1
|
Righolt CH, Sever E, Mahmud SM. Glycogen synthase kinase-3ß inhibitor use and prostate cancer incidence in Manitoba, Canada: A population-based nested case-control study. Cancer Epidemiol 2025; 95:102740. [PMID: 39813871 DOI: 10.1016/j.canep.2024.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND Little is known on the effect of glycogen synthase kinase-3ß inhibitors (GSK3Is), as a class, on prostate cancer (PC). We aimed to study this in the Canadian province of Manitoba, because mixed results have been reported on the effect of valproate. METHODS We conducted a nested case-control study among cancer-free Manitobans with ≥ 5 years of medical history in which we matched all men 40 years or older diagnosed with PC between 2000 and 2018 (N = 11,189) on period, age, length of available drug information to cancer-free controls (N = 55,728). We used conditional logistic regression to analyze GSK3I use (lithium, valproate, olanzapine, famotidine). We repeated this analysis for bipolar disorder and for epilepsy, the main indications for GSK3I and performed period, dose, and duration analysis. RESULTS Roughly the same proportion of cases and controls were ever-users of GSK3Is (4.0 % vs. 4.5 %). GSK3I use among the general population was associated with a reduced risk of PC (OR=0.81; 95 % CI 0.72-0.91). This effect was seen for both famotidine, 0.87 (0.76-1.00), and olanzapine, 0.72 (0.54-0.96). Valproate appeared to have a protective effect on PC for epilepsy patients (0.35, 0.12-0.99). None of the GSK3Is seem to affect PC risk in bipolar disorder patients. CONCLUSION Possible protection against PC from olanzapine or famotidine is not supported by a period, dose, or duration response and this effect could be due to chance and/or residual confounding. Valproate was possibly associated with a lower risk of PC in epilepsy patients, but a larger analysis would be needed to confirm that this association was not due to chance given the uncertainty in the period, dose, and duration analyses.
Collapse
Affiliation(s)
- Christiaan H Righolt
- Vaccine and Drug Evaluation Centre, Department of Community Health Sciences, University of Manitoba, S108-750 Bannatyne Avenue, Winnipeg, MB R3E 0W2, Canada; College of Pharmacy, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB R3E 0T5, Canada.
| | - Emrah Sever
- Vaccine and Drug Evaluation Centre, Department of Community Health Sciences, University of Manitoba, S108-750 Bannatyne Avenue, Winnipeg, MB R3E 0W2, Canada
| | - Salaheddin M Mahmud
- Vaccine and Drug Evaluation Centre, Department of Community Health Sciences, University of Manitoba, S108-750 Bannatyne Avenue, Winnipeg, MB R3E 0W2, Canada; College of Pharmacy, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB R3E 0T5, Canada
| |
Collapse
|
2
|
Afsordeh N, Pournajaf S, Mirnajafi-Zadeh J, Pourgholami MH. The potential of dibenzazepine carboxamides in cancer therapy. Front Pharmacol 2025; 16:1564911. [PMID: 40223925 PMCID: PMC11985771 DOI: 10.3389/fphar.2025.1564911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/17/2025] [Indexed: 04/15/2025] Open
Abstract
Cancer is a leading cause of mortality worldwide, with most conventional treatments lacking efficacy and having significant challenges like drug resistance. Finding new molecules is quite challenging in terms of cost, time and setbacks. Hence, drug repurposing is considered sensible for skipping the long process of drug development. Dibenzazepine carboxamides, as traditional anticonvulsants, primarily function by blocking voltage-gated sodium channels, which not only mitigate seizures but also influence mood disorders through modulation of serotonin and dopamine. Recent studies have uncovered their anticancer properties, demonstrated by both in vitro and in vivo experiments. This review comprehensively examines dibenzazepine's pharmacodynamics, pharmacokinetics, and clinical applications, focusing on their emerging role in oncology. By highlighting the anticancer mechanisms of action-including apoptosis induction, inhibition of HDAC, Wnt/β-Catenin signaling, and Voltage-gated sodium channels, we suggest further research to fully elucidate their therapeutic potential and application in cancer treatment.
Collapse
|
3
|
Cheng S, McLaughlin JR, Brown MC, Al-Sawaihey H, Rutka J, Bouffet E, Hawkins C, Cairney AE, Ranger A, Fleming AJ, Johnston D, Greenberg M, Malkin D, Hung RJ. Maternal and childhood medical history and the risk of childhood brain tumours: a case-control study in Ontario, Canada. Br J Cancer 2023; 129:318-324. [PMID: 37165200 PMCID: PMC10338441 DOI: 10.1038/s41416-023-02281-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Studies to date have yielded inconclusive results as to whether maternal medical history during pregnancy, and a child's early-life medical history contribute to the development of childhood brain tumours (CBTs). This study examined associations between maternal and childhood medical history and the risk of CBTs. METHODS The Childhood Brain Tumour Epidemiology Study of Ontario (CBREO) examined children 0-15 years of age with newly diagnosed CBTs from 1997 to 2003. Multivariable logistic regression analysis determined associations for prenatal medications and childhood medical history, adjusted for child's demographics, and maternal education. Analyses were stratified by histology. A latency period analysis was conducted using 12- and 24-month lead times. RESULTS Maternal intake of immunosuppressants during the prenatal period was significantly associated with glial tumours (OR 2.73, 95% CI 1.17-6.39). Childhood intake of anti-epileptics was significantly associated with CBTs overall, after accounting for 12-month (OR 8.51, 95% CI 3.35-21.63) and 24-month (OR 6.04, 95% CI 2.06-17.70) lead time before diagnosis. No associations for other medications were found. CONCLUSIONS This study underscores the need to examine potential carcinogenic effects of the medication classes highlighted and of the indication of medication use. Despite possible reverse causality, increased CBT surveillance for children with epilepsy might be warranted.
Collapse
Affiliation(s)
- Sierra Cheng
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - John R McLaughlin
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - M Catherine Brown
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Hamad Al-Sawaihey
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - James Rutka
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Eric Bouffet
- Division of Hematology/Oncology, The Hospital for Sick Children Toronto, Toronto, ON, Canada
| | - Cynthia Hawkins
- Division of Pathology, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Adrianna Ranger
- Children's Hospital, London Health Sciences Centre, London, ON, Canada
| | - Adam J Fleming
- McMaster Children's Hospital, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Donna Johnston
- Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Mark Greenberg
- Division of Hematology/Oncology, The Hospital for Sick Children Toronto, Toronto, ON, Canada
- Pediatric Oncology Group of Ontario, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - David Malkin
- Division of Hematology/Oncology, The Hospital for Sick Children Toronto, Toronto, ON, Canada
- Department of Pediatrics, University of University of Toronto, Toronto, ON, Canada
| | - Rayjean J Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada.
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Use of Antiepileptic Drugs and Risk of Prostate Cancer: A Nationwide Case-Control Study in Prostate Cancer Data Base Sweden. JOURNAL OF ONCOLOGY 2023; 2023:9527920. [PMID: 36844872 PMCID: PMC9946761 DOI: 10.1155/2023/9527920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 02/17/2023]
Abstract
An inverse association between use of antiepileptic drugs (AEDs) and prostate cancer (PCa) has been suggested, putatively due to the histone deacetylases inhibitory (HDACi) properties of the AEDs. In a case-control study in Prostate Cancer data Base Sweden (PCBaSe), PCa cases diagnosed between 2014 and 2016 were matched to five controls by year of birth and county of residence. AED prescriptions were identified in the Prescribed Drug Registry. Odds ratios (ORs) and 95% confidence intervals for risk of PCa were estimated using multivariable conditional logistic regression, adjusted for civil status, education level, Charlson comorbidity index, number of outpatient visits, and cumulative duration of hospital stay. Dose responses in different PCa risk categories and HDACi properties of specific AED substances were further explored. 1738/31591 (5.5%) cases and 9674/156802 (6.2%) controls had been exposed to AED. Overall, users of any AED had a reduced risk of PCa as compared to nonusers (OR: 0.92; 95% CI: 0.87-0.97) which was attenuated by adjustment to healthcare utilisation. A reduced risk was also observed in all models for high-risk or metastatic PCa in AED users compared to nonusers (OR: 0.89; 95% CI: 0.81-0.97). No significant findings were observed for dose response or HDACi analyses. Our findings suggest a weak inverse association between AED use and PCa risk, which was attenuated by adjustment for healthcare utilisation. Moreover, our study showed no consistent dose-response pattern and no support for a stronger reduction related to HDAC inhibition. Further studies focusing on advanced PCa and PCa treatments are needed to better analyse the association between use of AED and risk of PCa.
Collapse
|
5
|
Salminen JK, Mehtola A, Talala K, Taari K, Mäkinen J, Peltola J, Tammela TLJ, Auvinen A, Murtola TJ. Anti-epileptic drugs and prostate cancer-specific mortality compared to non-users of anti-epileptic drugs in the Finnish Randomized Study of Screening for Prostate Cancer. Br J Cancer 2022; 127:704-711. [PMID: 35505251 PMCID: PMC9381528 DOI: 10.1038/s41416-022-01817-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/04/2022] [Accepted: 03/31/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Drugs with histone deacetylase inhibitory (HDACi) properties have shown to decrease prostate cancer (PCa) cell growth in vitro. METHODS A cohort of 9261 PCa cases from the Finnish Randomized Study of Screening for Prostate Cancer (FinRSPC) was used to evaluate prostate cancer-specific mortality in men using anti-epileptic drugs (AEDs). A national subscription database was used to obtain information on medication use. Cox regression with AED use as a time-dependent variable was used to analyse prostate cancer mortality in men using AEDs compared to non-users, and in men using HDACi AEDs compared to users of other AEDs. The analysis was adjusted for age, screening trial arm, PCa risk group, primary treatment of PCa, Charlson co-morbidity score and concomitant use of other drugs. RESULTS The use of AEDs, in general, was associated with an increased risk of PCa death. The use of HDACi AEDs was not significantly associated with decreased PCa mortality compared to use of other AEDs (HR 0.61, 95% CI 0.31-1.23). CONCLUSIONS AED usage is associated with elevated PCa mortality compared to non-users, likely reflecting the differences between men with epilepsy and those without. No benefit was observed from HDACi drugs compared to other AEDs.
Collapse
Affiliation(s)
- Jukka K Salminen
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland.
| | - Aino Mehtola
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
| | | | - Kimmo Taari
- Department of Urology, Helsinki University and Helsinki University Hospital, Helsinki, Finland
| | - Jussi Mäkinen
- Lapland Central Hospital, Department of Neurology, Rovaniemi, Finland
| | - Jukka Peltola
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland.,Tampere University Hospital, Department of Neurology, Tampere, Finland
| | - Teuvo L J Tammela
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland.,Tampere University Hospital, Department of Urology, Tampere, Finland
| | - Anssi Auvinen
- Tampere University, Faculty of Social Sciences, Tampere, Finland
| | - Teemu J Murtola
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland.,Tampere University Hospital, Department of Urology, Tampere, Finland
| |
Collapse
|
6
|
Salminen JK, Kuoppamäki V, Talala K, Taari K, Mäkinen J, Peltola J, Tammela TLJ, Auvinen A, Murtola TJ. Antiepileptic drugs and prostate cancer risk in the Finnish Randomized Study of Screening for Prostate Cancer. Int J Cancer 2021; 149:307-315. [PMID: 33634851 DOI: 10.1002/ijc.33535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022]
Abstract
Antiepileptic drugs (AEDs) with histone deacetylase (HDAC) inhibitor properties decrease prostate cancer (PCa) cell proliferation in vitro. A population-based cohort of 78 615 men was used to evaluate the risk of PCa among users of AEDs. Study population was linked to the Finnish national prescription database to obtain information on individual medication reimbursements in 1996 to 2015. Cox regression with antiepileptic medication use as a time-dependent variable was used to analyze PCa risk overall, and low, medium and high-risk PCa separately. The analysis was adjusted for age, screening trial arm, and other drugs in use, including statins, antidiabetic drugs, antihypertensive drugs, aspirin, and nonsteroidal anti-inflammatory drugs. Compared to the nonusers of AEDs, overall PCa risk was decreased among AED users (hazard ratio [HR] = 0.86, 95% confidence interval [CI] = 0.76-0.96). A similar PCa risk decrease was observed among users of HDACi AEDs (HR = 0.87, 95% CI = 0.76-1.01), but no risk difference was found when comparing HDACi AED users to users of other AEDs (HR = 0.98, 95% CI = 0.76-1.27). Our study showed a decrease in overall PCa risk among men using AEDs compared to nonusers. The risk associations were similar for HDAC inhibitors as for AEDs in general.
Collapse
Affiliation(s)
- Jukka K Salminen
- Faculty of Medicine and Health Technology, University of Tampere, Tampere, Finland
| | - Viivu Kuoppamäki
- Faculty of Medicine and Health Technology, University of Tampere, Tampere, Finland
| | | | - Kimmo Taari
- Department of Urology, Helsinki University and Helsinki University Hospital, Helsinki, Finland
| | - Jussi Mäkinen
- Department of Neurology, Lapland Central Hospital, Rovaniemi, Finland
| | - Jukka Peltola
- Faculty of Medicine and Health Technology, University of Tampere, Tampere, Finland.,Department of Neurology, Tampere University Hospital, Tampere, Finland
| | - Teuvo L J Tammela
- Faculty of Medicine and Health Technology, University of Tampere, Tampere, Finland.,Department of Urology, Tampere University Hospital, Tampere, Finland
| | - Anssi Auvinen
- Faculty of Social Sciences, University of Tampere, Tampere, Finland
| | - Teemu J Murtola
- Faculty of Medicine and Health Technology, University of Tampere, Tampere, Finland.,Department of Urology, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
7
|
Carbamazepine, a Histone Deacetylase Inhibitor Induces Apoptosis in Human Colon Adenocarcinoma Cell Line HT-29. J Gastrointest Cancer 2021; 51:564-570. [PMID: 31407251 DOI: 10.1007/s12029-019-00286-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Colon cancer ranks fourth and is responsible for causing 10% cancer-related mortality in western countries. Its incidence is rising in many countries due to widespread adoption of the Western diet and lifestyle. Carbamazepine (CBZ) is a FDA-approved antiepileptic drug and a histone deacetylase inhibitor. The aim of this study is to evaluate the cytotoxic potentials of CBZ in human colon cancer cells (HT-29 cells). METHODS HT-29 cells were treated with 36 and 76 μg/ml of CBZ for 24 h. The cytotoxic effect was evaluated by MTT assay. The intracellular reactive oxygen species (ROS) expression was evaluated through dichloro-dihydro-fluorescein diacetate staining. Morphological changes related to apoptosis were evaluated by dual staining with acridine orange and ethidium bromide. Mitochondrial membrane potential was evaluated by rhodamine 123 staining. Immunofluorescence analysis of caspase 3 was done with confocal microscopy. RESULTS CBZ caused significant cytotoxicity in HT-29 cells and the effect was concentration dependent. CBZ treatments also caused significant expression of ROS in HT-29 cells. Dual staining showed early and late apoptotic cells and morphological alterations induced by the CBZ. Confocal microscopic studies confirmed the increased caspase 3 expression in CBZ-treated cells. CONCLUSION CBZ induced apoptosis in HT-29 cell through ROS generation and caspase 3 expression and these results pave the way for further in vivo studies.
Collapse
|
8
|
Anti-seizure medication is not associated with an increased risk to develop cancer in epilepsy patients. J Neurol 2021; 268:2185-2191. [PMID: 33484324 PMCID: PMC8179889 DOI: 10.1007/s00415-020-10379-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/21/2022]
Abstract
Objective Whether anti-seizure medication (ASM) increases the risk for cancer has been debated for decades. While for some ASM, a carcinoma-promoting effect has been suspected, carcinoma-protective effects have been shown for other ASM. However, the issue remains unresolved as data from preclinical and clinical studies have been inconsistent and contradictory. Methods We collected anonymous patient data from practice neurologists throughout Germany between 2009 and 2018 using the IMS Disease Analyzer database (QuintilesIMS, Frankfurt, Germany). People with epilepsy (PWE) with an initial cancer diagnosis and antiepileptic therapy prior to the index date were 1:1 matched with a control group of PWE without cancer according to age, gender, index year, Charlson Comorbidity Index, and treating physician. For both groups, the risk to develop cancer under treatment with different ASMs was analyzed using three different models (ever use vs. never use (I), effect per one (II) and per five therapy years (III). Results A total of 3152 PWE were included (each group, n = 1,576; age = 67.3 ± 14.0 years). The risk to develop cancer was not significantly elevated for any ASM. Carbamazepine was associated with a decreased cancer risk (OR Model I: 0.699, p < .0001, OR Model II: 0.952, p = .4878, OR Model III: 0.758, p < .0004). Significance Our findings suggest that ASM use does not increase the risk of cancer in epilepsy patients. Supplementary Information The online version of this article (10.1007/s00415-020-10379-4) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Lai KKY, Kahn M. Pharmacologically Targeting the WNT/β-Catenin Signaling Cascade: Avoiding the Sword of Damocles. Handb Exp Pharmacol 2021; 269:383-422. [PMID: 34463849 DOI: 10.1007/164_2021_523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
WNT/β-catenin signaling plays fundamental roles in numerous developmental processes and in adult tissue homeostasis and repair after injury, by controlling cellular self-renewal, activation, division, differentiation, movement, genetic stability, and apoptosis. As such, it comes as no surprise that dysregulation of WNT/β-catenin signaling is associated with various diseases, including cancer, fibrosis, neurodegeneration, etc. Although multiple agents that specifically target the WNT/β-catenin signaling pathway have been studied preclinically and a number have entered clinical trials, none has been approved by the FDA to date. In this chapter, we provide our insights as to the reason(s) it has been so difficult to safely pharmacologically target the WNT/β-catenin signaling pathway and discuss the significant efforts undertaken towards this goal.
Collapse
Affiliation(s)
- Keane K Y Lai
- Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Michael Kahn
- Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
10
|
Iannelli F, Roca MS, Lombardi R, Ciardiello C, Grumetti L, De Rienzo S, Moccia T, Vitagliano C, Sorice A, Costantini S, Milone MR, Pucci B, Leone A, Di Gennaro E, Mancini R, Ciliberto G, Bruzzese F, Budillon A. Synergistic antitumor interaction of valproic acid and simvastatin sensitizes prostate cancer to docetaxel by targeting CSCs compartment via YAP inhibition. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:213. [PMID: 33032653 PMCID: PMC7545949 DOI: 10.1186/s13046-020-01723-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Despite the introduction of several novel therapeutic approaches that improved survival, metastatic castration-resistant prostate cancer (mCRPC) remains an incurable disease. Herein we report the synergistic antitumor interaction between two well-known drugs used for years in clinical practice, the antiepileptic agent with histone deacetylase inhibitory activity valproic acid and the cholesterol lowering agent simvastatin, in mCRPC models. METHODS Synergistic anti-tumor effect was assessed on PC3, 22Rv1, DU145, DU145R80, LNCaP prostate cancer cell lines and EPN normal prostate epithelial cells, by calculating combination index (CI), caspase 3/7 activation and colony formation assays as well as on tumor spheroids and microtissues scored with luminescence 3D-cell viability assay. Cancer stem cells (CSC) compartment was studied evaluating specific markers by RT-PCR, western blotting and flow cytometry as well as by limiting dilution assay. Cholesterol content was evaluated by 1H-NMR. Overexpression of wild-type YAP and constitutively active YAP5SA were obtained by lipofectamine-based transfection and evaluated by immunofluorescence, western blotting and RT-PCR. 22Rv1 R_39 docetaxel resistant cells were selected by stepwise exposure to increasing drug concentrations. In vivo experiments were performed on xenograft models of DU145R80, 22Rv1 parental and docetaxel resistant cells, in athymic mice. RESULTS We demonstrated the capacity of the combined approach to target CSC compartment by a novel molecular mechanism based on the inhibition of YAP oncogene via concurrent modulation of mevalonate pathway and AMPK. Because both CSCs and YAP activation have been associated with chemo-resistance, we tested if the combined approach can potentiate docetaxel, a standard of care in mCRCP treatment. Indeed, we demonstrated, both in vitro and in vivo models, the ability of valproic acid/simvastatin combination to sensitize mCRPC cells to docetaxel and to revert docetaxel-resistance, by mevalonate pathway/YAP axis modulation. CONCLUSION Overall, mCRPC progression and therapeutic resistance driven by CSCs via YAP, can be tackled by the combined repurposing of two generic and safe drugs, an approach that warrants further clinical development in this disease.
Collapse
Affiliation(s)
- Federica Iannelli
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Maria Serena Roca
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Rita Lombardi
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Chiara Ciardiello
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Laura Grumetti
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Simona De Rienzo
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Tania Moccia
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Carlo Vitagliano
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Angela Sorice
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Susan Costantini
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Maria Rita Milone
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Biagio Pucci
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Alessandra Leone
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Elena Di Gennaro
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Francesca Bruzzese
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy. .,Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via Ammiraglio Bianco, 83013, Mercogliano, AV, Italy.
| | - Alfredo Budillon
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy.
| |
Collapse
|
11
|
Zhao Y, Ren J, Hillier J, Lu W, Jones EY. Antiepileptic Drug Carbamazepine Binds to a Novel Pocket on the Wnt Receptor Frizzled-8. J Med Chem 2020; 63:3252-3260. [PMID: 32049522 PMCID: PMC7104226 DOI: 10.1021/acs.jmedchem.9b02020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Indexed: 01/07/2023]
Abstract
Misregulation of Wnt signaling is common in human cancer. The development of small molecule inhibitors against the Wnt receptor, frizzled (FZD), may have potential in cancer therapy. During small molecule screens, we observed binding of carbamazepine to the cysteine-rich domain (CRD) of the Wnt receptor FZD8 using surface plasmon resonance (SPR). Cellular functional assays demonstrated that carbamazepine can suppress FZD8-mediated Wnt/β-catenin signaling. We determined the crystal structure of the complex at 1.7 Å resolution, which reveals that carbamazepine binds at a novel pocket on the FZD8 CRD. The unique residue Tyr52 discriminates FZD8 from the closely related FZD5 and other FZDs for carbamazepine binding. The first small molecule-bound FZD structure provides a basis for anti-FZD drug development. Furthermore, the observed carbamazepine-mediated Wnt signaling inhibition may help to explain the phenomenon of bone loss and increased adipogenesis in some patients during long-term carbamazepine treatment.
Collapse
Affiliation(s)
- Yuguang Zhao
- Division of Structural
Biology,
Wellcome Centre for Human Genetics, University
of Oxford, Oxford OX3 7BN, United Kingdom
| | - Jingshan Ren
- Division of Structural
Biology,
Wellcome Centre for Human Genetics, University
of Oxford, Oxford OX3 7BN, United Kingdom
| | - James Hillier
- Division of Structural
Biology,
Wellcome Centre for Human Genetics, University
of Oxford, Oxford OX3 7BN, United Kingdom
| | - Weixian Lu
- Division of Structural
Biology,
Wellcome Centre for Human Genetics, University
of Oxford, Oxford OX3 7BN, United Kingdom
| | - E. Yvonne Jones
- Division of Structural
Biology,
Wellcome Centre for Human Genetics, University
of Oxford, Oxford OX3 7BN, United Kingdom
| |
Collapse
|
12
|
Makarević J, Rutz J, Juengel E, Maxeiner S, Tsaur I, Chun FKH, Bereiter-Hahn J, Blaheta RA. Influence of the HDAC Inhibitor Valproic Acid on the Growth and Proliferation of Temsirolimus-Resistant Prostate Cancer Cells In Vitro. Cancers (Basel) 2019; 11:cancers11040566. [PMID: 31010254 PMCID: PMC6520872 DOI: 10.3390/cancers11040566] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/16/2019] [Indexed: 12/18/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is elevated in prostate cancer, making this protein attractive for tumor treatment. Unfortunately, resistance towards mTOR inhibitors develops and the tumor becomes reactivated. We determined whether epigenetic modulation by the histone deacetylase (HDAC) inhibitor, valproic acid (VPA), may counteract non-responsiveness to the mTOR inhibitor, temsirolimus, in prostate cancer (PCa) cells. Prostate cancer cells, sensitive (parental) and resistant to temsirolimus, were exposed to VPA, and tumor cell growth behavior compared. Temsirolimus resistance enhanced the number of tumor cells in the G2/M-phase, correlating with elevated cell proliferation and clonal growth. The cell cycling proteins cdk1 and cyclin B, along with Akt-mTOR signaling increased, whereas p19, p21 and p27 decreased, compared to the parental cells. VPA significantly reduced cell growth and up-regulated the acetylated histones H3 and H4. Cdk1 and cyclin B decreased, as did phosphorylated mTOR and the mTOR sub-complex Raptor. The mTOR sub-member Rictor and phosphorylated Akt increased under VPA. Knockdown of cdk1, cyclin B, or Raptor led to significant cell growth reduction. HDAC inhibition through VPA counteracts temsirolimus resistance, probably by down-regulating cdk1, cyclin B and Raptor. Enhanced Rictor and Akt, however, may represent an undesired feedback loop, which should be considered when designing future therapeutic regimens.
Collapse
Affiliation(s)
- Jasmina Makarević
- Department of Urology, Goethe-University, D-60590 Frankfurt am Main, Germany.
| | - Jochen Rutz
- Department of Urology, Goethe-University, D-60590 Frankfurt am Main, Germany.
| | - Eva Juengel
- Department of Urology, Goethe-University, D-60590 Frankfurt am Main, Germany.
| | - Sebastian Maxeiner
- Department of Urology, Goethe-University, D-60590 Frankfurt am Main, Germany.
| | - Igor Tsaur
- Department of Urology, Goethe-University, D-60590 Frankfurt am Main, Germany.
| | - Felix K-H Chun
- Department of Urology, Goethe-University, D-60590 Frankfurt am Main, Germany.
| | - Jürgen Bereiter-Hahn
- Institute for Cell Biology and Neurosciences, Goethe-University, D-60590 Frankfurt am Main, Germany.
| | - Roman A Blaheta
- Department of Urology, Goethe-University, D-60590 Frankfurt am Main, Germany.
| |
Collapse
|
13
|
Cavalla D. Using human experience to identify drug repurposing opportunities: theory and practice. Br J Clin Pharmacol 2019; 85:680-689. [PMID: 30648285 DOI: 10.1111/bcp.13851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/07/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022] Open
Abstract
Retrospective evidence drawn from real-world experience of a medicine's use outside its labelled indication is one of a number of techniques used in drug repurposing (DRP). Relying as it does on large numbers of real incidences of human experience, rather than individual case reports with limited statistical support, preclinical experiments with poor translatability or in silico associations, which are early-stage hypotheses, it represents the best validated form of DRP. Cancer is the most frequent of such DRP examples (e.g. aspirin in pancreatic cancer, hazard ratio = 0.25). This approach can be combined with pathway analysis to provide first-in-class treatments for complex diseases. Alternatively, it can be combined with prospective preclinical studies to uncover a validated mechanism for a new indication, after which a repurposed molecule is chemically optimized.
Collapse
|
14
|
HDAC Inhibition Counteracts Metastatic Re-Activation of Prostate Cancer Cells Induced by Chronic mTOR Suppression. Cells 2018; 7:cells7090129. [PMID: 30200497 PMCID: PMC6162415 DOI: 10.3390/cells7090129] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022] Open
Abstract
This study was designed to investigate whether epigenetic modulation by histone deacetylase (HDAC) inhibition might circumvent resistance towards the mechanistic target of rapamycin (mTOR) inhibitor temsirolimus in a prostate cancer cell model. Parental (par) and temsirolimus-resistant (res) PC3 prostate cancer cells were exposed to the HDAC inhibitor valproic acid (VPA), and tumor cell adhesion, chemotaxis, migration, and invasion were evaluated. Temsirolimus resistance was characterized by reduced binding of PC3res cells to endothelium, immobilized collagen, and fibronectin, but increased adhesion to laminin, as compared to the parental cells. Chemotaxis, migration, and invasion of PC3res cells were enhanced following temsirolimus re-treatment. Integrin α and β receptors were significantly altered in PC3res compared to PC3par cells. VPA significantly counteracted temsirolimus resistance by down-regulating tumor cell–matrix interaction, chemotaxis, and migration. Evaluation of integrin expression in the presence of VPA revealed a significant down-regulation of integrin α5 in PC3res cells. Blocking studies demonstrated a close association between α5 expression on PC3res and chemotaxis. In this in vitro model, temsirolimus resistance drove prostate cancer cells to become highly motile, while HDAC inhibition reversed the metastatic activity. The VPA-induced inhibition of metastatic activity was accompanied by a lowered integrin α5 surface level on the tumor cells.
Collapse
|
15
|
Bertelsen F, Landau AM, Vase KH, Jacobsen J, Scheel-Krüger J, Møller A. Acute in vivo effect of valproic acid on the GABAergic system in rat brain: A [ 11C]Ro15-4513 microPET study. Brain Res 2017; 1680:110-114. [PMID: 29258847 DOI: 10.1016/j.brainres.2017.12.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/08/2017] [Accepted: 12/13/2017] [Indexed: 02/05/2023]
Abstract
γ-Aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the nervous system acting mainly through GABAA receptors. In the presence of high levels of GABA, an allosteric shift in the GABAA receptors can change the affinity of benzodiazepine (BZD) ligands. Valproic acid (VPA) is an anticonvulsant that enhances the level of endogenous GABA in the brain. The BZD ligand, Ro15-4513 has a high affinity for GABAA receptors containing the α5 subunit and can be used to investigate the GABA shift in the brains of living rats after VPA exposure. Seven Wistar rats were scanned using a Mediso NanoScan PET/MRI. A baseline 90-min dynamic [11C]Ro15-4513 PET scan was acquired prior to an intravenous injection of 50 mg/kg VPA, and was followed by a second [11C]Ro15-4513 PET scan. Standardized uptake values were obtained for regions of high GABA binding, including the hippocampus and amygdala, and low GABA binding such as the cerebellum. We showed a significant increase in [11C]Ro15-4513 uptake in hippocampus and amygdala, but no significant differences in cerebellar uptake, after acute VPA exposure. In contrast to several in vitro studies, we demonstrated a positive allosteric change in the GABAA receptors after pharmacologically enhanced GABA levels resulting in enhanced Ro15-4513 uptake. Knowledge of how subtypes of the GABAA receptors react will provide us with information useful to fine-tune pharmacological interventions and design receptor subtype specific drugs.
Collapse
Affiliation(s)
- Freja Bertelsen
- Centre of Functionally Integrative Neuroscience, Aarhus University, Nørrebrogade 44, Building 10G, 8000 Aarhus, Denmark; Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Nørrebrogade 44, Building 10G, 8000 Aarhus, Denmark.
| | - Anne M Landau
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Nørrebrogade 44, Building 10G, 8000 Aarhus, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Skovagervej 2, Building 14J.1, 8240 Risskov, Denmark.
| | - Karina H Vase
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Nørrebrogade 44, Building 10G, 8000 Aarhus, Denmark.
| | - Jan Jacobsen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Nørrebrogade 44, Building 10G, 8000 Aarhus, Denmark.
| | - Jørgen Scheel-Krüger
- Centre of Functionally Integrative Neuroscience, Aarhus University, Nørrebrogade 44, Building 10G, 8000 Aarhus, Denmark.
| | - Arne Møller
- Centre of Functionally Integrative Neuroscience, Aarhus University, Nørrebrogade 44, Building 10G, 8000 Aarhus, Denmark; Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Nørrebrogade 44, Building 10G, 8000 Aarhus, Denmark.
| |
Collapse
|