1
|
Park K, Shin KO, Kim YI, Nielsen-Scott AL, Mainzer C, Celli A, Bae Y, Chae S, An H, Choi Y, Park JH, Park SH, Hwang JT, Kang SG, Wakefield JS, Arron ST, Holleran WM, Mauro TM, Elias PM, Uchida Y. Sphingosine-1-Phosphate-Cathelicidin Axis Plays a Pivotal Role in the Development of Cutaneous Squamous Cell Carcinoma. J Invest Dermatol 2025; 145:854-863.e6. [PMID: 39218144 DOI: 10.1016/j.jid.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 07/10/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a common skin cancer caused by mutagenesis resulting from excess UVR or other types of oxidative stress. These stressors also upregulate the production of a cutaneous innate immune element, cathelicidin antimicrobial peptide (CAMP), through endoplasmic reticulum stress-initiated, sphingosine-1-phosphate (S1P) signaling pathway. Although CAMP has beneficial antimicrobial activities, it also can be proinflammatory and procarcinogenic. We addressed whether and how S1P-induced CAMP production leads to cSCC development. Our study demonstrated that (i) CAMP expression is increased in cSCC cells and skin from patients with cSCC; (ii) S1P levels are elevated in cSCC cells, whereas inhibition of S1P production attenuates CAMP-stimulated cSCC growth; (iii) exogenous CAMP stimulates cSCC but not normal human keratinocyte growth; (iv) blockade of FPRL1 protein, a CAMP receptor, attenuates cSCC growth as well as the growth and invasion of cSCC cells mediated by CAMP into an extracellular matrix-containing fibroblast substrate; (v) FOXP3+ regulatory T-cell (which decreases antitumor immunity) levels increase in cSCC skin; and (vi) CAMP induces endoplasmic reticulum stress in cSCC cells. Together, the endoplasmic reticulum stress-S1P-CAMP axis forms a vicious circle, creating a favorable environment for cSCC development, that is, cSCC growth and invasion impede anticancer immunity.
Collapse
Affiliation(s)
- Kyungho Park
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea; Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA.
| | - Kyong-Oh Shin
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea; Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; LaSS, Chuncheon, Republic of Korea
| | - Young-Il Kim
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Anna L Nielsen-Scott
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Carine Mainzer
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Anna Celli
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Yoojin Bae
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea; Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea
| | - Seungwoo Chae
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea; Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea
| | - Hahyun An
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea; Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea
| | - Yerim Choi
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea; Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; LaSS, Chuncheon, Republic of Korea
| | - Jae-Ho Park
- Personalized Diet Research Group, Korea Food Research Institute, Jeonju, Republic of Korea
| | - Soo-Hyun Park
- Personalized Diet Research Group, Korea Food Research Institute, Jeonju, Republic of Korea
| | - Jin-Taek Hwang
- Personalized Diet Research Group, Korea Food Research Institute, Jeonju, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Seung Goo Kang
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Joan S Wakefield
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Sarah T Arron
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Walter M Holleran
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Theodora M Mauro
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Peter M Elias
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Yoshikazu Uchida
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea; Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA; San Francisco VA Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA.
| |
Collapse
|
2
|
Yang Y, Jin C, Yeo A, Jin B. Multiple Factors Determine the Oncolytic or Carcinogenic Effects of TLRs Activation in Cancer. J Immunol Res 2024; 2024. [DOI: 10.1155/2024/1111551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 12/13/2023] [Indexed: 01/05/2025] Open
Abstract
Toll‐like receptors (TLRs) belong to a germline‐encoded protein family. These are pattern recognition receptors. They sense pathogen‐associated molecular patterns (PAMPs). When this occurs, activation of the NF‐ĸB pathway follows. This triggers the innate immune response of the host. The consequent inflammatory cytokine response usually contributes to the elimination of the pathogen. Activation of TLRs also induces an adaptive immune response by a cross‐prime mechanism. This mechanism is employed in cancer immunotherapy. Using TLR ligands as adjuvants induces upregulation of costimulatory signals which in turn activates a cytotoxic leukocyte response against cancer cells. However, TLRs are also overexpressed in human cancer cells resulting in increased cell proliferation, migration, invasion, and angiogenesis. An intracellular adaptor, myeloid differentiation factor 88 (MyD88) probably mediates this process. MyD88 is intimately involved with all TLRs except TLR3. One consequence of the interaction between a TLR and MyD88 is activation of NF‐ĸB. In this context of a variety of proinflammtory cytokines being produced, chronic inflammation may result. Inflammation is an important protective mechanism. However, chronic inflammation is also involved in carcinogenesis. Activation of NF‐ĸB inhibits apoptosis and under certain circumstances, tumor cell survival. In this review, the potential therapeutic value of TLRs in immunotherapy and its role in oncogenesis are explored. The emerging use of artificial intelligence is mentioned.
Collapse
|
3
|
Fehri E, Ennaifer E, Bel Haj Rhouma R, Ardhaoui M, Boubaker S. TLR9 and Glioma: Friends or Foes? Cells 2022; 12:cells12010152. [PMID: 36611945 PMCID: PMC9818384 DOI: 10.3390/cells12010152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/18/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Toll-like receptor 9 (TLR9) is an intracellular innate immunity receptor that plays a vital role in chronic inflammation and in recognizing pathogenic and self-DNA in immune complexes. This activation of intracellular signaling leads to the transcription of either immune-related or malignancy genes through specific transcription factors. Thus, it has been hypothesized that TLR9 may cause glioma. This article reviews the roles of TLR9 in the pathogenesis of glioma and its related signaling molecules in either defending or promoting glioma. TLR9 mediates the invasion-induced hypoxia of brain cancer cells by the activation of matrix metalloproteinases (2, 9, and 13) in brain tissues. In contrast, the combination of the TLR9 agonist CpG ODN to radiotherapy boosts the role of T cells in antitumor effects. The TLR9 agonist CpG ODN 107 also enhances the radiosensitivity of human glioma U87 cells by blocking tumor angiogenesis. CpG enhances apoptosis in vitro and in vivo. Furthermore, it can enhance the antigen-presenting capacity of microglia, switch immune response toward CD8 T cells, and reduce the number of CD4CD25 Treg cells. CpG ODN shows promise as a potent immunotherapeutic drug against cancer, but specific cautions should be taken when activating TLR9, especially in the case of glioblastoma.
Collapse
Affiliation(s)
- Emna Fehri
- HPV Unit Research, Laboratory of Molecular Epidemiology and Experimental Pathology Applied to Infectious Diseases, Pasteur Institute of Tunis, Tunis 1002, Tunisia
- Department of Human and Experimental Pathology, Pasteur Institute of Tunis, Tunis 1002, Tunisia
- Correspondence:
| | - Emna Ennaifer
- HPV Unit Research, Laboratory of Molecular Epidemiology and Experimental Pathology Applied to Infectious Diseases, Pasteur Institute of Tunis, Tunis 1002, Tunisia
- Department of Human and Experimental Pathology, Pasteur Institute of Tunis, Tunis 1002, Tunisia
| | - Rahima Bel Haj Rhouma
- HPV Unit Research, Laboratory of Molecular Epidemiology and Experimental Pathology Applied to Infectious Diseases, Pasteur Institute of Tunis, Tunis 1002, Tunisia
| | - Monia Ardhaoui
- HPV Unit Research, Laboratory of Molecular Epidemiology and Experimental Pathology Applied to Infectious Diseases, Pasteur Institute of Tunis, Tunis 1002, Tunisia
- Department of Human and Experimental Pathology, Pasteur Institute of Tunis, Tunis 1002, Tunisia
| | - Samir Boubaker
- Department of Human and Experimental Pathology, Pasteur Institute of Tunis, Tunis 1002, Tunisia
| |
Collapse
|
4
|
Tripathi AK, Vishwanatha JK. Role of Anti-Cancer Peptides as Immunomodulatory Agents: Potential and Design Strategy. Pharmaceutics 2022; 14:pharmaceutics14122686. [PMID: 36559179 PMCID: PMC9781574 DOI: 10.3390/pharmaceutics14122686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
The usage of peptide-based drugs to combat cancer is gaining significance in the pharmaceutical industry. The collateral damage caused to normal cells due to the use of chemotherapy, radiotherapy, etc. has given an impetus to the search for alternative methods of cancer treatment. For a long time, antimicrobial peptides (AMPs) have been shown to display anticancer activity. However, the immunomodulatory activity of anti-cancer peptides has not been researched very extensively. The interconnection of cancer and immune responses is well-known. Hence, a search and design of molecules that can show anti-cancer and immunomodulatory activity can be lead molecules in this field. A large number of anti-cancer peptides show good immunomodulatory activity by inhibiting the pro-inflammatory responses that assist cancer progression. Here, we thoroughly review both the naturally occurring and synthetic anti-cancer peptides that are reported to possess both anti-cancer and immunomodulatory activity. We also assess the structural and biophysical parameters that can be utilized to improve the activity. Both activities are mostly reported by different groups, however, we discuss them together to highlight their interconnection, which can be used in the future to design peptide drugs in the field of cancer therapeutics.
Collapse
|
5
|
Wang X, Zhang M, Xiong XQ, Yang H, Wang P, Zhang K, Awadasseid A, Narva S, Wu YL, Zhang W. Design, synthesis and bioactivity of novel naphthalimide-benzotriazole conjugates against A549 cells via targeting BCL2 G-quadruplex and inducing autophagy. Life Sci 2022; 302:120651. [PMID: 35597548 DOI: 10.1016/j.lfs.2022.120651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 12/24/2022]
Abstract
AIMS In this study, a series of novel naphthalimide-benzotriazole conjugates (1a-3c) based on 1, 8-naphthalimide as a core skeleton, aiming at G-quadruplexes, were designed and synthesized, and their anti-cancer activity and mechanism were studied. MATERIALS AND METHODS Using the CCK-8 assay, FRET melting, EMSA, CD, and molecular docking, intracellular assays, western blotting, immunofluorescence, and flow cytometry. KEY FINDINGS By the CCK-8 assay, it was found that the compound, 2-(3-(piperazin-1-yl)propyl)-6-(1H-benzo [d][1,2,3]triazol-1-yl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (3a), has better activity against A549 cells. Through extracellular assays, including FRET melting, EMSA, CD, and molecular docking, results showed that 3a selectively interacted with BCL2 G-quadruplex(es). Further studies by intracellular assays, including western blotting, immunofluorescence, flow cytometry, etc., verified that 3a mediated the death of A549 cells by two pathways: inhibition of the expression of the BCL2 gene, causing tumor cell apoptosis, and promotion of genetic instability, causing autophagy. This study suggests that the type of compounds, in particular, 3a, may be a potential molecule to explore for BCL2 G-quadruplex-targeted drugs against lung cancer. SIGNIFICANCE Our findings demonstrate that compound 3a as a BCL2 G-quadruplex ligand induces DNA damage, autophagy, and apoptosis in A549 cells. This study provides us with a type of lead compound as an anti-tumor drug.
Collapse
Affiliation(s)
- Xiao Wang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mi Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xu-Qiong Xiong
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Hao Yang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Panpan Wang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Koutian Zhang
- Zhejiang Jianing Pharmaceutical Technology Co., Ltd, Hangzhou, 310051, China
| | - Annoor Awadasseid
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Suresh Narva
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yan-Ling Wu
- Lab of Molecular Immunology, Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China.
| | - Wen Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
6
|
Mori T, Hazekawa M, Yoshida M, Nishinakagawa T, Uchida T, Ishibashi D. Enhancing the anticancer efficacy of a LL-37 peptide fragment analog using peptide-linked PLGA conjugate micelles in tumor cells. Int J Pharm 2021; 606:120891. [PMID: 34324984 DOI: 10.1016/j.ijpharm.2021.120891] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 01/05/2023]
Abstract
LL-37, a well-known antimicrobial human peptide, is a cationic peptide that provides an important antimicrobial defense mechanism in damaged skin. Accumulating evidence indicates that LL-37 also displays an anticancer effect in colon cancer, gastric cancer, hematologic malignancy and oral squamous cell carcinoma. However, anticancer activity of LL-37 peptide fragment analogs has not been reported. Poor intercellular translocation may be one of the causes for this lack of observed anticancer activity. In this study, a LL-37 peptide fragment analog with cysteine at the N-terminus was conjugated with the biodegradable polymer, lactic acid/glycolic acid copolymer (PLGA), using the thiol group of cysteine. The purpose of this study was to improve the cell permeability of the peptide using a micellar system and then evaluate the anticancer activity. Cell proliferation, migration, and invasion assays were performed to evaluate the anticancer activity in four cancer cell lines with high metastasis, HM-1, B16/BL6, HeLa, and HepG2. The LL-37 fragment peptide analog-linked PLGA conjugate was shown to effectively inhibit cell proliferation, migration, and invasion and had increased cell permeability in all the cancer cell lines, compared with the peptide alone. These results suggested that LL-37 fragment peptide analog (CKR12)-linked PLGA conjugate micelles could be useful in the development of cancer therapeutics.
Collapse
Affiliation(s)
- Takeshi Mori
- School of Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Mai Hazekawa
- Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | - Miyako Yoshida
- School of Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Takuya Nishinakagawa
- Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Takahiro Uchida
- School of Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Daisuke Ishibashi
- Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
7
|
Viryasova GM, Golenkina EA, Hianik T, Soshnikova NV, Dolinnaya NG, Gaponova TV, Romanova YM, Sud’ina GF. Magic Peptide: Unique Properties of the LRR11 Peptide in the Activation of Leukotriene Synthesis in Human Neutrophils. Int J Mol Sci 2021; 22:ijms22052671. [PMID: 33800897 PMCID: PMC7961786 DOI: 10.3390/ijms22052671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/17/2022] Open
Abstract
Neutrophil-mediated innate host defense mechanisms include pathogen elimination through bacterial phagocytosis, which activates the 5-lipoxygenase (5-LOX) product synthesis. Here, we studied the effect of synthetic oligodeoxyribonucleotides (ODNs), which mimic the receptor-recognized sites of bacterial (CpG-ODNs) and genomic (G-rich ODNs) DNAs released from the inflammatory area, on the neutrophil functions after cell stimulation with Salmonella typhimurium. A possible mechanism for ODN recognition by Toll-like receptor 9 (TLR9) and RAGE receptor has been proposed. We found for the first time that the combination of the magic peptide LRR11 from the leucine-rich repeat (LRR) of TLR9 with the CpG-ODNs modulates the uptake and signaling from ODNs, in particular, dramatically stimulates 5-LOX pathway. Using thickness shear mode acoustic method, we confirmed the specific binding of CpG-ODNs, but not G-rich ODN, to LRR11. The RAGE receptor has been shown to play an important role in promoting ODN uptake. Thus, FPS-ZM1, a high-affinity RAGE inhibitor, suppresses the synthesis of 5-LOX products and reduces the uptake of ODNs by neutrophils; the inhibitor effect being abolished by the addition of LRR11. The results obtained revealed that the studied peptide-ODN complexes possess high biological activity and can be promising for the development of effective vaccine adjuvants and antimicrobial therapeutics.
Collapse
Affiliation(s)
- Galina M. Viryasova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (G.M.V.); (E.A.G.)
| | - Ekaterina A. Golenkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (G.M.V.); (E.A.G.)
| | - Tibor Hianik
- Department of Nuclear Physics and Biophysics, Comenius University, Mlynska dolina F1, 842 48 Bratislava, Slovakia;
| | - Nataliya V. Soshnikova
- Institute of Gene Biology, Department of Eukaryotic Transcription Factors, Russian Academy of Sciences, Vavilov Str. 34/5, 119334 Moscow, Russia;
| | - Nina G. Dolinnaya
- Department of Chemistry, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Tatjana V. Gaponova
- National Research Center for Hematology, Russia Federation Ministry of Public Health, 125167 Moscow, Russia;
| | - Yulia M. Romanova
- Gamaleya National Research Centre of Epidemiology and Microbiology, 123098 Moscow, Russia;
| | - Galina F. Sud’ina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (G.M.V.); (E.A.G.)
- Correspondence: ; Tel.: +7-495-939-3174
| |
Collapse
|
8
|
Chen X, Ji S, Si J, Zhang X, Wang X, Guo Y, Zou X. Human cathelicidin antimicrobial peptide suppresses proliferation, migration and invasion of oral carcinoma HSC-3 cells via a novel mechanism involving caspase-3 mediated apoptosis. Mol Med Rep 2020; 22:5243-5250. [PMID: 33174023 PMCID: PMC7646992 DOI: 10.3892/mmr.2020.11629] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
Human cathelicidin antimicrobial peptide and its active product, LL-37 (CAMP/LL-37), exhibit a broad spectrum of antimicrobial effects. An increasing number of studies have shown that human CAMP/LL-37 also serves significant roles in various types of cancer. The primary aims of the present study were to investigate the roles and mechanisms of human CAMP/LL-37 in oral squamous cell carcinoma (OSCC) cells. The results indicated that either LL-37 C-terminal deletion mutants (CDEL) or CAMP stable expression in HSC-3 cells reduced colony formation, proliferation, migration and invasion ability of the cells. Expression analysis demonstrated that either CDEL or CAMP stable expression in HSC-3 cells induced caspase-3 mediated apoptosis via the P53-Bcl-2/BAX signalling pathway, whereas the levels of cell cycle-related proteins, cyclin B1 and PKR-like ER kinase, were significantly upregulated in the CAMP, but not in the CDEL overexpressing cells. Transcriptional profile comparisons revealed that CDEL or CAMP stable expression in HSC-3 cells upregulated expression of genes involved in the IL-17-dependent pathway compared with the control. Taken together, these results suggest that CAMP may act as a tumour suppressor in OSCC cells, and the underlying mechanism involves the induction of caspase-3 mediated apoptosis via the P53-Bcl-2/BAX signalling pathway.
Collapse
Affiliation(s)
- Xi Chen
- Laboratory of Mucosal Immunology, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Shenying Ji
- Laboratory of Mucosal Immunology, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Jia Si
- Laboratory of Mucosal Immunology, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Xiangyu Zhang
- Laboratory of Mucosal Immunology, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Xiaoyan Wang
- College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Yong Guo
- College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Xianqiong Zou
- Laboratory of Mucosal Immunology, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| |
Collapse
|
9
|
Golenkina EA, Viryasova GM, Dolinnaya NG, Bannikova VA, Gaponova TV, Romanova YM, Sud’ina GF. The Potential of Telomeric G-quadruplexes Containing Modified Oligoguanosine Overhangs in Activation of Bacterial Phagocytosis and Leukotriene Synthesis in Human Neutrophils. Biomolecules 2020; 10:E249. [PMID: 32041263 PMCID: PMC7072695 DOI: 10.3390/biom10020249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
Human neutrophils are the first line of defense against bacterial and viral infections. They eliminate pathogens through phagocytosis, which activate the 5-lipoxygenase (5-LOX) pathway resulting in synthesis of leukotrienes. Using HPLC analysis, flow cytometry, and other biochemical methods, we studied the effect of synthetic oligodeoxyribonucleotides (ODNs) able to fold into G-quadruplex structures on the main functions of neutrophils. Designed ODNs contained four human telomere TTAGGG repeats (G4) including those with phosphorothioate oligoguanosines attached to the end(s) of G-quadruplex core. Just modified analogues of G4 was shown to more actively than parent ODN penetrate into cells, improve phagocytosis of Salmonella typhimurium bacteria, affect 5-LOX activation, the cytosol calcium ion level, and the oxidative status of neutrophils. As evident from CD and UV spectroscopy data, the presence of oligoguanosines flanking G4 sequence leads to dramatic changes in G-quadruplex topology. While G4 folds into a single antiparallel structure, two main folded forms have been identified in solutions of modified ODNs: antiparallel and dominant, more stable parallel. Thus, both the secondary structure of ODNs and their ability to penetrate into the cytoplasm of cells are important for the activation of neutrophil cellular effects. Our results offer new clues for understanding the role of G-quadruplex ligands in regulation of integral cellular processes and for creating the antimicrobial agents of a new generation.
Collapse
Affiliation(s)
- Ekaterina A. Golenkina
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow 119234, Russia; (E.A.G.); (G.M.V.)
| | - Galina M. Viryasova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow 119234, Russia; (E.A.G.); (G.M.V.)
| | - Nina G. Dolinnaya
- Lomonosov Moscow State University, Department of Chemistry, Moscow 119234, Russia; (N.G.D.); (V.A.B.)
| | - Valeria A. Bannikova
- Lomonosov Moscow State University, Department of Chemistry, Moscow 119234, Russia; (N.G.D.); (V.A.B.)
| | - Tatjana V. Gaponova
- National Research Center for Hematology, Russia Federation Ministry of Public Health, Moscow 125167, Russia;
| | - Yulia M. Romanova
- Gamaleya National Research Centre of Epidemiology and Microbiology, Moscow 123098, Russia;
| | - Galina F. Sud’ina
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow 119234, Russia; (E.A.G.); (G.M.V.)
| |
Collapse
|
10
|
Ilic Z, Saxena AR, Periasamy S, Crawford DR. Control (Native) and oxidized (DeMP) mitochondrial RNA are proinflammatory regulators in human. Free Radic Biol Med 2019; 143:62-69. [PMID: 31330178 DOI: 10.1016/j.freeradbiomed.2019.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 01/08/2023]
Abstract
Inflammation is implicated in a wide range of disorders, and thought to be involved in most leading causes of death today in the United States with high associated costs. New insights into better understanding its etiology, detection and prevention are thus of major importance in health care. One emerging field providing such insights has been the identification of DAMPs, or damage-associated molecular patterns. We have studied DAMPs within the context of degraded and oxidized mitochondrial DNA and RNA ("DeMP"), most recently demonstrating potent mitochondrial RNA (mtRNA) immunogenic response in mouse macrophages. Here, we extend these studies to assess the proinflammatory role of mitochondrial control (native) and oxidized RNA using human RNA and cells. THP-1 macrophage mtRNA triggered a proinflammatory response (induction of IL-6 and TNFα) when transfected into the same cells. Modestly oxidized mtRNA (DeMP RNA) but not cytoplasmic RNA induced a similar response, in contrast to attenuated immunogenicity previously observed with more oxidized DeMP RNA. This DeMP RNA may also cause a mild prooxidant stress. The proinflammatory effects of mtRNA was significantly reduced following pretreatment with RNases specific for single and double stranded RNA, implicating these forms of mtRNA in proinflammatory response. The natural nucleic acid-encapsulating peptide LL-37 also triggered a proinflammatory effect in the presence of control mtRNA and DeMP RNA. Finally, human blood plasma RNA exhibits proinflammatory activity. These results provide new insights into the immunostimulation of mitochondrial RNA including its activity in human cells; identify human plasma RNA as proinflammatory; and provide further evidence that oxidized DeMP mtRNA acts as a sensitive and broad-spectrum sensor and regulator of mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Zoran Ilic
- Wadsworth Center, New York State Department of Health, Albany, NY, 12201, USA
| | - Abhinav R Saxena
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| | - Sivakumar Periasamy
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| | - Dana R Crawford
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA.
| |
Collapse
|
11
|
Viryasova GM, Dolinnaya NG, Golenkina EA, Gaponova TV, Viryasov MB, Romanova YM, Sud'ina GF. G-quadruplex-forming oligodeoxyribonucleotides activate leukotriene synthesis in human neutrophils. J Biomol Struct Dyn 2019; 37:3649-3659. [PMID: 30238827 DOI: 10.1080/07391102.2018.1523748] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human polymorphonuclear leukocytes (PMNLs, neutrophils) play a major role in the immune response to bacterial and fungal infections and eliminate pathogens through phagocytosis. During phagocytosis of microorganisms, the 5-lipoxygenase (5-LOX) pathway is activated resulting in generation of leukotrienes, which mediate host defense. In this study, a library of oligodeoxyribonucleotides (ODNs) with varying numbers of human telomeric repeats (d(TTAGGG)n) and their analogues with phosphorothioate internucleotide linkages and single-nucleotide substitutions was designed. These ODNs with the potential to fold into G-quadruplex structures were studied from structural and functional perspectives. We showed that exogenous G-quadruplex-forming ODNs significantly enhanced 5-LOX metabolite formation in human neutrophils exposed to Salmonella Typhimurium bacteria. However, the activation of leukotriene synthesis was completely lost when G-quadruplex formation was prevented by substitution of guanosine with 7-deazaguanosine or adenosine residues at several positions. To our knowledge, this study is the first to demonstrate that G-quadruplex structures are potent regulators of 5-LOX product synthesis in human neutrophils in the presence of targets of phagocytosis. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Galina M Viryasova
- a Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| | - Nina G Dolinnaya
- b Department of Chemistry , Lomonosov Moscow State University , Moscow , Russia
| | - Ekaterina A Golenkina
- a Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| | - Tatjana V Gaponova
- c FGBU Hematology Research Centre , Russia Federation Ministry of Public Health , Moscow , Russia
| | - Mikhail B Viryasov
- b Department of Chemistry , Lomonosov Moscow State University , Moscow , Russia
| | - Yulia M Romanova
- d Gamaleya National Research Centre of Epidemiology and Microbiology , Moscow , Russia.,e Department of Unfectology and Virology, Sechenov First Moscow State Medical University , Moscow , Russia
| | - Galina F Sud'ina
- a Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| |
Collapse
|
12
|
Sandholm J, Lehtimäki J, Ishizu T, Velu SE, Clark J, Härkönen P, Jukkola-Vuorinen A, Schrey A, Harris KW, Tuomela JM, Selander KS. Toll-like receptor 9 expression is associated with breast cancer sensitivity to the growth inhibitory effects of bisphosphonates in vitro and in vivo. Oncotarget 2016; 7:87373-87389. [PMID: 27888633 PMCID: PMC5349995 DOI: 10.18632/oncotarget.13570] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 11/04/2016] [Indexed: 01/07/2023] Open
Abstract
Bisphosphonates are standard treatments for bone metastases. When given in the adjuvant setting, they reduce breast cancer mortality and recurrence in bone but only among post-menopausal patients. Optimal drug use would require biomarker-based patient selection. Such biomarkers are not yet in clinical use. Based on the similarities in inflammatory responses to bisphosphonates and Toll-like receptor (TLR) agonists, we hypothesized that TLR9 expression may affect bisphosphonate responses in cells. We compared bisphosphonate effects in breast cancer cell lines with low or high TLR9 expression. We discovered that cells with decreased TLR9 expression are significantly more sensitive to the growth-inhibitory effects of bisphosphonates in vitro and in vivo. Furthermore, cancer growth-promoting effects seen with some bisphosphonates in some control shRNA cells were not detected in TLR9 shRNA cells. These differences were not associated with inhibition of Rap1A prenylation or p38 phosphorylation, which are known markers for bisphosphonate activity. However, TLR9 shRNA cells exhibited increased sensitivity to ApppI, a metabolite that accumulates in cells after bisphosphonate treatment. We conclude that decreased TLR9-expression sensitizes breast cancer cells to the growth inhibitory effects of bisphosphonates. Our results suggest that TLR9 should be studied as a potential biomarker for adjuvant bisphosphonate sensitivity among breast cancer patients.
Collapse
Affiliation(s)
- Jouko Sandholm
- Cell Imaging Core, Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jaakko Lehtimäki
- Department of Cell Biology and Anatomy, University of Turku, Turku, Finland
| | - Tamiko Ishizu
- Department of Cell Biology and Anatomy, University of Turku, Turku, Finland
- MediCity Research Laboratory/PET, Turku PET Centre, University of Turku, Turku, Finland
| | - Sadanandan E. Velu
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| | - Jeremy Clark
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| | - Pirkko Härkönen
- Department of Cell Biology and Anatomy, University of Turku, Turku, Finland
| | | | - Aleksi Schrey
- Department of Otorhinolaryngology – Head and Neck Surgery, Turku University Hospital, Turku, Finland
| | - Kevin W. Harris
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, U.S.A
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, U.S.A
- UAB Comprehensive Cancer Center, Birmingham, AL, U.S.A
| | - Johanna M. Tuomela
- Department of Cell Biology and Anatomy, University of Turku, Turku, Finland
| | - Katri S. Selander
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, U.S.A
- Department of Pathology, Lapland Central Hospital, Rovaniemi, Finland
| |
Collapse
|
13
|
Tosun S, Fried S, Niggemann B, Zänker KS, Dittmar T. Hybrid Cells Derived from Human Breast Cancer Cells and Human Breast Epithelial Cells Exhibit Differential TLR4 and TLR9 Signaling. Int J Mol Sci 2016; 17:ijms17050726. [PMID: 27187369 PMCID: PMC4881548 DOI: 10.3390/ijms17050726] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/15/2016] [Accepted: 05/03/2016] [Indexed: 02/07/2023] Open
Abstract
TLRs are important receptors of cells of the innate immune system since they recognize various structurally conserved molecular patterns of different pathogens as well as endogenous ligands. In cancer, the role of TLRs is still controversial due to findings that both regression and progression of tumors could depend on TLR signaling. In the present study, M13SV1-EGFP-Neo human breast epithelial cells, MDA-MB-435-Hyg human breast cancer cells and two hybrids M13MDA435-1 and -3 were investigated for TLR4 and TLR9 expression and signaling. RT-PCR data revealed that LPS and CpG-ODN induced the expression of pro-inflammatory cytokines, like IFN-β, TNF-α, IL-1β and IL-6 in hybrid cells, but not parental cells. Interestingly, validation of RT-PCR data by Western blot showed detectable protein levels solely after LPS stimulation, suggesting that regulatory mechanisms are also controlled by TLR signaling. Analysis of pAKT and pERK1/2 levels upon LPS and CpG-ODN stimulation revealed a differential phosphorylation pattern in all cells. Finally, the migratory behavior of the cells was investigated showing that both LPS and CpG-ODN potently blocked the locomotory activity of the hybrid cells in a dose-dependent manner. In summary, hybrid cells exhibit differential TLR4 and TLR9 signaling.
Collapse
Affiliation(s)
- Songül Tosun
- Institute of Immunology & Experimental Oncology, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Stockumer Str. 10, 58448 Witten, Germany.
| | - Sabrina Fried
- Institute of Immunology & Experimental Oncology, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Stockumer Str. 10, 58448 Witten, Germany.
- Faculty of Medicine, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Bernd Niggemann
- Institute of Immunology & Experimental Oncology, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Stockumer Str. 10, 58448 Witten, Germany.
| | - Kurt S Zänker
- Institute of Immunology & Experimental Oncology, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Stockumer Str. 10, 58448 Witten, Germany.
| | - Thomas Dittmar
- Institute of Immunology & Experimental Oncology, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Stockumer Str. 10, 58448 Witten, Germany.
| |
Collapse
|