1
|
Qiu X, Liu P, Lin H, Peng Z, Sun X, Dong G, Han Y, Huang Z. Pan-cancer analysis and experimental verification of cytochrome B561 as a prognostic and therapeutic biomarker in breast cancer. Discov Oncol 2025; 16:330. [PMID: 40091073 PMCID: PMC11911281 DOI: 10.1007/s12672-025-02094-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 03/07/2025] [Indexed: 03/19/2025] Open
Abstract
OBJECTIVE This study investigates Cytochrome B561 (CYB561) expression in Pan-Cancer, its relationship with immune invasion, and its prognostic value in Breast Cancer (BRCA) patients. METHODS Data from The Cancer Genome Atlas (TCGA) were analyzed. CYB561 expression in normal and tumor tissues was examined, with correlations to immune invasion, mutation, and immune checkpoints. Wilcoxon rank-sum test assessed expression differences. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted. Logistic regression, Kaplan-Meier, and Cox regression analyses evaluated clinicopathological features and survival outcomes. A Cox multivariate analysis-based Nomogram predicted CYB561's prognostic impact. CYB561 knockout in breast cancer cells assessed functional effects. Single-cell RNA sequencing identified prognostic biomarkers. RESULTS CYB561 was highly expressed in most tumors. BRCA showed the highest correlation with ESTIMATE scores and significant negative correlation with immune checkpoints. High CYB561 expression correlated with specific clinicopathological features and survival outcomes. The nomogram predicted BRCA prognosis. CYB561 knockout inhibited breast cancer cell proliferation. Seven predictive agents for CYB561 inhibition were identified. CONCLUSIONS CYB561 exhibits aberrant expression in tumors, particularly in BRCA, and serves as a predictive marker for immune-related therapies and a prognostic indicator in BRCA.
Collapse
Affiliation(s)
- Xiaoting Qiu
- Department of Breast Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Peizhang Liu
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China
| | - Hongxiang Lin
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China
| | - Zeyi Peng
- Massachusetts College Of Pharmacy And Health Sciences, Boston, MA, 02115, USA
| | - Xinhao Sun
- College of Science, Northeastern University, Boston, MA, 02115, USA
| | - Guanting Dong
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China
| | - Yuanyuan Han
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650000, China.
| | - Zhijian Huang
- Department of Breast Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China.
| |
Collapse
|
2
|
Tao Y, Wang Q, Guo S, Liu J, Cao Y. m6A related metabolic genes in breast cancer and their relationship with prognosis. Int Immunopharmacol 2025; 148:114121. [PMID: 39889412 DOI: 10.1016/j.intimp.2025.114121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 01/12/2025] [Accepted: 01/16/2025] [Indexed: 02/03/2025]
Abstract
Breast cancer (BC) is the most prevalent malignancy among women, with incidence rates rising annually. N6-methyladenosine (m6A) modification has been recognized as a key regulator in the onset and progression of BC. Nevertheless, the role of m6A-associated metabolic genes (mMGs) in BC regulation remains insufficiently understood. In this study, we first analyzed and clustered single-cell transcriptomic (scRNA-seq) data from the peripheral blood of BC patients. Differentially expressed genes (DEGs) across various cell populations were intersected with mMGs to identify differentially expressed mMGs (DEmMGs). The AUCell algorithm was employed to score DEmMGs across cell populations, followed by subgroup clustering of high-scoring cell types. Additionally, DEGs from BC and control transcriptomic (RNA-seq) data in The Cancer Genome Atlas (TCGA) were intersected with DEmMGs. BC subtypes were identified based on the expression levels of overlapping genes, and differences in survival rates and immune microenvironment characteristics were examined across subtypes. A BC risk model was constructed using Lasso-Cox regression, and variations in prognosis, tumor mutational burden, immune cell infiltration, and drug sensitivity were explored. Finally, real-time quantitative PCR (qRT-PCR) and Western blot (WB) were used to validate the identified prognostic genes. NDUFAB1, VDAC1, TYMP, UGDH, ATP6AP1, and ALDH2 showed consistent and significant expression differences between the BC and control groups. This study's identification of key prognostic genes and the development of a risk model offer potential new targets for therapeutic intervention and clinical management of BC.
Collapse
Affiliation(s)
- Yong Tao
- Department of Colorectal Surgery, The First Affiliated Hospital of Ningbo University Ningbo Zhejiang China
| | - Qin Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Ningbo University Ningbo Zhejiang China
| | - Shenchao Guo
- Department of Colorectal Surgery, The First Affiliated Hospital of Ningbo University Ningbo Zhejiang China
| | - Jiang Liu
- Department of Colorectal Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China.
| | - Yuepeng Cao
- Department of Colorectal Surgery, The First Affiliated Hospital of Ningbo University Ningbo Zhejiang China.
| |
Collapse
|
3
|
Wang X, Bao S, Jiang M, Zou X, Yin Y. Clinical, pathological and gene expression profiling of estrogen receptor discordance in breast cancer. Clin Transl Oncol 2025; 27:233-256. [PMID: 38926258 DOI: 10.1007/s12094-024-03547-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Breast cancer (BC) is the world's largest tumor species in which hormone receptor-positive patients have relatively good prognosis. However, majority of patients will develop late resistance, one of the important factors is due to the loss of the original estrogen receptor (ER) expression. METHODS We conducted this study in 115 patients with BC who experienced second biopsy at Jiangsu Province Hospital (JSPH) and divided patients into two subgroups ER + to - and ER + to + . First, clinicopathological characteristics between two groups were evaluated. Second, we explored candidate genes related to BC ER intratumor heterogeneity by applying next-generation sequencing (NGS) in 42 patients. Multi-omics integrative analysis of tumor transcriptomic, cancer-related pathway, diagnostic and prognostic value and immune profile were conducted. Besides, preliminary assay were also used to evaluate the correlation between KMT2C and ERα (ESR1) expression. The CCK-8, 5-Ethynyl-2'-deoxyuridine (EdU) assays, Transwell assays and the wound scratch tests were applied to explore the cellular interactions between KMT2C and BC. RESULTS We find the histological type (p = 0.008) and disease-free survival (DFS) (p = 0.004) were significantly different in two subgroups. In Cox survival analysis, metastasis (Hazard ratio (HR) > 1, p = 0.007) and neo-adjuvant (HR < 1, p < 0.001) are independent prognostic factors of DFS. Besides, by analyzing NGS results, we found four genes KMT2C, FGFR19, FGF1 and FGF4 were highly mutated genes in ER + to - subgroup. Furthermore, the gene KMT2C displayed significant diagnostic value and prognostic value in BC and pan-cancer. In addition, a positive correlation between KMT2C expression and immune infiltrating levels of T cell CD4 + , macrophage and neutrophil was found. In the end, Western blot and RT-qPCR assay were used and found KMT2C and ERα (ESR1) expressions are strongly positive correlated in mRNA and protein level. Inhibition of KMT2C significantly reduced proliferation, invasion, and migration of MCF7 cells. CONCLUSION People in two cohorts from JSPH presented different clinical characteristics and prognosis. The gene KMT2C may affect the progression of BC by regulating the molecular, epigenetic activity and immune infiltration. It may also serve as a novel prognostic biomarker for BC patients who underwent ER status converted from positive to negative.
Collapse
Affiliation(s)
- Xi Wang
- Department of Radiotherapy, Affiliated Hospital 2 of Nantong University (Nantong First People's Hospital), Nantong, 226300, Jiangsu, China
| | - Shengnan Bao
- Department of Oncology, Tumor Hospital Affiliated to Nantong University, Nantong, 226300, Jiangsu, China
| | - Mengping Jiang
- Department of Radiotherapy, Affiliated Hospital 2 of Nantong University (Nantong First People's Hospital), Nantong, 226300, Jiangsu, China
| | - Xian Zou
- Clinical Medicine, School of Medicine, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
4
|
Miao H, Wang L, Gong F, Duan L, Wang L, Yao Y, Feng M, Deng K, Wang R, Xiao Y, Ling Q, Zhu H, Lu L. A long-term prognosis study of human USP8-mutated ACTH-secreting pituitary neuroendocrine tumours. Clin Endocrinol (Oxf) 2024; 101:32-41. [PMID: 38691659 DOI: 10.1111/cen.15065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 03/29/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024]
Abstract
OBJECTIVE Somatic variants in the ubiquitin-specific protease 8 (USP8) gene are the most common genetic cause of Cushing disease. We aimed to explore the relationship between clinical outcomes and USP8 status in a single centre. DESIGN, PATIENTS AND MEASUREMENTS We investigated the USP8 status in 48 patients with pituitary corticotroph tumours. A median of 62 months of follow-up was conducted after surgery from November 2013 to January 2015. The clinical, biochemical and imaging features were collected and analysed. RESULTS Seven USP8 variants (p.Ser718Pro, p.Ser719del, p.Pro720Arg, p.Pro720Gln, p.Ser718del, p.Ser718Phe, p.Lys713Arg) were identified in 24 patients (50%). USP8 variants showed a female predominance (100% vs. 75% in wild type [WT], p = .022). Patients with p.Ser719del showed an older age at surgery compared to patients with the p.Pro720Arg variant (47- vs. 24-year-olds, p = .033). Patients with p.Pro720Arg showed a higher rate of macroadenoma compared to patients harbouring the p.Ser718Pro variant (60% vs. 0%, p = .037). No significant differences were observed in serum and urinary cortisol and adrenocorticotropin hormone (ACTH) levels. Immediate surgical remission (79% vs. 75%) and long-term hormone remission (79% vs. 67%) were not significantly different between the two groups. The recurrence rate was 21% (4/19) in patients harbouring USP8 variants and 13% (2/16) in WT patients. Recurrence-free survival presented a tendency to be shorter in USP8-mutated individuals (76.7 vs. 109.2 months, p = .068). CONCLUSIONS Somatic USP8 variants accounted for 50% of the genetic causes in this cohort with a significant female frequency. A long-term follow-up revealed a tendency toward shorter recurrence-free survival in USP8-mutant patients.
Collapse
Affiliation(s)
- Hui Miao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Luo Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Translational Medicine Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Translational Medicine Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lian Duan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Translational Medicine Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Translational Medicine Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yong Yao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Feng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kan Deng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Xiao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing Ling
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Translational Medicine Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lin Lu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Translational Medicine Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Tinsley E, Bredin P, Toomey S, Hennessy BT, Furney SJ. KMT2C and KMT2D aberrations in breast cancer. Trends Cancer 2024; 10:519-530. [PMID: 38453563 DOI: 10.1016/j.trecan.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
KMT2C and KMT2D are histone lysine methyltransferases responsible for the monomethylation of histone 3 lysine 4 (H3K4) residues at gene enhancer sites. KMT2C/D are the most frequently mutated histone methyltransferases (HMTs) in breast cancer, occurring at frequencies of 10-20% collectively. Frequent damaging and truncating somatic mutations indicate a tumour-suppressive role of KMT2C/D in breast oncogenesis. Recent studies using cell lines and mouse models to replicate KMT2C/D loss show that these genes contribute to oestrogen receptor (ER)-driven transcription in ER+ breast cancers through the priming of gene enhancer regions. This review provides an overview of the functions of KMT2C/D and outlines the recent clinical and experimental evidence of the roles of KMT2C and KMT2D in breast cancer development.
Collapse
Affiliation(s)
- Emily Tinsley
- Genomic Oncology Research Group, Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Philip Bredin
- Medical Oncology Group, Department of Molecular Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Sinead Toomey
- Medical Oncology Group, Department of Molecular Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Bryan T Hennessy
- Medical Oncology Group, Department of Molecular Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Department of Medical Oncology, Beaumont Hospital, Dublin, Ireland.
| | - Simon J Furney
- Genomic Oncology Research Group, Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
| |
Collapse
|
6
|
Coelho KBCA, Squire JA, Duarte KG, Sares CTG, Moreda NA, Pereira JL, da Silva IT, Defelicibus A, Aoki MN, Rivas JDL, Dos Reis RB, Zanette DL. Germline variants in early and late-onset Brazilian prostate cancer patients. Urol Oncol 2024; 42:68.e11-68.e19. [PMID: 38311546 DOI: 10.1016/j.urolonc.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND The median age for Prostate Cancer (PCa) diagnosis is 66 years, but 10% are diagnosed before 55 years. Studies on early-onset PCa remain both limited and controversial. This investigation sought to identify and characterize germline variants within Brazilian PCa patients classified as either early or later onset disease. METHODS Peripheral blood DNA from 71 PCa patients: 18 younger (≤ 55 years) and 53 older (≥ 60 years) was used for Targeted DNA sequencing of 20 genes linked to DNA damage response, transcriptional regulation, cell cycle, and epigenetic control. Subsequent genetic variant identification was performed and variant functional impacts were analyzed with in silico prediction. RESULTS A higher frequency of variants in the BRCA2 and KMT2C genes across both age groups. KMT2C has been linked to the epigenetic dysregulation observed during disease progression in PCa. We present the first instance of KMT2C mutation within the blood of Brazilian PCa patients. Furthermore, out of the recognized variants within the KMT2C gene, 7 were designated as deleterious. Thirteen deleterious variants were exclusively detected in the younger group, while the older group exhibited 37 variants. Within these findings, 4 novel variants emerged, including 1 designated as pathogenic. CONCLUSIONS Our findings contribute to a deeper understanding of the genetic factors associated with PCa susceptibility in different age groups, especially among the Brazilian population. This is the first investigation to explore germline variants specifically in younger Brazilian PCa patients, with high relevance given the genetic diversity of the population in Brazil. Additionally, our work presents evidence of functionally deleterious germline variants within the KMT2C gene among Brazilian PCa patients. The identification of novel and functionally significant variants in the KMT2C gene emphasizes its potential role in PCa development and warrants further investigation.
Collapse
Affiliation(s)
| | - Jeremy A Squire
- Surgery and Anatomy Department, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil; Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Kelly Gomes Duarte
- Surgery and Anatomy Department, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Cláudia Tarcila Gomes Sares
- Surgery and Anatomy Department, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Natalia Alonso Moreda
- Cancer Research Center (CiC-IBMCC, CSIC/USAL), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), Salamanca, Spain
| | | | - Israel Tojal da Silva
- Laboratory of Computational Biology and Bioinformatics, CIPE/A.C. Camargo Cancer Center, São Paul, Brazil
| | - Alexandre Defelicibus
- Laboratory of Computational Biology and Bioinformatics, CIPE/A.C. Camargo Cancer Center, São Paul, Brazil
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Javier De Las Rivas
- Cancer Research Center (CiC-IBMCC, CSIC/USAL), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), Salamanca, Spain
| | - Rodolfo Borges Dos Reis
- Surgery and Anatomy Department, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Dalila Lucíola Zanette
- Surgery and Anatomy Department, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil; Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil.
| |
Collapse
|
7
|
Hamza A, Masliah-Planchon J, Neuzillet C, Lefèvre JH, Svrcek M, Vacher S, Bourneix C, Delaye M, Goéré D, Dartigues P, Samalin E, Hilmi M, Lazartigues J, Girard E, Emile JF, Rigault E, Dangles-Marie V, Rioux-Leclercq N, de la Fouchardière C, Tougeron D, Casadei-Gardini A, Mariani P, Peschaud F, Cacheux W, Lièvre A, Bièche I. Pathogenic alterations in PIK3CA and KMT2C are frequent and independent prognostic factors in anal squamous cell carcinoma treated with salvage abdominoperineal resection. Int J Cancer 2024; 154:504-515. [PMID: 37908048 DOI: 10.1002/ijc.34781] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/26/2023] [Accepted: 09/21/2023] [Indexed: 11/02/2023]
Abstract
The management of anal squamous cell carcinoma (ASCC) has yet to experience the transformative impact of precision medicine. Conducting genomic analyses may uncover novel prognostic biomarkers and offer potential directions for the development of targeted therapies. To that end, we assessed the prognostic and theragnostic implications of pathogenic variants identified in 571 cancer-related genes from surgical samples collected from a homogeneous, multicentric French cohort of 158 ASCC patients who underwent abdominoperineal resection treatment. Alterations in PI3K/AKT/mTOR, chromatin remodeling, and Notch pathways were frequent in HPV-positive tumors, while HPV-negative tumors often harbored variants in cell cycle regulation and genome integrity maintenance genes (e.g., frequent TP53 and TERT promoter mutations). In patients with HPV-positive tumors, KMT2C and PIK3CA exon 9/20 pathogenic variants were associated with worse overall survival in multivariate analysis (Hazard ratio (HR)KMT2C = 2.54, 95%CI = [1.25,5.17], P value = .010; HRPIK3CA = 2.43, 95%CI = [1.3,4.56], P value = .006). Alterations with theragnostic value in another cancer type was detected in 43% of patients. These results suggest that PIK3CA and KMT2C pathogenic variants are independent prognostic factors in patients with ASCC with HPV-positive tumors treated by abdominoperineal resection. And, importantly, the high prevalence of alterations bearing potential theragnostic value strongly supports the use of genomic profiling to allow patient enrollment in precision medicine clinical trials.
Collapse
Affiliation(s)
- Abderaouf Hamza
- Department of Genetics, Institut Curie, PSL Research University, Paris, France
| | | | - Cindy Neuzillet
- Department of Medical Oncology, Institut Curie, PSL Research University, Saint-Cloud, France
| | - Jérémie H Lefèvre
- Department of Digestive Surgery, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Hôpital Saint Antoine, Paris, France
| | - Magali Svrcek
- Department of Pathology, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, France
| | - Sophie Vacher
- Department of Genetics, Institut Curie, PSL Research University, Paris, France
| | - Christine Bourneix
- Department of Genetics, Institut Curie, PSL Research University, Paris, France
| | - Matthieu Delaye
- Department of Medical Oncology, Institut Curie, PSL Research University, Saint-Cloud, France
| | - Diane Goéré
- Department of Digestive Surgery, Gustave Roussy Institute, Villejuif, France
| | - Peggy Dartigues
- Department of Pathology, Gustave Roussy Institute, Villejuif, France
| | - Emmanuelle Samalin
- Department of Medical Oncology, Institut du Cancer de Montpellier, Montpellier, France
| | - Marc Hilmi
- Department of Medical Oncology, Institut Curie, PSL Research University, Saint-Cloud, France
| | - Julien Lazartigues
- Department of Medical Oncology, Institut Curie, PSL Research University, Saint-Cloud, France
| | - Elodie Girard
- INSERM U900 Research Unit, Institut Curie, PSL Research University, Paris, France
| | - Jean-François Emile
- Department of Pathology, Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, UVSQ, BECCOH, Hôpital Ambroise-Paré, Boulogne-Billancourt, France
| | - Eugénie Rigault
- Department of Gastroenterology, Rennes University Hospital, Rennes, France
| | - Virginie Dangles-Marie
- Laboratory of preclinical investigation, Translational Research Department, Institut Curie, PSL Research University, Paris, France
- Faculty of Pharmaceutical and Biological Sciences, Paris Cité University, Paris, France
| | | | | | - David Tougeron
- Department of Gastroenterology and Hepatology, Poitiers University Hospital, Poitiers, France
| | - Andrea Casadei-Gardini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Pascale Mariani
- Department of Surgery, Institut Curie, PSL Research University, Paris, France
| | - Frédérique Peschaud
- Department of Digestive and Oncologic Surgery, Ambroise Paré Hospital, Versailles Saint-Quentin University, Paris Saclay University, Boulogne-Billancourt, France
| | - Wulfran Cacheux
- Department of Medical Oncology, Hôpital Privé Pays de Savoie, Annemasse, France
| | - Astrid Lièvre
- Department of Gastroenterology, Rennes University Hospital, Rennes, France
- Rennes 1 University, Inserm U1242, COSS (Chemistry Oncogenesis Stress Signaling), Rennes, France
| | - Ivan Bièche
- Department of Genetics, Institut Curie, PSL Research University, Paris, France
- Faculty of Pharmaceutical and Biological Sciences, Paris Cité University, INSERM U1016, Paris, France
| |
Collapse
|
8
|
Xiong M, Wang X, Liu D, Xiu B, Zhang Q, Chi W, Goh CW, Zhang L, Chen M, Ren H, Shao Z, Yang B, Wu J. Somatic mutations in a multigene panel and impact on prognosis based on TP53 status in Chinese HER2-positive patients undergoing neoadjuvant therapy: A single-institution retrospective cohort. Cancer Med 2024; 13:e6955. [PMID: 38379328 PMCID: PMC10832311 DOI: 10.1002/cam4.6955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/27/2023] [Accepted: 01/10/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Gene mutations play a crucial role in the occurrence and development of tumors, particularly in breast cancer (BC). Neoadjuvant therapy (NAT) has shown greater clinical benefit in HER2-positive breast cancer. However, further clinical investigation is needed to fully understand the correlation between genetic mutations and NAT efficacy and the long-term prognosis in HER2-positive BC. METHODS This was a retrospective cohort study of 222 patients receiving NAT between 2017 and 2021 in the Department of Breast Surgery of Fudan University Shanghai Cancer Center. Tumor samples from these patients were subjected to Next Generation Sequencing (NGS) to analyze mutations in 513 cancer-related genes. This study aimed to investigate the association between these genetic mutations and postoperative pathological complete response (pCR), as well as their impact on disease-free survival (DFS). RESULTS In total, 48.65% patients reached pCR, ER-negative status (p < 0.001), PR-negative status (p < 0.001), Ki67 ≥ 20 (p = 0.011), and dual-targeted therapy (p < 0.001) were all associated with enhanced pCR rates. The frequency of somatic alterations in TP53 (60%), PIK3CA (15%), and ERBB2 (11%) was highest. In the HER2+/HR- cohort, patients who achieved pCR had a significant benefit in prognosis (HR = 3.049, p = 0.0498). KMT2C (p = 0.036) and TP53 (p = 0.037) mutations were significantly increased in patients with DFS events. Moreover, TP53 mutations had prognostic significance in HER2-positive BC patients with HR-negative (HR = 3.712, p = 0.027) and pCR (HR = 6.253, p = 0.027) status and who received herceptin-only targeted therapy (HR = 4.145, p = 0.011). CONCLUSIONS The genetic mutation profiles of Chinese HER2+ patients who received NAT were discrepant with respect to HR status or DFS events. TP53 mutations have significant prognostic value in patients with NAT for HER2-positive BC and patients benefit differently depending on HR status, the neoadjuvant regimen and response, which highlights the significance of genetic factors in treatment customization based on individual genetic and clinical characteristics.
Collapse
Affiliation(s)
- Min Xiong
- Department of Breast Surgery, Key Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghaiChina
| | - Xuliren Wang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghaiChina
| | - Douwaner Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghaiChina
| | - Bingqiu Xiu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghaiChina
| | - Qi Zhang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghaiChina
| | - Weiru Chi
- Department of Breast Surgery, Key Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghaiChina
| | - Chih Wan Goh
- Department of Breast Surgery, Key Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghaiChina
| | - Liyi Zhang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghaiChina
| | - Ming Chen
- Department of Breast Surgery, Key Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghaiChina
| | - Hengyu Ren
- Department of Breast Surgery, Key Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghaiChina
| | - Zhi‐Ming Shao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghaiChina
| | - Benlong Yang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghaiChina
| | - Jiong Wu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghaiChina
- Collaborative Innovation Center for Cancer MedicineShanghaiChina
| |
Collapse
|
9
|
Wu W, Yao S, Huang J, Qing J, Shi Q, Huang J, Qiu X, Zhuang Y. The Expression of ZNF268 and Its Role in The Cisplatin-based Chemoresistance of Breast Cancer. Heliyon 2023; 9:e18779. [PMID: 37664731 PMCID: PMC10469720 DOI: 10.1016/j.heliyon.2023.e18779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
Objective Breast cancer is one of the most prevalent cancers in females worldwide and is one of the leading causes of cancer death and disability in women. Multiple therapies have been applied to breast cancer treatment; however, the long-term survival rate remains low. Although cisplatin has been widely utilized for cancer therapy, chemoresistance still influences the outcome. Methods After collecting the breast cancer cell line MDA-MB-231 treated with or without cisplatin and sample information from The Cancer Genome Atlas Program (TCGA), we screened out their common parameters and influences on the prognoses of patients' potential targets. Surgical excisional tissue sections of patients with breast cancer who were admitted and treated in the Department of Breast and Thyroid Surgery, Liuzhou People's Hospital from 2017 to 2020 was collected and follow up. After a series of assays combined with clinical information, we tested the reliability of the target. Results We found that a high expression level of ZNF268 in breast cancer cell lines significantly enhances the sensitivity to cisplatin, contrary to the effects of low expression. Furthermore, a significantly worse prognosis was observed in patients with a high expression of ZNF268 after cisplatin chemotherapy. Conclusion The expression level of ZNF268 in breast cancer patients after cisplatin chemotherapy may become a potential target to predict the chemoresistance of patients to cisplatin. This study provides a novel idea for improving breast cancer treatment and survival rates.
Collapse
Affiliation(s)
- Weilu Wu
- Department of Breast and Thyroid Surgery, Liuzhou People's Hospital, Guangxi, China
| | - Shucong Yao
- Department of Oral and Maxillofacial Surgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiapeng Huang
- Department of Breast and Thyroid Surgery, Liuzhou People's Hospital, Guangxi, China
| | - Jialin Qing
- Department of Breast and Thyroid Surgery, Liuzhou People's Hospital, Guangxi, China
| | - Qingmei Shi
- Department of Breast and Thyroid Surgery, Liuzhou People's Hospital, Guangxi, China
| | - Jianping Huang
- Department of Breast and Thyroid Surgery, Liuzhou People's Hospital, Guangxi, China
| | - Xingsheng Qiu
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yaqiang Zhuang
- Department of Breast and Thyroid Surgery, Liuzhou People's Hospital, Guangxi, China
| |
Collapse
|
10
|
Desette A, Guichet PO, Emambux S, Masliantsev K, Cortes U, Ndiaye B, Milin S, George S, Faigner M, Tisserand J, Gaillard A, Brot S, Wager M, Tougeron D, Karayan-Tapon L. Deciphering Brain Metastasis Stem Cell Properties From Colorectal Cancer Highlights Specific Stemness Signature and Shared Molecular Features. Cell Mol Gastroenterol Hepatol 2023; 16:757-782. [PMID: 37482243 PMCID: PMC10520365 DOI: 10.1016/j.jcmgh.2023.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND & AIMS Brain metastases (BMs) from colorectal cancer (CRC) are associated with significant morbidity and mortality, with chemoresistance and short overall survival. Migrating cancer stem cells with the ability to initiate BM have been described in breast and lung cancers. In this study, we describe the identification and characterization of cancer stem cells in BM from CRC. METHODS Four brain metastasis stem cell lines from patients with colorectal cancer (BM-SC-CRC1 to BM-SC-CRC4) were obtained by mechanical dissociation of patient's tumors and selection of cancer stem cells by appropriate culture conditions. BM-SC-CRCs were characterized in vitro by clonogenic and limiting-dilution assays, as well as immunofluorescence and Western blot analyses. In ovo, a chicken chorioallantoic membrane (CAM) model and in vivo, xenograft experiments using BALB/c-nude mice were realized. Finally, a whole exome and RNA sequencing analyses were performed. RESULTS BM-SC-CRC formed metaspheres and contained tumor-initiating cells with self-renewal properties. They expressed stem cell surface markers (CD44v6, CD44, and EpCAM) in serum-free medium and CRC markers (CK19, CK20 and CDX-2) in fetal bovine serum-enriched medium. The CAM model demonstrated their invasive and migratory capabilities. Moreover, mice intracranial xenotransplantation of BM-SC-CRCs adequately recapitulated the original patient BM phenotype. Finally, transcriptomic and genomic approaches showed a significant enrichment of invasiveness and specific stemness signatures and highlighted KMT2C as a potential candidate gene to potentially identify high-risk CRC patients. CONCLUSIONS This original study represents the first step in CRC BM initiation and progression comprehension, and further investigation could open the way to new therapeutics avenues to improve patient prognosis.
Collapse
Affiliation(s)
- Amandine Desette
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France.
| | - Pierre-Olivier Guichet
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France
| | - Sheik Emambux
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Service d'oncologie médicale, CHU de Poitiers, Poitiers, France
| | - Konstantin Masliantsev
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France
| | - Ulrich Cortes
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France
| | - Birama Ndiaye
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France
| | - Serge Milin
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Service d'Anatomie et de Cytologie Pathologiques, CHU de Poitiers, Poitiers, France
| | - Simon George
- MGX-Montpellier GenomiX, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Mathieu Faigner
- Service d'oncologie médicale, CHU de Poitiers, Poitiers, France
| | | | - Afsaneh Gaillard
- Université de Poitiers, CHU de Poitiers, INSERM, LNEC, Poitiers, France
| | - Sébastien Brot
- Université de Poitiers, CHU de Poitiers, INSERM, LNEC, Poitiers, France
| | - Michel Wager
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Service de Neurochirurgie, CHU de Poitiers, Poitiers, France
| | - David Tougeron
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Service d'hépato-gastro-entérologie, CHU de Poitiers, Poitiers, France
| | - Lucie Karayan-Tapon
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France
| |
Collapse
|
11
|
Miyashita M, Bell JSK, Wenric S, Karaesmen E, Rhead B, Kase M, Kaneva K, De La Vega FM, Zheng Y, Yoshimatsu TF, Khramtsova G, Liu F, Zhao F, Howard FM, Nanda R, Beaubier N, White KP, Huo D, Olopade OI. Molecular profiling of a real-world breast cancer cohort with genetically inferred ancestries reveals actionable tumor biology differences between European ancestry and African ancestry patient populations. Breast Cancer Res 2023; 25:58. [PMID: 37231433 DOI: 10.1186/s13058-023-01627-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/27/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Endocrine-resistant HR+/HER2- breast cancer (BC) and triple-negative BC (TNBC) are of interest for molecularly informed treatment due to their aggressive natures and limited treatment profiles. Patients of African Ancestry (AA) experience higher rates of TNBC and mortality than European Ancestry (EA) patients, despite lower overall BC incidence. Here, we compare the molecular landscapes of AA and EA patients with HR+/HER2- BC and TNBC in a real-world cohort to promote equity in precision oncology by illuminating the heterogeneity of potentially druggable genomic and transcriptomic pathways. METHODS De-identified records from patients with TNBC or HR+/HER2- BC in the Tempus Database were randomly selected (N = 5000), with most having stage IV disease. Mutations, gene expression, and transcriptional signatures were evaluated from next-generation sequencing data. Genetic ancestry was estimated from DNA-seq. Differences in mutational prevalence, gene expression, and transcriptional signatures between AA and EA were compared. EA patients were used as the reference population for log fold-changes (logFC) in expression. RESULTS After applying inclusion criteria, 3433 samples were evaluated (n = 623 AA and n = 2810 EA). Observed patterns of dysregulated pathways demonstrated significant heterogeneity among the two groups. Notably, PIK3CA mutations were significantly lower in AA HR+/HER2- tumors (AA = 34% vs. EA = 42%, P < 0.05) and the overall cohort (AA = 28% vs. EA = 37%, P = 2.08e-05). Conversely, KMT2C mutation was significantly more frequent in AA than EA TNBC (23% vs. 12%, P < 0.05) and HR+/HER2- (24% vs. 15%, P = 3e-03) tumors. Across all subtypes and stages, over 8000 genes were differentially expressed between the two ancestral groups including RPL10 (logFC = 2.26, P = 1.70e-162), HSPA1A (logFC = - 2.73, P = 2.43e-49), ATRX (logFC = - 1.93, P = 5.89e-83), and NUTM2F (logFC = 2.28, P = 3.22e-196). Ten differentially expressed gene sets were identified among stage IV HR+/HER2- tumors, of which four were considered relevant to BC treatment and were significantly enriched in EA: ERBB2_UP.V1_UP (P = 3.95e-06), LTE2_UP.V1_UP (P = 2.90e-05), HALLMARK_FATTY_ACID_METABOLISM (P = 0.0073), and HALLMARK_ANDROGEN_RESPONSE (P = 0.0074). CONCLUSIONS We observed significant differences in mutational spectra, gene expression, and relevant transcriptional signatures between patients with genetically determined African and European ancestries, particularly within the HR+/HER2- BC and TNBC subtypes. These findings could guide future development of treatment strategies by providing opportunities for biomarker-informed research and, ultimately, clinical decisions for precision oncology care in diverse populations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Fang Liu
- The University of Chicago, Chicago, IL, USA
| | | | | | - Rita Nanda
- The University of Chicago, Chicago, IL, USA
| | | | - Kevin P White
- Tempus Inc, Chicago, IL, USA
- National University Singapore, Queenstown, Singapore
| | | | | |
Collapse
|
12
|
Activated Mast Cells Combined with NRF2 Predict Prognosis for Esophageal Cancer. JOURNAL OF ONCOLOGY 2023; 2023:4211885. [PMID: 36644231 PMCID: PMC9833916 DOI: 10.1155/2023/4211885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023]
Abstract
Background Esophageal cancer (EC) had the sixth-highest mortality rate of all cancers due to its poor prognosis. Immune cells and mutation genes influenced the prognosis of EC, but their combined effect on predicting EC prognosis was unknown. In this study, we comprehensively analyzed the immune cell infiltration (ICI) and mutation genes and their combined effects for predicting prognosis in EC. Methods The CIBERSORT and ESTIMATE algorithms were used to analyse the ICI scape based on the TCGA and GEO databases. EC tissues and pathologic sections from Huai'an, China, were used to verify the key immune cells and mutation genes and their interactions. Results Stromal/immune score patterns and ICI/gene had no statistical significance in overall survival (OS) (p > 0.05). The combination of ICI and tumor mutation burden (TMB) showed that the high TMB and high ICI score group had the shortest OS (p = 0.004). We recognized that the key mutation gene NRF2 was significantly different in the high/low ICI score subgroups (p = 0.002) and positivity with mast cells (MCs) (p < 0.05). Through experimental validation, we found that the MCs and activated mast cells (AC-MCs) were more infiltration in stage II/III (p = 0.032; p = 0.013) of EC patients and that NRF2 expression was upregulated in EC (p = 0.045). AC-MCs combined with NRF2 had a poor prognosis, according to survival analysis (p = 0.056) and interactive analysis (p = 0.032). Conclusions We presume that NRF2 combined with AC-MCs could be a marker to predict prognosis and could influence immunotherapy through regulating PD-L1 in the EC.
Collapse
|
13
|
Shah JB, Pueschl D, Wubbenhorst B, Fan M, Pluta J, D'Andrea K, Hubert AP, Shilan JS, Zhou W, Kraya AA, Llop Guevara A, Ruan C, Serra V, Balmaña J, Feldman M, Morin PJ, Nayak A, Maxwell KN, Domchek SM, Nathanson KL. Analysis of matched primary and recurrent BRCA1/2 mutation-associated tumors identifies recurrence-specific drivers. Nat Commun 2022; 13:6728. [PMID: 36344544 PMCID: PMC9640723 DOI: 10.1038/s41467-022-34523-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/27/2022] [Indexed: 11/09/2022] Open
Abstract
Recurrence is a major cause of death among BRCA1/2 mutation carriers with breast (BrCa) and ovarian cancers (OvCa). Herein we perform multi-omic sequencing on 67 paired primary and recurrent BrCa and OvCa from 27 BRCA1/2 mutation carriers to identify potential recurrence-specific drivers. PARP1 amplifications are identified in recurrences (False Discovery Rate q = 0.05), and PARP1 is significantly overexpressed across primary BrCa and recurrent BrCa and OvCa, independent of amplification status. RNA sequencing analysis finds two BRCA2 isoforms, BRCA2-201/Long and BRCA2-001/Short, respectively predicted to be sensitive and insensitive to nonsense-mediated decay. BRCA2-001/Short is expressed more frequently in recurrences and associated with reduced overall survival in breast cancer (87 vs. 121 months; Hazard Ratio = 2.5 [1.18-5.5]). Loss of heterozygosity (LOH) status is discordant in 25% of patient's primary and recurrent tumors, with switching between both LOH and lack of LOH found. Our study reveals multiple potential drivers of recurrent disease in BRCA1/2 mutation-associated cancer, improving our understanding of tumor evolution and suggesting potential biomarkers.
Collapse
Affiliation(s)
- Jennifer B Shah
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dana Pueschl
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bradley Wubbenhorst
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mengyao Fan
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Pluta
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kurt D'Andrea
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anna P Hubert
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jake S Shilan
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Wenting Zhou
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Adam A Kraya
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alba Llop Guevara
- Experimental Therapeutics Group, Vall d'Hebron Institut d'Oncologia, Barcelona, Spain
| | - Catherine Ruan
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institut d'Oncologia, Barcelona, Spain
| | - Judith Balmaña
- Hereditary Cancer Genetics Group, Vall d'Hebron Institut d'Oncologia, Barcelona, Spain
- Department of Medical Oncology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Michael Feldman
- Division of Surgical Pathology, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Pat J Morin
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anupma Nayak
- Division of Surgical Pathology, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kara N Maxwell
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Basser Center for BRCA, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Susan M Domchek
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Basser Center for BRCA, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Katherine L Nathanson
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Basser Center for BRCA, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
14
|
Zhang Y, He X, Gao H. KMT2C mutation in a Chinese man with primary multidrug-resistant metastatic adenocarcinoma of rete testis: a case report. BMC Urol 2022; 22:123. [PMID: 35945529 PMCID: PMC9361678 DOI: 10.1186/s12894-022-01075-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/26/2022] [Indexed: 11/19/2022] Open
Abstract
Background Adenocarcinoma of the rete testis (AORT) is an extremely rare malignant tumor with poor prognosis and limited responsiveness to traditional chemotherapy. Few previous studies have focused on the molecular mechanisms underlying therapy resistance in AORT and further scrutiny is required to enable searches for targeted drugs to guide treatment selection. Case presentation The current case concerns a 55-year-old man with AORT who presented with isolated bone metastasis at initial diagnosis and experienced rapid disease progression after multi-line platinum-based combination chemotherapy. Next-generation sequencing revealed a novel somatic lysine methyltransferase 2C (KMT2C) c.5605 T > C mutation in exon 36 with an abundance of 49.27%. The patient received antiangiogenic drug treatment for 2 months but this was discontinued due to unacceptable anorexia and nausea. He survived for 12 months after diagnosis. Conclusion A potential correlation between AORT primary multi-drug resistance and KMT2C mutations is implied. Further studies are needed to determine the efficacy of PARP1/2 inhibitors for tumors with KMT2C mutations.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Oncology, General Hospital of Western Theatre Command, No. 270, Tianhui Road, Rongdu Avenue, Jinniu District, Chengdu, 610000, Sichuan, People's Republic of China
| | - Xiaoyan He
- Department of Pathology, General Hospital of Western Theatre Command, Chengdu, Sichuan, People's Republic of China
| | - Hui Gao
- Department of Oncology, General Hospital of Western Theatre Command, No. 270, Tianhui Road, Rongdu Avenue, Jinniu District, Chengdu, 610000, Sichuan, People's Republic of China.
| |
Collapse
|
15
|
Ketavarapu V, Ravikanth V, Sasikala M, Rao GV, Devi CV, Sripadi P, Bethu MS, Amanchy R, Murthy HVV, Pandol SJ, Reddy DN. Integration of metabolites from meta-analysis with transcriptome reveals enhanced SPHK1 in PDAC with a background of pancreatitis. BMC Cancer 2022; 22:792. [PMID: 35854233 PMCID: PMC9295503 DOI: 10.1186/s12885-022-09816-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/22/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Pathophysiology of transformation of inflammatory lesions in chronic pancreatitis (CP) to pancreatic ductal adenocarcinoma (PDAC) is not clear. METHODS We conducted a systematic review, meta-analysis of circulating metabolites, integrated this data with transcriptome analysis of human pancreatic tissues and validated using immunohistochemistry. Our aim was to establish biomarker signatures for early malignant transformation in patients with underlying CP and identify therapeutic targets. RESULTS Analysis of 19 studies revealed AUC of 0.86 (95% CI 0.81-0.91, P < 0.0001) for all the altered metabolites (n = 88). Among them, lipids showed higher differentiating efficacy between PDAC and CP; P-value (< 0.0001). Pathway enrichment analysis identified sphingomyelin metabolism (impact value-0.29, FDR of 0.45) and TCA cycle (impact value-0.18, FDR of 0.06) to be prominent pathways in differentiating PDAC from CP. Mapping circulating metabolites to corresponding genes revealed 517 altered genes. Integration of these genes with transcriptome data of CP and PDAC with a background of CP (PDAC-CP) identified three upregulated genes; PIGC, PPIB, PKM and three downregulated genes; AZGP1, EGLN1, GNMT. Comparison of CP to PDAC-CP and PDAC-CP to PDAC identified upregulation of SPHK1, a known oncogene. CONCLUSIONS Our analysis suggests plausible role for SPHK1 in development of pancreatic adenocarcinoma in long standing CP patients. SPHK1 could be further explored as diagnostic and potential therapeutic target.
Collapse
Affiliation(s)
- Vijayasarathy Ketavarapu
- grid.410866.d0000 0004 1803 177XAsian Healthcare Foundation, Asian Institute of Gastroenterology, Mindspace Rd, Gachibowli, Hyderabad, Telangana 500032 India
| | - Vishnubhotla Ravikanth
- grid.410866.d0000 0004 1803 177XAsian Healthcare Foundation, Asian Institute of Gastroenterology, Mindspace Rd, Gachibowli, Hyderabad, Telangana 500032 India
| | - Mitnala Sasikala
- grid.410866.d0000 0004 1803 177XAsian Healthcare Foundation, Asian Institute of Gastroenterology, Mindspace Rd, Gachibowli, Hyderabad, Telangana 500032 India
| | - G. V. Rao
- grid.410866.d0000 0004 1803 177XAIG Hospitals, Mindspace Rd, Gachibowli, Hyderabad, Telangana 500032 India
| | - Ch. Venkataramana Devi
- grid.412419.b0000 0001 1456 3750Department of Biochemistry, University College of Science, Osmania University, Hyderabad, 500 007 India
| | - Prabhakar Sripadi
- grid.417636.10000 0004 0636 1405Centre for Mass Spectrometry, Analytical & Structural Chemistry Department, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500 007 India
| | - Murali Satyanarayana Bethu
- grid.410865.eDivision of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana 500007 India ,grid.240614.50000 0001 2181 8635Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Elm &Carlton Streets, Buffalo, New York, 14221 USA
| | - Ramars Amanchy
- grid.410865.eDivision of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana 500007 India
| | - H. V. V. Murthy
- grid.410866.d0000 0004 1803 177XAsian Healthcare Foundation, Asian Institute of Gastroenterology, Mindspace Rd, Gachibowli, Hyderabad, Telangana 500032 India
| | - Stephen J. Pandol
- grid.50956.3f0000 0001 2152 9905Department of Medicine, Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA USA
| | - D. Nageshwar Reddy
- grid.410866.d0000 0004 1803 177XAIG Hospitals, Mindspace Rd, Gachibowli, Hyderabad, Telangana 500032 India
| |
Collapse
|