1
|
Sobolev V, Tchepourina E, Soboleva A, Denisova E, Korsunskaya I, Mezentsev A. PPAR-γ in Melanoma and Immune Cells: Insights into Disease Pathogenesis and Therapeutic Implications. Cells 2025; 14:534. [PMID: 40214488 PMCID: PMC11989151 DOI: 10.3390/cells14070534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Changes in skin pigmentation, like hyperpigmentation or moles, can affect appearance and social life. Unlike locally containable moles, malignant melanomas are aggressive and can spread rapidly, disproportionately affecting younger individuals with a high potential for metastasis. Research has shown that the peroxisome proliferator-activated receptor gamma (PPAR-γ) and its ligands exhibit protective effects against melanoma. As a transcription factor, PPAR-γ is crucial in functions like fatty acid storage and glucose metabolism. Activation of PPAR-γ promotes lipid uptake and enhances sensitivity to insulin. In many cases, it also inhibits the growth of cancer cell lines, like breast, gastric, lung, and prostate cancer. In melanoma, PPAR-γ regulates cell proliferation, differentiation, apoptosis, and survival. During tumorigenesis, it controls metabolic changes and the immunogenicity of stromal cells. PPAR-γ agonists can target hypoxia-induced angiogenesis in tumor therapy, but their effects on tumors can be suppressive or promotional, depending on the tumor environment. Published data show that PPAR-γ-targeting agents can be effective in specific groups of patients, but further studies are needed to understand lesser-known biological effects of PPAR-γ and address the existing safety concerns. This review provides a summary of the current understanding of PPAR-γ and its involvement in melanoma.
Collapse
Affiliation(s)
- Vladimir Sobolev
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
| | - Ekaterina Tchepourina
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
| | - Anna Soboleva
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
| | - Elena Denisova
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
- Moscow Center of Dermatovenerology and Cosmetology, Moscow 119071, Russia
| | - Irina Korsunskaya
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
| | - Alexandre Mezentsev
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
| |
Collapse
|
2
|
Wang X, Wang J, Zhao X, Zhang J, Zhang Y. The adipokines in oral cancer pathogenesis and its potential as a new therapeutic approach. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03939-w. [PMID: 40056203 DOI: 10.1007/s00210-025-03939-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 02/16/2025] [Indexed: 03/10/2025]
Abstract
The involvement of adipose tissue in the development of cancer is currently the subject of an increasing number of research due to the growing relevance of lipid metabolism in tumor growth. Obesity influences the tumor immune microenvironment (TME) in oral cancer. Visceral white adipose tissue (WAT) consists of adipocytes, connective tissue, immune cells, and stromovascular cells. The metabolic processes of immune cells within the adipose tissue of individuals with obesity predominantly depend on oxidative phosphorylation (intrinsically) and are characterized by elevated levels of M2 macrophages, Treg cells, Th2 cells, and eosinophils from an extrinsic perspective. The adipokines secreted by adipocytes facilitate communication with adjacent tissues to regulate glucose and lipid metabolism. Obesity influences cancer progression through the dysregulation of adipocytokines, characterized by an augmented synthesis of the oncogenic adipokine leptin, coupled with a reduced secretion of adiponectin. Under standard physiological settings, these adipokines fulfill essential roles in sustaining homeostasis. This review analyzed the influence of adipocytes on oral cancer by detailing the mediators released by adipocytes. Comprehending the molecular foundations of the protumor roles of adipokines in oral cancers might provide novel treatment targets.
Collapse
Affiliation(s)
- Xue Wang
- Department of Stomatology, Jilin Province FAW General Hospital, Jilin, 130000, China
| | - Jiapeng Wang
- Department of Orthopedics, Jilin Province FAW General Hospital, Jilin, 130000, China.
| | - Xuemei Zhao
- Department of Stomatology, Jilin Province FAW General Hospital, Jilin, 130000, China
| | - Jiayin Zhang
- Department of Stomatology, Jilin Province FAW General Hospital, Jilin, 130000, China
| | - Yan Zhang
- Medical Department, Changchun Sci-Tech University, Changchun, 130000, China
| |
Collapse
|
3
|
Wang J, Li B, Luo M, Huang J, Zhang K, Zheng S, Zhang S, Zhou J. Progression from ductal carcinoma in situ to invasive breast cancer: molecular features and clinical significance. Signal Transduct Target Ther 2024; 9:83. [PMID: 38570490 PMCID: PMC10991592 DOI: 10.1038/s41392-024-01779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Ductal carcinoma in situ (DCIS) represents pre-invasive breast carcinoma. In untreated cases, 25-60% DCIS progress to invasive ductal carcinoma (IDC). The challenge lies in distinguishing between non-progressive and progressive DCIS, often resulting in over- or under-treatment in many cases. With increasing screen-detected DCIS in these years, the nature of DCIS has aroused worldwide attention. A deeper understanding of the biological nature of DCIS and the molecular journey of the DCIS-IDC transition is crucial for more effective clinical management. Here, we reviewed the key signaling pathways in breast cancer that may contribute to DCIS initiation and progression. We also explored the molecular features of DCIS and IDC, shedding light on the progression of DCIS through both inherent changes within tumor cells and alterations in the tumor microenvironment. In addition, valuable research tools utilized in studying DCIS including preclinical models and newer advanced technologies such as single-cell sequencing, spatial transcriptomics and artificial intelligence, have been systematically summarized. Further, we thoroughly discussed the clinical advancements in DCIS and IDC, including prognostic biomarkers and clinical managements, with the aim of facilitating more personalized treatment strategies in the future. Research on DCIS has already yielded significant insights into breast carcinogenesis and will continue to pave the way for practical clinical applications.
Collapse
Affiliation(s)
- Jing Wang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Baizhou Li
- Department of Pathology, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Meng Luo
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
- Department of Plastic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Huang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Kun Zhang
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu Zheng
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Suzhan Zhang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China.
| | - Jiaojiao Zhou
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Nehme R, Diab-Assaf M, Decombat C, Delort L, Caldefie-Chezet F. Targeting Adiponectin in Breast Cancer. Biomedicines 2022; 10:2958. [PMID: 36428526 PMCID: PMC9687473 DOI: 10.3390/biomedicines10112958] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Obesity and breast cancer are two major health issues that could be categorized as sincere threats to human health. In the last few decades, the relationship between obesity and cancer has been well established and extensively investigated. There is strong evidence that overweight and obesity increase the risk of postmenopausal breast cancer, and adipokines are the central players in this relationship. Produced and secreted predominantly by white adipose tissue, adiponectin is a bioactive molecule that exhibits numerous protective effects and is considered the guardian angel of adipokine. In the obesity-cancer relationship, more and more evidence shows that adiponectin may prevent and protect individuals from developing breast cancer. Recently, several updates have been published on the implication of adiponectin in regulating tumor development, progression, and metastases. In this review, we provide an updated overview of the metabolic signaling linking adiponectin and breast cancer in all its stages. On the other hand, we critically summarize all the available promising candidates that may reactivate these pathways mainly by targeting adiponectin receptors. These molecules could be synthetic small molecules or plant-based proteins. Interestingly, the advances in genomics have made it possible to create peptide sequences that could specifically replace human adiponectin, activate its receptor, and mimic its function. Thus, the obvious anti-cancer activity of adiponectin on breast cancer should be better exploited, and adiponectin must be regarded as a serious biomarker that should be targeted in order to confront this threatening disease.
Collapse
Affiliation(s)
- Rawan Nehme
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Mona Diab-Assaf
- Equipe Tumorigénèse Moléculaire et Pharmacologie Anticancéreuse, Faculté des Sciences II, Université Libanaise Fanar, Beyrouth 1500, Lebanon
| | - Caroline Decombat
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Florence Caldefie-Chezet
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|
5
|
Abd El-Meguid EA, Mohi El-Deen EM, Moustafa GO, Awad HM, Nossier ES. Synthesis, anticancer evaluation and molecular docking of new benzothiazole scaffolds targeting FGFR-1. Bioorg Chem 2021; 119:105504. [PMID: 34836644 DOI: 10.1016/j.bioorg.2021.105504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/12/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022]
Abstract
This work deals with the design and synthesis of a series of new substituted 2-arylbenzothiazole compounds attached to 4-oxothiazolidin-2-ylidene ring 2-12 and chain elongation with different amino acids and their corresponding ester derivatives 13-18. All prepared derivatives were screened for their in vitro cytotoxicity activities against two cancer cell lines (HepG-2 and MCF-7) in comparison with doxorubicin; in addition to their safety towards thenormal cell line. Furthermore, all compounds 2-18 were evaluated as FGFR-1 inhibitors using AZD4547 as a reference. The 4-oxothiazolidin-2-ylidene derivatives 3 and 8 exhibited the highest cytotoxic activity (IC50 HepG-2 = 2.06, 2.21 µM and IC50 MCF-7 = 0.73, 0.77 µM, respectively) through their promising FGFR-1 suppression effects (IC50 = 16.31 and 18.08 nM, respectively) in comparison to AZD4547 (IC50 = 21.45 nM). Cell cycle and apoptosis analysis indicated that compounds 3 and 8 induce pronounced increase in the cell percentages at pre-G1 and G2/M phase compared to the untreated MCF-7 cancer cells, in addition to their up regulation of caspase-3/7/9. The molecular docking simulation was created to elucidate the binding modes of benzothiazole derivatives 1-18 bearing various scaffolds within the ATP-binding pocket of FGFR-1 enzyme compared with AZD4547.
Collapse
Affiliation(s)
- Eman A Abd El-Meguid
- Department of Chemistry of Natural and Microbial Products, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Eman M Mohi El-Deen
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Gaber O Moustafa
- Peptide Chemistry Department, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Hanem M Awad
- Department of Tanning Materials and Leather Technology, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Eman S Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt
| |
Collapse
|
6
|
Chi T, Wang M, Wang X, Yang K, Xie F, Liao Z, Wei P. PPAR-γ Modulators as Current and Potential Cancer Treatments. Front Oncol 2021; 11:737776. [PMID: 34631571 PMCID: PMC8495261 DOI: 10.3389/fonc.2021.737776] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Worldwide, cancer has become one of the leading causes of mortality. Peroxisome Proliferator-Activated Receptors (PPARs) is a family of critical sensors of lipids as well as regulators of diverse metabolic pathways. They are also equipped with the capability to promote eNOS activation, regulate immunity and inflammation response. Aside from the established properties, emerging discoveries are also made in PPAR's functions in the cancer field. All considerations are given, there exists great potential in PPAR modulators which may hold in the management of cancers. In particular, PPAR-γ, the most expressed subtype in adipose tissues with two isoforms of different tissue distribution, has been proven to be able to inhibit cell proliferation, induce cell cycle termination and apoptosis of multiple cancer cells, promote intercellular adhesion, and cripple the inflamed state of tumor microenvironment, both on transcriptional and protein level. However, despite the multi-functionalities, the safety of PPAR-γ modulators is still of clinical concern in terms of dosage, drug interactions, cancer types and stages, etc. This review aims to consolidate the functions of PPAR-γ, the current and potential applications of PPAR-γ modulators, and the challenges in applying PPAR-γ modulators to cancer treatment, in both laboratory and clinical settings. We sincerely hope to provide a comprehensive perspective on the prospect of PPAR-γ applicability in the field of cancer treatment.
Collapse
Affiliation(s)
- Tiange Chi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,First Clinical Medical School, Beijing University of Chinese Medicine, Beijing, China
| | - Mina Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Department of Acupuncture and Moxibustion, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xu Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ke Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Feiyu Xie
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Oncology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Zehuan Liao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Peng Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Sharif GM, Campbell MJ, Nasir A, Sengupta S, Graham GT, Kushner MH, Kietzman WB, Schmidt MO, Pearson GW, Loudig O, Fineberg S, Wellstein A, Riegel AT. An AIB1 Isoform Alters Enhancer Access and Enables Progression of Early-Stage Triple-Negative Breast Cancer. Cancer Res 2021; 81:4230-4241. [PMID: 34135000 DOI: 10.1158/0008-5472.can-20-3625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/23/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023]
Abstract
AIB1Δ4 is an N-terminally truncated isoform of the oncogene amplified in breast cancer 1 (AIB1) with increased expression in high-grade human ductal carcinoma in situ (DCIS). However, the role of AIB1Δ4 in DCIS malignant progression has not been defined. Here we CRISPR-engineered RNA splice junctions to produce normal and early-stage DCIS breast epithelial cells that expressed only AIB1Δ4. These cells showed enhanced motility and invasion in 3D cell culture. In zebrafish, AIB1Δ4-expressing cells enabled invasion of parental cells when present in a mixed population. In mouse xenografts, a subpopulation of AIB1Δ4 cells mixed with parental cells enhanced tumor growth, recurrence, and lung metastasis. AIB1Δ4 chromatin immunoprecipitation sequencing revealed enhanced binding to regions including peroxisome proliferator-activated receptor (PPAR) and glucocorticoid receptor (GR) genomic recognition sites. H3K27ac and H3K4me1 genomic engagement patterns revealed selective activation of breast cancer-specific enhancer sites by AIB1Δ4. AIB1Δ4 cells displayed upregulated inflammatory response genes and downregulated PPAR signaling gene expression patterns. In the presence of AIB1Δ4 enabler cells, parental cells increased NF-κB and WNT signaling. Cellular cross-talk was inhibited by the PPARγ agonist efatutazone but was enhanced by treatment with the GR agonist dexamethasone. In conclusion, expression of the AIB1Δ4-selective cistrome in a small subpopulation of cells triggers an "enabler" phenotype hallmarked by an invasive transcriptional program and collective malignant progression in a heterogeneous tumor population. SIGNIFICANCE: A minor subset of early-stage breast cancer cells expressing AIB1Δ4 enables bulk tumor cells to become invasive, suggesting that selective eradication of this population could impair breast cancer metastasis.
Collapse
Affiliation(s)
- Ghada M Sharif
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Moray J Campbell
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Apsra Nasir
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Surojeet Sengupta
- The Hormel Institute, University of Minnesota, Medical Research Center, Austin, Minnesota
| | - Garrett T Graham
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Max H Kushner
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - William B Kietzman
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Marcel O Schmidt
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Gray W Pearson
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Olivier Loudig
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey
| | - Susan Fineberg
- Department of Pathology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York
| | - Anton Wellstein
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Anna T Riegel
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia.
| |
Collapse
|
8
|
Rajesh Y, Sarkar D. Association of Adipose Tissue and Adipokines with Development of Obesity-Induced Liver Cancer. Int J Mol Sci 2021; 22:ijms22042163. [PMID: 33671547 PMCID: PMC7926723 DOI: 10.3390/ijms22042163] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/20/2022] Open
Abstract
Obesity is rapidly dispersing all around the world and is closely associated with a high risk of metabolic diseases such as insulin resistance, dyslipidemia, and nonalcoholic fatty liver disease (NAFLD), leading to carcinogenesis, especially hepatocellular carcinoma (HCC). It results from an imbalance between food intake and energy expenditure, leading to an excessive accumulation of adipose tissue (AT). Adipocytes play a substantial role in the tumor microenvironment through the secretion of several adipokines, affecting cancer progression, metastasis, and chemoresistance via diverse signaling pathways. AT is considered an endocrine organ owing to its ability to secrete adipokines, such as leptin, adiponectin, resistin, and a plethora of inflammatory cytokines, which modulate insulin sensitivity and trigger chronic low-grade inflammation in different organs. Even though the precise mechanisms are still unfolding, it is now established that the dysregulated secretion of adipokines by AT contributes to the development of obesity-related metabolic disorders. This review focuses on several obesity-associated adipokines and their impact on obesity-related metabolic diseases, subsequent metabolic complications, and progression to HCC, as well as their role as potential therapeutic targets. The field is rapidly developing, and further research is still required to fully understand the underlying mechanisms for the metabolic actions of adipokines and their role in obesity-associated HCC.
Collapse
Affiliation(s)
- Yetirajam Rajesh
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Devanand Sarkar
- Massey Cancer Center, Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence: ; Tel.: +1-804-827-2339
| |
Collapse
|
9
|
Shan NL, Shin Y, Yang G, Furmanski P, Suh N. Breast cancer stem cells: A review of their characteristics and the agents that affect them. Mol Carcinog 2021; 60:73-100. [PMID: 33428807 DOI: 10.1002/mc.23277] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
The evolving concept that cancer stem cells (CSCs) are the driving element in cancer development, evolution and heterogeneity, has overridden the previous model of a tumor consisting of cells all with similar sequentially acquired mutations and a similar potential for renewal, invasion and metastasis. This paradigm shift has focused attention on therapeutically targeting CSCs directly as a means of eradicating the disease. In breast cancers, CSCs can be identified by cell surface markers and are characterized by their ability to self-renew and differentiate, resist chemotherapy and radiation, and initiate new tumors upon serial transplantation in xenografted mice. These functional properties of CSCs are regulated by both intracellular and extracellular factors including pluripotency-related transcription factors, intracellular signaling pathways and external stimuli. Several classes of natural products and synthesized compounds have been studied to target these regulatory elements and force CSCs to lose stemness and/or terminally differentiate and thereby achieve a therapeutic effect. However, realization of an effective treatment for breast cancers, focused on the biological effects of these agents on breast CSCs, their functions and signaling, has not yet been achieved. In this review, we delineate the intrinsic and extrinsic factors identified to date that control or promote stemness in breast CSCs and provide a comprehensive compilation of potential agents that have been studied to target breast CSCs, transcription factors and stemness-related signaling. Our aim is to stimulate further study of these agents that could become the basis for their use as stand-alone treatments or components of combination therapies effective against breast cancers.
Collapse
Affiliation(s)
- Naing L Shan
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Yoosub Shin
- Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Ge Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Philip Furmanski
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
10
|
Kietzman WB, Graham GT, Ory V, Sharif GM, Kushner MH, Gallanis GT, Kallakury B, Wellstein A, Riegel AT. Short- and Long-Term Effects of CDK4/6 Inhibition on Early-Stage Breast Cancer. Mol Cancer Ther 2019; 18:2220-2232. [PMID: 31451564 PMCID: PMC6891167 DOI: 10.1158/1535-7163.mct-19-0231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/05/2019] [Accepted: 08/14/2019] [Indexed: 02/06/2023]
Abstract
CDK4/6 inhibitors are used in the treatment of advanced estrogen receptor (ER)(+) breast cancer. Their efficacy in ER(-) and early-stage breast cancer is currently under investigation. Here, we show that palbociclib, a CDK4/6 inhibitor, can inhibit both progression of ductal carcinoma in situ (DCIS) and growth of invasive disease in both an ER(-) basal breast cancer model (MCFDCIS) and an ER(+) luminal model (MCF7 intraductal injection). In MCFDCIS cells, palbociclib repressed cell-cycle gene expression, inhibited proliferation, induced senescence, and normalized tumorspheres formed in Matrigel while the formation of acini by normal mammary epithelial cells (MCF10A) was not affected. Palbociclib treatment of mice with MCFDCIS tumors inhibited their malignant progression and reduced proliferation of invasive lesions. Transcriptomic analysis of the tumor and stromal cell compartments showed that cell cycle and senescence genes, and MUC16, an ovarian cancer biomarker gene, were repressed during treatment. Knockdown of MUC16 in MCFDCIS cells inhibited proliferation of invasive lesions but not progression of DCIS. After cessation of palbociclib treatment genes associated with differentiation, for example, P63, inflammation, IFNγ response, and antigen processing and presentation remained suppressed in the tumor and surrounding stroma. We conclude that palbociclib can prevent progression of DCIS and is antiproliferative in ER(-) invasive disease mediated in part via MUC16. Lasting effects of CDK4/6 inhibition after drug withdrawal on differentiation and the immune response could impact the approach to treatment of early-stage ER(-) breast cancer.
Collapse
Affiliation(s)
- William B Kietzman
- Department of Oncology, Georgetown University, Washington, District of Columbia
| | - Garrett T Graham
- Department of Oncology, Georgetown University, Washington, District of Columbia
| | - Virginie Ory
- Department of Oncology, Georgetown University, Washington, District of Columbia
| | - Ghada M Sharif
- Department of Oncology, Georgetown University, Washington, District of Columbia
| | - Max H Kushner
- Department of Oncology, Georgetown University, Washington, District of Columbia
| | - Gregory T Gallanis
- Department of Oncology, Georgetown University, Washington, District of Columbia
| | - Bhaskar Kallakury
- Department of Pathology, Georgetown University, Washington, District of Columbia
- The Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - Anton Wellstein
- Department of Oncology, Georgetown University, Washington, District of Columbia
- The Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - Anna T Riegel
- Department of Oncology, Georgetown University, Washington, District of Columbia.
- The Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| |
Collapse
|
11
|
Rewiring of Cancer Cell Metabolism by Mitochondrial VDAC1 Depletion Results in Time-Dependent Tumor Reprogramming: Glioblastoma as a Proof of Concept. Cells 2019; 8:cells8111330. [PMID: 31661894 PMCID: PMC6912264 DOI: 10.3390/cells8111330] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022] Open
Abstract
Reprograming of the metabolism of cancer cells is an event recognized as a hallmark of the disease. The mitochondrial gatekeeper, voltage-dependent anion channel 1 (VDAC1), mediates transport of metabolites and ions in and out of mitochondria, and is involved in mitochondria-mediated apoptosis. Here, we compared the effects of reducing hVDAC1 expression in a glioblastoma xenograft using human-specific si-RNA (si-hVDAC1) for a short (19 days) and a long term (40 days). Tumors underwent reprograming, reflected in rewired metabolism, eradication of cancer stem cells (CSCs) and differentiation. Short- and long-term treatments of the tumors with si-hVDAC1 similarly reduced the expression of metabolism-related enzymes, and translocator protein (TSPO) and CSCs markers. In contrast, differentiation into cells expressing astrocyte or neuronal markers was noted only after a long period during which the tumor cells were hVDAC1-depleted. This suggests that tumor cell differentiation is a prolonged process that precedes metabolic reprograming and the “disappearance” of CSCs. Tumor proteomics analysis revealing global changes in the expression levels of proteins associated with signaling, synthesis and degradation of proteins, DNA structure and replication and epigenetic changes, all of which were highly altered after a long period of si-hVDAC1 tumor treatment. The depletion of hVDAC1 greatly reduced the levels of the multifunctional translocator protein TSPO, which is overexpressed in both the mitochondria and the nucleus of the tumor. The results thus show that VDAC1 depletion-mediated cancer cell metabolic reprograming involves a chain of events occurring in a sequential manner leading to a reversal of the unique properties of the tumor, indicative of the interplay between metabolism and oncogenic signaling networks.
Collapse
|
12
|
Haider T, Tiwari R, Vyas SP, Soni V. Molecular determinants as therapeutic targets in cancer chemotherapy: An update. Pharmacol Ther 2019; 200:85-109. [PMID: 31047907 DOI: 10.1016/j.pharmthera.2019.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023]
Abstract
It is well known that cancer cells are heterogeneous in nature and very distinct from their normal counterparts. Commonly these cancer cells possess different and complementary metabolic profile, microenvironment and adopting behaviors to generate more ATPs to fulfill the requirement of high energy that is further utilized in the production of proteins and other essentials required for cell survival, growth, and proliferation. These differences create many challenges in cancer treatments. On the contrary, such situations of metabolic differences between cancer and normal cells may be expected a promising strategy for treatment purpose. In this article, we focus on the molecular determinants of oncogene-specific sub-organelles such as potential metabolites of mitochondria (reactive oxygen species, apoptotic proteins, cytochrome c, caspase 9, caspase 3, etc.), endoplasmic reticulum (unfolded protein response, PKR-like ER kinase, C/EBP homologous protein, etc.), nucleus (nucleolar phosphoprotein, nuclear pore complex, nuclear localization signal), lysosome (microenvironment, etc.) and plasma membrane phospholipids, etc. that might be exploited for the targeted delivery of anti-cancer drugs for therapeutic benefits. This review will help to understand the various targets of subcellular organelles at molecular levels. In the future, this molecular level understanding may be combined with the genomic profile of cancer for the development of the molecularly guided or personalized therapeutics for complete eradication of cancer.
Collapse
Affiliation(s)
- Tanweer Haider
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India
| | - Rahul Tiwari
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India
| | - Suresh Prasad Vyas
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India.
| |
Collapse
|
13
|
Brock EJ, Ji K, Shah S, Mattingly RR, Sloane BF. In Vitro Models for Studying Invasive Transitions of Ductal Carcinoma In Situ. J Mammary Gland Biol Neoplasia 2019; 24:1-15. [PMID: 30056557 PMCID: PMC6641861 DOI: 10.1007/s10911-018-9405-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/13/2018] [Indexed: 12/11/2022] Open
Abstract
About one fourth of all newly identified cases of breast carcinoma are diagnoses of breast ductal carcinoma in situ (DCIS). Since we cannot yet distinguish DCIS cases that would remain indolent from those that may progress to life-threatening invasive ductal carcinoma (IDC), almost all women undergo aggressive treatment. In order to allow for more rational individualized treatment, we and others are developing in vitro models to identify and validate druggable pathways that mediate the transition of DCIS to IDC. These models range from conventional two-dimensional (2D) monolayer cultures on plastic to 3D cultures in natural or synthetic matrices. Some models consist solely of DCIS cells, either cell lines or primary cells. Others are co-cultures that include additional cell types present in the normal or cancerous human breast. The 3D co-culture models more accurately mimic structural and functional changes in breast architecture that accompany the transition of DCIS to IDC. Mechanistic studies of the dynamic and temporal changes associated with this transition are facilitated by adapting the in vitro models to engineered microfluidic platforms. Ultimately, the goal is to create in vitro models that can serve as a reproducible preclinical screen for testing therapeutic strategies that will reduce progression of DCIS to IDC. This review will discuss the in vitro models that are currently available, as well as the progress that has been made using them to understand DCIS pathobiology.
Collapse
MESH Headings
- Breast/pathology
- Breast Neoplasms/drug therapy
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/drug therapy
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Intraductal, Noninfiltrating/drug therapy
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Cell Line, Tumor
- Coculture Techniques/methods
- Drug Screening Assays, Antitumor/methods
- Female
- Humans
- Neoplasm Invasiveness/pathology
- Neoplasm Invasiveness/prevention & control
- Primary Cell Culture/methods
Collapse
Affiliation(s)
- Ethan J Brock
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Kyungmin Ji
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Seema Shah
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Raymond R Mattingly
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Bonnie F Sloane
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Pharmacology, Wayne State University, 540 E. Canfield, Detroit, MI, 48201, USA.
| |
Collapse
|
14
|
Furth PA. Peroxisome proliferator-activated receptor gamma and BRCA1. Endocr Relat Cancer 2019; 26:R73-R79. [PMID: 30444720 PMCID: PMC6494719 DOI: 10.1530/erc-18-0449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 01/02/2023]
Abstract
Peroxisome proliferator-activated receptor gamma agonists have been proposed as breast cancer preventives. Individuals who carry a mutated copy of BRCA1, DNA repair-associated gene, are at increased risk for development of breast cancer. Published data in the field suggest there could be interactions between peroxisome proliferator-activated receptor gamma and BRCA1 that could influence the activity of peroxisome proliferator-activated receptor gamma agonists for prevention. This review explores these possible interactions between peroxisome proliferator-activated receptor gamma, peroxisome proliferator-activated receptor gamma agonists and BRCA1 and discusses feasible experimental directions to provide more definitive information on the potential connections.
Collapse
Affiliation(s)
- Priscilla A Furth
- Departments of Oncology and Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| |
Collapse
|
15
|
Alothman SJ, Wang W, Chao S, Kallakury BV, Díaz-Cruz ES, Furth PA. Differential efatutazone's impact on mammary neoplasia dependent upon Brca1 dose. Endocr Relat Cancer 2018; 25:L53-L57. [PMID: 30400020 PMCID: PMC6944742 DOI: 10.1530/erc-18-0299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/12/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Sahar J Alothman
- Graduate School of Arts and Science, Georgetown University, Washington, District of Columbia, USA
- Department of Oncology, Georgetown University, Washington, District of Columbia, USA
| | - Weisheng Wang
- Department of Oncology, Georgetown University, Washington, District of Columbia, USA
| | - Shan Chao
- Graduate School of Arts and Science, Georgetown University, Washington, District of Columbia, USA
- Department of Oncology, Georgetown University, Washington, District of Columbia, USA
| | - Bhaskar V Kallakury
- Department of Pathology, Georgetown University, Washington, District of Columbia, USA
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | - Edgar S Díaz-Cruz
- Department of Oncology, Georgetown University, Washington, District of Columbia, USA
- College of Pharmacy, Belmont University, Nashville, Tennessee, USA
| | - Priscilla A Furth
- Department of Oncology, Georgetown University, Washington, District of Columbia, USA
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
- Department of Medicine, Georgetown University, Washington, District of Columbia, USA
| |
Collapse
|
16
|
Abstract
INTRODUCTION Adipocytes, which represent a substantial part of the tumor microenvironment in breast cancer, secrete several adipokines that affect tumorigenesis, cancer progression, metastasis, and treatment resistance via multiple signaling pathways. Areas covered: In this review, we focus on the role of leptin, adiponectin, autotaxin, and interleukin-6 in breast cancer initiation, progression, metastasis, and drug response. Furthermore, we investigated adipokines as potential targets of breast cancer-specific drugs. Expert opinion: Adipokines and adipokine receptors are deregulated in breast cancer. Adipokines play various roles in breast cancer initiation, progression, metastasis, and drug response, hence, adipokine signaling could be an effective drug target. Several clinical trials are in progress to test the efficacy of adipokine targeting agents. However, adipokines also affect metabolic homeostasis; hence, the adverse effects of the targeted drug should be investigated and addressed.
Collapse
Affiliation(s)
- Yoon Jin Cha
- a Department of Pathology , Yonsei University College of Medicine, Severance Hospital , Seoul , South Korea
| | - Ja Seung Koo
- a Department of Pathology , Yonsei University College of Medicine, Severance Hospital , Seoul , South Korea
| |
Collapse
|