuyàs E, Viñas G, Pernas S, Dorca J, Menendez JA. Cancer stem cell-driven efficacy of trastuzumab (Herceptin): towards a reclassification of clinically HER2-positive breast carcinomas. Oncotarget 2016; 6:32317-38. [PMID: 26474458 PMCID: PMC4741696 DOI: 10.18632/oncotarget.6094] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 09/24/2015] [Indexed: 12/21/2022] Open
Abstract
Clinically HER2+ (cHER2+) breast cancer (BC) can no longer be considered a single BC disease entity in terms of trastuzumab responsiveness. Here we propose a framework for predicting the response of cHER2+ to trastuzumab that integrates the molecular distinctions of intrinsic BC subtypes with recent knowledge on cancer stem cell (CSC) biology. First, we consider that two interchangeable populations of epithelial-like, aldehyde dehydrogenase (ALDH)-expressing and mesenchymal-like, CD44+CD24-/low CSCs can be found in significantly different proportions across all intrinsic BC subtypes. Second, we overlap all the intrinsic subtypes across cHER2+ BC to obtain a continuum of mixed phenotypes in which one extreme exhibits a high identity with ALDH+ CSCs and the other extreme exhibits a high preponderance of CD44+CD24-/low CSCs. The differential enrichment of trastuzumab-responsive ALDH+ CSCs versus trastuzumab-refractory CD44+CD24-/low CSCs can explain both the clinical behavior and the primary efficacy of trastuzumab in each molecular subtype of cHER2+ (i.e., HER2-enriched/cHER2+, luminal A/cHER2+, luminal B/cHER2+, basal/cHER2+, and claudin-low/cHER2+). The intrinsic plasticity determining the epigenetic ability of cHER2+ tumors to switch between epithelial and mesenchymal CSC states will vary across the continuum of mixed phenotypes, thus dictating their intratumoral heterogeneity and, hence, their evolutionary response to trastuzumab. Because CD44+CD24-/low mesenchymal-like CSCs distinctively possess a highly endocytic activity, the otherwise irrelevant HER2 can open the door to a type of "Trojan horse" approach by employing antibody-drug conjugates such as T-DM1, which will allow a rapid and CSC-targeted delivery of cytotoxic drugs to therapeutically manage trastuzumab-unresponsive basal/cHER2+ BC. Contrary to the current dichotomous model used clinically, our model proposes that a reclassification of cHER2+ tumors based on the spectrum of molecular BC subtypes might inform on their CSC-determined sensitivity to trastuzumab, thus providing a better delineation of the predictive value of cHER2+ in BC by incorporating CSCs-driven intra-tumor heterogeneity into clinical decisions.
Collapse
Affiliation(s)
- Begoña Martin-Castillo
- Unit of Clinical Research, Catalan Institute of Oncology, Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain.,Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Complutense University, Madrid, Spain
| | - Eugeni Lopez-Bonet
- Department of Anatomical Pathology, Dr. Josep Trueta Hospital of Girona, Girona, Catalonia, Spain
| | - Elisabet Cuyàs
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain.,ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Catalonia, Spain
| | - Gemma Viñas
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain.,Department of Medical Oncology, Catalan Institute of Oncology, Girona, Catalonia, Spain
| | - Sonia Pernas
- Department of Medical Oncology, Breast Unit, Catalan Institute of Oncology-Hospital Universitari de Bellvitge-Bellvitge Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Joan Dorca
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain.,Department of Medical Oncology, Catalan Institute of Oncology, Girona, Catalonia, Spain
| | - Javier A Menendez
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain.,ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Catalonia, Spain
| |
Collapse
|
48
|
Xu H, Tian Y, Yuan X, Liu Y, Wu H, Liu Q, Wu GS, Wu K. Enrichment of CD44 in basal-type breast cancer correlates with EMT, cancer stem cell gene profile, and prognosis. Onco Targets Ther 2016; 9:431-44. [PMID: 26855592 PMCID: PMC4727509 DOI: 10.2147/ott.s97192] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cluster of differentiation 44 (CD44) is a transmembrane glycoprotein that serves as the receptor for the extracellular matrix component hyaluronic acid. CD44 has been reported to play key roles in cell proliferation, motility, and survival, but its role in breast cancer remains controversial. In this study, we conducted a meta-analysis. A total of 23 published Gene Expression Omnibus databases were included to evaluate the association between CD44 mRNA expression and clinicopathological characteristics or prognosis of the patients with breast cancer. Our analysis revealed that CD44 expression was associated with clinicopathological features, including the histological grade, estrogen receptor status, progesterone receptor status, and human epidermal growth factor receptor-2 status. Higher levels of CD44 expression were observed in the basal subtype of breast cancer both at the mRNA and protein levels (odds ratio [OR] =2.08, 95% confidence interval [CI]: 1.72–2.52; OR =2.11, 95% CI: 1.67–2.68). Patients with CD44 overexpression exhibited significantly worse overall survival (hazard ratio =1.27; 95% CI: 1.04–1.55). Whole gene profile analysis revealed that CD44 expression was enriched in basal-type breast cancer and correlated with epithelial–mesenchymal transition and cancer stem cell gene profiles. In summary, our analyses indicated that CD44 potentially might be a prognostic marker for breast cancer and thus can serve as a therapeutic target for basal-type breast cancer.
Collapse
Affiliation(s)
- Hanxiao Xu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yijun Tian
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xun Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yu Liu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hua Wu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qian Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Gen Sheng Wu
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA; Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kongming Wu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
49
|
De Mattos-Arruda L, Bottai G, Nuciforo PG, Di Tommaso L, Giovannetti E, Peg V, Losurdo A, Pérez-Garcia J, Masci G, Corsi F, Cortés J, Seoane J, Calin GA, Santarpia L. MicroRNA-21 links epithelial-to-mesenchymal transition and inflammatory signals to confer resistance to neoadjuvant trastuzumab and chemotherapy in HER2-positive breast cancer patients. Oncotarget 2015; 6:37269-37280. [PMID: 26452030 PMCID: PMC4741929 DOI: 10.18632/oncotarget.5495] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/25/2015] [Indexed: 12/11/2022] Open
Abstract
Patients with primary HER2-positive breast cancer benefit from HER2-targeted therapies. Nevertheless, a significant proportion of these patients die of disease progression due to mechanisms of drug resistance. MicroRNAs (miRNAs) are emerging as critical core regulators of drug resistance that act by modulating the epithelial-to-mesenchymal transition (EMT) and cancer-related immune responses. In this study, we investigated the association between the expression of a specific subset of 14 miRNAs involved in EMT processes and immune functions and the response to neoadjuvant trastuzumab and chemotherapy in 52 patients with HER2-overexpressing breast tumors. The expression of only a single miRNA, miR-21, was significantly associated with residual disease (p = 0.030) and increased after trastuzumab-chemotherapy (p = 0.012). A target prediction analysis coupled with in vitro and in vivo validations revealed that miR-21 levels inversely correlated with the expression of PTEN (rs = -0.502; p = 0.005) and PDCD4 (rs = -0.426; p = 0.019), which differentially influenced the drug sensitivity of HER2-positive breast cancer cells. However, PTEN expression was only marginally associated with residual disease. We further demonstrated that miR-21 was able to affect the response to both trastuzumab and chemotherapy, triggering an IL-6/STAT3/NF-κB-mediated signaling loop and activating the PI3K pathway. Our findings support the ability of miR-21 signaling to sustain EMT and shape the tumor immune microenvironment in HER2-positive breast cancer. Collectively, these data provide a rationale for using miR-21 expression as a biomarker to select trastuzumab-chemotherapy-resistant HER2-positive breast cancer patients who may benefit from treatments containing PI3K inhibitors or immunomodulatory drugs.
Collapse
Affiliation(s)
- Leticia De Mattos-Arruda
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Giulia Bottai
- Oncology Experimental Therapeutics Unit, IRCCS Humanitas Clinical and Research Institute, Rozzano, Milan, Italy
| | - Paolo G. Nuciforo
- Molecular Oncology Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Luca Di Tommaso
- Division of Pathology, IRCCS Humanitas Clinical and Research Institute, Rozzano, Milan, Italy, University of Milan, Milan, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
- Cancer Pharmacology Laboratory, AIRC Start-Up Unit, University of Pisa, Pisa, Italy
| | - Vicente Peg
- Pathology Department, Vall d'Hebron University Hospital, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Agnese Losurdo
- Division of Oncology and Hematology, IRCCS Humanitas Clinical and Research Institute, Rozzano, Milan, Italy
| | - José Pérez-Garcia
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Giovanna Masci
- Division of Oncology and Hematology, IRCCS Humanitas Clinical and Research Institute, Rozzano, Milan, Italy
| | - Fabio Corsi
- Deparment of Clinical and Biomedical Sciences “Luigi Sacco”, University of Milan, Milan, Italy
| | - Javier Cortés
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
- Ramon y Cajal University Hospital, Madrid, Spain
| | - Joan Seoane
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - George A. Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Libero Santarpia
- Oncology Experimental Therapeutics Unit, IRCCS Humanitas Clinical and Research Institute, Rozzano, Milan, Italy
| |
Collapse
|