1
|
Katic L, Choi J, Diaz Saravia S, Silverman A, Nagourney A, Torelli V, Gupta S, Glavan M, Gulati A, Khurana S, Tsyvkin E. The Interplay Between Cardiovascular Disease and Lung Cancer. Cureus 2024; 16:e62953. [PMID: 39044884 PMCID: PMC11265258 DOI: 10.7759/cureus.62953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2024] [Indexed: 07/25/2024] Open
Abstract
Cardiovascular disease (CVD) and lung cancer are among the leading causes of mortality worldwide, with a significant interplay that complicates patient management and treatment outcomes. This review explores the complex relationship between various forms of CVD - such as coronary artery disease, heart failure (HF), arrhythmias, and valvular heart disease - and lung cancer. Shared risk factors, including smoking, aging, and chronic inflammation, contribute to the co-occurrence of these conditions. Additionally, treatments for lung cancer, particularly chemotherapy and radiation therapy, can exacerbate CVD, necessitating a multidisciplinary approach to patient care. We delve into specific CVD-related impacts on lung cancer prognosis and vice versa, examining mechanisms, clinical outcomes, and management strategies. Our findings highlight the need for integrated care involving oncologists, cardiologists, and other healthcare providers to optimize treatment plans and improve patient outcomes. Emphasizing comprehensive cardiovascular risk management in lung cancer patients, we advocate for further research to deepen our understanding and develop novel therapeutic approaches, ultimately enhancing the quality of life and survival rates in patients suffering from both CVD and lung cancer.
Collapse
Affiliation(s)
- Luka Katic
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - James Choi
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Sara Diaz Saravia
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | | | - Vincent Torelli
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Soumya Gupta
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | - Amit Gulati
- Cardiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Sakshi Khurana
- Radiology, New York Presbyterian-Columbia University Irving Medical Center, New York, USA
| | - Elina Tsyvkin
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
2
|
Marcos-Mangas M, Revilla-Orodea A, Sevilla T, González-Bartol E, Sánchez-Lite I, Urueña-Martínez N, Arnold R, Gómez I, San Román JA. Different prognostic significance of coronary artery and aortic valve calcium in patients with chest pain. Eur Radiol 2024; 34:2658-2664. [PMID: 37731095 DOI: 10.1007/s00330-023-10229-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/09/2023] [Accepted: 07/30/2023] [Indexed: 09/22/2023]
Abstract
OBJECTIVES Coronary artery calcification (CorCa) identifies high cardiovascular risk in the general population. In this setting, aortic valve calcification (AoCa) showed contradictory results. Our goal has been to assess the prognostic power of CorCa and AoCa in patients with chest pain who underwent an ECG-gated cardiac multidetector CT (cardiac-MDCT). METHODS A total of 528 patients without previous known coronary artery disease, with chest pain who underwent a cardiac-MDCT multidetector, were retrospectively recruited. The primary endpoint included death, acute coronary syndrome, stroke, and heart failure. RESULTS A total of 61 patients (11.6%) had an event during a mean follow-up of almost 6 years (5.95 ± 2.98). The most frequent event was acute coronary syndrome (6.4%). Total mortality was 4.5%. Patients with CorCa > 0 had more events than those without CorCa (17.3% versus 4.3%; p < 0.001). Likewise, when only patients without AoCa were considered (n = 118), clinical events were more frequent in those with CorCa (12.7% versus 3.6%; p = 0.004). After excluding patients with coronary artery disease, events were more frequent in those with CorCa (12.6% versus 4.3%; p = 0.004). The higher the Agatston score, the more frequent the events. Patients with AoCa > 0 had more events than those without (16.5% versus 7.3%; p < 0.001), but in patients without CorCa, no difference in events was seen (6.2% versus 3.6%; p = 0.471). A Cox regression analysis showed age, smoking, prior stroke, and CorCa but not AoCa to be independently related to events. CONCLUSIONS In summary, CorCa, but not AoCa, is related to cardiovascular events in patients with chest pain who undergo a cardiac-MDCT. CLINICAL RELEVANCE STATEMENT We show that coronary artery calcification, but not aortic valve calcification, detected in a coronary CT scan is tightly related to cardiovascular events. Although this is a message already shown by other groups in the general population, we do believe that this work is unique because it is restricted to patients with chest pain sent to coronary CT. In other words, our work deals with what we face in our routine everyday practice. KEY POINTS • The presence and the amount of coronary artery calcification are associated with cardiovascular events in patients with chest pain. • Aortic valve calcification is not associated with cardiovascular events in patients with chest pain.
Collapse
Affiliation(s)
- Marta Marcos-Mangas
- Servicio de Cardiología, Hospital Clínico Universitario de Valladolid, Valladolid, Spain.
| | - Ana Revilla-Orodea
- Servicio de Cardiología, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Teresa Sevilla
- Servicio de Cardiología, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Esther González-Bartol
- Servicio de Cardiología, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Israel Sánchez-Lite
- Servicio de Radiodiagnóstico, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Noelia Urueña-Martínez
- Servicio de Cardiología, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Roman Arnold
- Servicio de Cardiología, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Itziar Gómez
- Servicio de Cardiología, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - J Alberto San Román
- Servicio de Cardiología, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
3
|
O'Dowd EL, Tietzova I, Bartlett E, Devaraj A, Biederer J, Brambilla M, Brunelli A, Chorostowska J, Decaluwe H, Deruysscher D, De Wever W, Donoghue M, Fabre A, Gaga M, van Geffen W, Hardavella G, Kauczor HU, Kerpel-Fronius A, van Meerbeeck J, Nagavci B, Nestle U, Novoa N, Prosch H, Prokop M, Putora PM, Rawlinson J, Revel MP, Snoeckx A, Veronesi G, Vliegenthart R, Weckbach S, Blum TG, Baldwin DR. ERS/ESTS/ESTRO/ESR/ESTI/EFOMP statement on management of incidental findings from low dose CT screening for lung cancer. Eur J Cardiothorac Surg 2023; 64:ezad302. [PMID: 37804174 PMCID: PMC10876118 DOI: 10.1093/ejcts/ezad302] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/06/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Screening for lung cancer with low radiation dose computed tomography has a strong evidence base, is being introduced in several European countries and is recommended as a new targeted cancer screening programme. The imperative now is to ensure that implementation follows an evidence-based process that will ensure clinical and cost effectiveness. This European Respiratory Society (ERS) task force was formed to provide an expert consensus for the management of incidental findings which can be adapted and followed during implementation. METHODS A multi-European society collaborative group was convened. 23 topics were identified, primarily from an ERS statement on lung cancer screening, and a systematic review of the literature was conducted according to ERS standards. Initial review of abstracts was completed and full text was provided to members of the group for each topic. Sections were edited and the final document approved by all members and the ERS Science Council. RESULTS Nine topics considered most important and frequent were reviewed as standalone topics (interstitial lung abnormalities, emphysema, bronchiectasis, consolidation, coronary calcification, aortic valve disease, mediastinal mass, mediastinal lymph nodes and thyroid abnormalities). Other topics considered of lower importance or infrequent were grouped into generic categories, suitable for general statements. CONCLUSIONS This European collaborative group has produced an incidental findings statement that can be followed during lung cancer screening. It will ensure that an evidence-based approach is used for reporting and managing incidental findings, which will mean that harms are minimised and any programme is as cost-effective as possible.
Collapse
Affiliation(s)
- Emma L O'Dowd
- Nottingham University Hospitals NHS Trust, Nottingham, UK
- University of Nottingham, Faculty of Medicine and Health Sciences, Nottingham, UK
| | - Ilona Tietzova
- Charles University, First Faculty of Medicine, Department of Tuberculosis and Respiratory Diseases, Prague, Czech Republic
| | - Emily Bartlett
- Royal Brompton and Harefield NHS Foundation Trust, Radiology, London, UK
| | - Anand Devaraj
- Royal Brompton and Harefield NHS Foundation Trust, Radiology, London, UK
| | - Jürgen Biederer
- University of Heidelberg, Diagnostic and Interventional Radiology, Heidelberg, Germany
- German Center for Lung Research DZL, Translational Lung Research Center TLRC, Heidelberg, Germany
- University of Latvia, Faculty of Medicine, Riga, Latvia
- Christian-Albrechts-Universität zu Kiel, Faculty of Medicine, Kiel, Germany
| | - Marco Brambilla
- Azienda Ospedaliero-Universitaria Maggiore della Carità di Novara, Novara, Italy
| | | | - Joanna Chorostowska
- Institute of Tuberculosis and Lung Diseases, Warsaw, Genetics and Clinical Immunology, Warsaw, Poland
| | | | - Dirk Deruysscher
- Maastricht University Medical Centre, Department of Radiation Oncology (MAASTRO Clinic), GROW-School for Oncology and Developmental Biology, Limburg, The Netherlands
| | - Walter De Wever
- Universitaire Ziekenhuizen Leuven, Radiology, Leuven, Belgium
| | | | - Aurelie Fabre
- University College Dublin School of Medicine, Histopathology, Dublin, Ireland
| | - Mina Gaga
- Sotiria General Hospital of Chest Diseases of Athens, 7th Respiratory Medicine Department, Athens, Greece
| | - Wouter van Geffen
- Medical Centre Leeuwarden, Department of Respiratory Medicine, Leeuwarden, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, The Netherlands
| | - Georgia Hardavella
- Sotiria General Hospital of Chest Diseases of Athens, Respiratory Medicine, Athens, Greece
| | - Hans-Ulrich Kauczor
- University of Heidelberg, Diagnostic and Interventional Radiology, Heidelberg, Germany
- German Center for Lung Research DZL, Translational Lung Research Center TLRC, Heidelberg, Germany
| | - Anna Kerpel-Fronius
- National Koranyi Institute of Pulmonology, Department of Radiology, Budapest, Hungary
| | | | - Blin Nagavci
- Institute for Evidence in Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Ursula Nestle
- Kliniken Maria Hilf GmbH Monchengladbach, Nordrhein-Westfalen, Germany
| | - Nuria Novoa
- University Hospital of Salamanca, Thoracic Surgery, Salamanca, Spain
| | - Helmut Prosch
- Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Vienna, Austria
| | - Mathias Prokop
- Radboud University Nijmegen Medical Center, Department of Radiology, Nijmegen, The Netherlands
| | - Paul Martin Putora
- Kantonsspital Sankt Gallen, Radiation Oncology, Sankt Gallen, Switzerland
- Inselspital Universitatsspital Bern, Radiation Oncology, Bern, Switzerland
| | | | - Marie-Pierre Revel
- Cochin Hospital, APHP, Radiology Department, Paris, France
- Université de Paris, Paris, France
| | | | - Giulia Veronesi
- Humanitas Research Hospital, Division of Thoracic and General Surgery, Rozzano, Italy
| | | | - Sabine Weckbach
- UniversitatsKlinikum Heidelberg, Heidelberg, Germany
- Bayer AG, Research and Development, Pharmaceuticals, Radiology, Berlin, Germany
| | - Torsten G Blum
- HELIOS Klinikum Emil von Behring GmbH, Lungenklinik Heckeshorn, Berlin, Germany
| | - David R Baldwin
- University of Nottingham, Faculty of Medicine and Health Sciences, Nottingham, UK
- Nottingham University Hospitals NHS Trust, Department of Respiratory Medicine, Nottingham, UK
| |
Collapse
|
4
|
O'Dowd EL, Tietzova I, Bartlett E, Devaraj A, Biederer J, Brambilla M, Brunelli A, Chorostowska-Wynimko J, Decaluwe H, Deruysscher D, De Wever W, Donoghue M, Fabre A, Gaga M, van Geffen W, Hardavella G, Kauczor HU, Kerpel-Fronius A, van Meerbeeck J, Nagavci B, Nestle U, Novoa N, Prosch H, Prokop M, Putora PM, Rawlinson J, Revel MP, Snoeckx A, Veronesi G, Vliegenthart R, Weckbach S, Blum TG, Baldwin DR. ERS/ESTS/ESTRO/ESR/ESTI/EFOMP statement on management of incidental findings from low dose CT screening for lung cancer. Eur Respir J 2023; 62:2300533. [PMID: 37802631 DOI: 10.1183/13993003.00533-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/06/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Screening for lung cancer with low radiation dose computed tomography has a strong evidence base, is being introduced in several European countries and is recommended as a new targeted cancer screening programme. The imperative now is to ensure that implementation follows an evidence-based process that will ensure clinical and cost effectiveness. This European Respiratory Society (ERS) task force was formed to provide an expert consensus for the management of incidental findings which can be adapted and followed during implementation. METHODS A multi-European society collaborative group was convened. 23 topics were identified, primarily from an ERS statement on lung cancer screening, and a systematic review of the literature was conducted according to ERS standards. Initial review of abstracts was completed and full text was provided to members of the group for each topic. Sections were edited and the final document approved by all members and the ERS Science Council. RESULTS Nine topics considered most important and frequent were reviewed as standalone topics (interstitial lung abnormalities, emphysema, bronchiectasis, consolidation, coronary calcification, aortic valve disease, mediastinal mass, mediastinal lymph nodes and thyroid abnormalities). Other topics considered of lower importance or infrequent were grouped into generic categories, suitable for general statements. CONCLUSIONS This European collaborative group has produced an incidental findings statement that can be followed during lung cancer screening. It will ensure that an evidence-based approach is used for reporting and managing incidental findings, which will mean that harms are minimised and any programme is as cost-effective as possible.
Collapse
Affiliation(s)
- Emma L O'Dowd
- Nottingham University Hospitals NHS Trust, Nottingham, UK
- University of Nottingham, Faculty of Medicine and Health Sciences, Nottingham, UK
| | - Ilona Tietzova
- Charles University, First Faculty of Medicine, Department of Tuberculosis and Respiratory Diseases, Prague, Czech Republic
| | - Emily Bartlett
- Royal Brompton and Harefield NHS Foundation Trust, Radiology, London, UK
| | - Anand Devaraj
- Royal Brompton and Harefield NHS Foundation Trust, Radiology, London, UK
| | - Jürgen Biederer
- University of Heidelberg, Diagnostic and Interventional Radiology, Heidelberg, Germany
- German Center for Lung Research DZL, Translational Lung Research Center TLRC, Heidelberg, Germany
- University of Latvia, Faculty of Medicine, Riga, Latvia
- Christian-Albrechts-Universität zu Kiel, Faculty of Medicine, Kiel, Germany
| | - Marco Brambilla
- Azienda Ospedaliero-Universitaria Maggiore della Carità di Novara, Novara, Italy
| | | | | | | | - Dirk Deruysscher
- Maastricht University Medical Centre, Department of Radiation Oncology (MAASTRO Clinic), GROW-School for Oncology and Developmental Biology, Limburg, The Netherlands
| | - Walter De Wever
- Universitaire Ziekenhuizen Leuven, Radiology, Leuven, Belgium
| | | | - Aurelie Fabre
- University College Dublin School of Medicine, Histopathology, Dublin, Ireland
| | - Mina Gaga
- Sotiria General Hospital of Chest Diseases of Athens, 7th Respiratory Medicine Department, Athens, Greece
| | - Wouter van Geffen
- Medical Centre Leeuwarden, Department of Respiratory Medicine, Leeuwarden, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, The Netherlands
| | - Georgia Hardavella
- Sotiria General Hospital of Chest Diseases of Athens, Respiratory Medicine, Athens, Greece
| | - Hans-Ulrich Kauczor
- University of Heidelberg, Diagnostic and Interventional Radiology, Heidelberg, Germany
- German Center for Lung Research DZL, Translational Lung Research Center TLRC, Heidelberg, Germany
| | - Anna Kerpel-Fronius
- National Koranyi Institute of Pulmonology, Department of Radiology, Budapest, Hungary
| | | | - Blin Nagavci
- Institute for Evidence in Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Ursula Nestle
- Kliniken Maria Hilf GmbH Monchengladbach, Nordrhein-Westfalen, Germany
| | - Nuria Novoa
- University Hospital of Salamanca, Thoracic Surgery, Salamanca, Spain
| | - Helmut Prosch
- Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Vienna, Austria
| | - Mathias Prokop
- Radboud University Nijmegen Medical Center, Department of Radiology, Nijmegen, The Netherlands
| | - Paul Martin Putora
- Kantonsspital Sankt Gallen, Radiation Oncology, Sankt Gallen, Switzerland
- Inselspital Universitatsspital Bern, Radiation Oncology, Bern, Switzerland
| | | | - Marie-Pierre Revel
- Cochin Hospital, APHP, Radiology Department, Paris, France
- Université de Paris, Paris, France
| | | | - Giulia Veronesi
- Humanitas Research Hospital, Division of Thoracic and General Surgery, Rozzano, Italy
| | | | - Sabine Weckbach
- UniversitatsKlinikum Heidelberg, Heidelberg, Germany
- Bayer AG, Research and Development, Pharmaceuticals, Radiology, Berlin, Germany
| | - Torsten G Blum
- HELIOS Klinikum Emil von Behring GmbH, Lungenklinik Heckeshorn, Berlin, Germany
| | - David R Baldwin
- Nottingham University Hospitals NHS Trust, Nottingham, UK
- University of Nottingham, Faculty of Medicine and Health Sciences, Nottingham, UK
| |
Collapse
|
5
|
de Vos BD, Lessmann N, de Jong PA, Išgum I. Deep Learning-Quantified Calcium Scores for Automatic Cardiovascular Mortality Prediction at Lung Screening Low-Dose CT. Radiol Cardiothorac Imaging 2021; 3:e190219. [PMID: 33969304 DOI: 10.1148/ryct.2021190219] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/05/2021] [Accepted: 01/20/2021] [Indexed: 01/06/2023]
Abstract
Purpose To examine the prognostic value of location-specific arterial calcification quantities at lung screening low-dose CT for the prediction of cardiovascular disease (CVD) mortality. Materials and Methods This retrospective study included 5564 participants who underwent low-dose CT from the National Lung Screening Trial between August 2002 and April 2004, who were followed until December 2009. A deep learning network was trained to quantify six types of vascular calcification: thoracic aorta calcification (TAC); aortic and mitral valve calcification; and coronary artery calcification (CAC) of the left main, the left anterior descending, and the right coronary artery. TAC and CAC were determined in six evenly distributed slabs spatially aligned among chest CT images. CVD mortality prediction was performed with multivariable logistic regression using least absolute shrinkage and selection operator. The methods were compared with semiautomatic baseline prediction using self-reported participant characteristics, such as age, history of smoking, and history of illness. Statistical significance between the prediction models was tested using the nonparametric DeLong test. Results The prediction model was trained with data from 4451 participants (median age, 61 years; 37.9% women) and then tested on data from 1113 participants (median age, 61 years; 37.9% women). The prediction model using calcium scores achieved a C statistic of 0.74 (95% CI: 0.69, 0.79), and it outperformed the baseline model using only participant characteristics (C statistic, 0.69; P = .049). Best results were obtained when combining all variables (C statistic, 0.76; P < .001). Conclusion Five-year CVD mortality prediction using automatically extracted image-based features is feasible at lung screening low-dose CT.© RSNA, 2021.
Collapse
Affiliation(s)
- Bob D de Vos
- Department of Biomedical Engineering and Physics (B.D.d.V., I.I.), Cardiovascular Institute (B.D.d.V., I.I.), and Department of Radiology and Nuclear Medicine (I.I.), Amsterdam University Medical Center, Meibergdreef 9, Amsterdam, the Netherlands; and Image Sciences Institute (B.D.d.V., N.L., I.I.) and Department of Radiology (P.A.d.J., I.I.), University Medical Center Utrecht, Utrecht, the Netherlands
| | - Nikolas Lessmann
- Department of Biomedical Engineering and Physics (B.D.d.V., I.I.), Cardiovascular Institute (B.D.d.V., I.I.), and Department of Radiology and Nuclear Medicine (I.I.), Amsterdam University Medical Center, Meibergdreef 9, Amsterdam, the Netherlands; and Image Sciences Institute (B.D.d.V., N.L., I.I.) and Department of Radiology (P.A.d.J., I.I.), University Medical Center Utrecht, Utrecht, the Netherlands
| | - Pim A de Jong
- Department of Biomedical Engineering and Physics (B.D.d.V., I.I.), Cardiovascular Institute (B.D.d.V., I.I.), and Department of Radiology and Nuclear Medicine (I.I.), Amsterdam University Medical Center, Meibergdreef 9, Amsterdam, the Netherlands; and Image Sciences Institute (B.D.d.V., N.L., I.I.) and Department of Radiology (P.A.d.J., I.I.), University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ivana Išgum
- Department of Biomedical Engineering and Physics (B.D.d.V., I.I.), Cardiovascular Institute (B.D.d.V., I.I.), and Department of Radiology and Nuclear Medicine (I.I.), Amsterdam University Medical Center, Meibergdreef 9, Amsterdam, the Netherlands; and Image Sciences Institute (B.D.d.V., N.L., I.I.) and Department of Radiology (P.A.d.J., I.I.), University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
6
|
Williams MC, Massera D, Moss AJ, Bing R, Bularga A, Adamson PD, Hunter A, Alam S, Shah ASV, Pawade T, Roditi G, van Beek EJR, Nicol ED, Newby DE, Dweck MR. Prevalence and clinical implications of valvular calcification on coronary computed tomography angiography. Eur Heart J Cardiovasc Imaging 2021; 22:262-270. [PMID: 33306104 PMCID: PMC7899264 DOI: 10.1093/ehjci/jeaa263] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
AIMS Valvular heart disease can be identified by calcification on coronary computed tomography angiography (CCTA) and has been associated with adverse clinical outcomes. We assessed aortic and mitral valve calcification in patients presenting with stable chest pain and their association with cardiovascular risk factors, coronary artery disease, and cardiovascular outcomes. METHODS AND RESULTS In 1769 patients (58 ± 9 years, 56% male) undergoing CCTA for stable chest pain, aortic and mitral valve calcification were quantified using Agatston score. Aortic valve calcification was present in 241 (14%) and mitral calcification in 64 (4%). Independent predictors of aortic valve calcification were age, male sex, hypertension, diabetes mellitus, and cerebrovascular disease, whereas the only predictor of mitral valve calcification was age. Patients with aortic and mitral valve calcification had higher coronary artery calcium scores and more obstructive coronary artery disease. The composite endpoint of cardiovascular mortality, non-fatal myocardial infarction, or non-fatal stroke was higher in those with aortic [hazard ratio (HR) 2.87; 95% confidence interval (CI) 1.60-5.17; P < 0.001] or mitral (HR 3.50; 95% CI 1.47-8.07; P = 0.004) valve calcification, but this was not independent of coronary artery calcification or obstructive coronary artery disease. CONCLUSION Aortic and mitral valve calcification occurs in one in six patients with stable chest pain undergoing CCTA and is associated with concomitant coronary atherosclerosis. Whilst valvular calcification is associated with a higher risk of cardiovascular events, this was not independent of the burden of coronary artery disease.
Collapse
Affiliation(s)
- Michelle C Williams
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH164SB, UK
- Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh EH164TJ, UK
| | - Daniele Massera
- Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Alastair J Moss
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH164SB, UK
| | - Rong Bing
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH164SB, UK
| | - Anda Bularga
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH164SB, UK
| | - Philip D Adamson
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH164SB, UK
- Christchurch Heart Institute, University of Otago, Christchurch 8140, New Zealand
| | - Amanda Hunter
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH164SB, UK
| | - Shirjel Alam
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH164SB, UK
| | - Anoop S V Shah
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH164SB, UK
| | - Tania Pawade
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH164SB, UK
| | - Giles Roditi
- Glasgow Clinical Research Imaging Facility, Queen Elizabeth University Hospital, Glasgow G514LB, UK
| | - Edwin J R van Beek
- Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh EH164TJ, UK
| | | | - David E Newby
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH164SB, UK
- Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh EH164TJ, UK
| | - Marc R Dweck
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH164SB, UK
- Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh EH164TJ, UK
| |
Collapse
|
7
|
Combined aortic valve and coronary artery calcifications in lung cancer screening as predictors of death from cardiovascular disease. Eur Radiol 2020; 30:6847-6857. [PMID: 32725329 DOI: 10.1007/s00330-020-07049-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/23/2020] [Accepted: 06/26/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Smoking is a major risk factor for both cardiovascular disease (CVD) and lung cancer. Aortic valve calcification (AVC) and coronary artery calcification (CAC) are both due to atherosclerotic disease. We aim to investigate whether AVC on low-dose CT (LDCT) predicts death from CVD in smokers beyond that provided by CAC. METHODS We reviewed a prospective cohort of 8618 smokers enrolled in LDCT screening for lung cancer in New York State between June 2000 and December 2005. As of December 2009, 169 of the 643 deaths were due to CVD; median follow-up time was 96.4 months. Visual AVC was assessed as being absent (AVC = 0) or present (AVC > 0). CAC ordinal scores of 0-12 were categorized into three validated prognostic categories (0, 1-3, and 4-12). Cox proportional hazards regression analysis was used to assess whether AVC > 0 increased the risk of CVD death, after adjustment for CAC categories and other risk factors. RESULTS The prevalence of AVC significantly increased (p < 0.0001) with the increasing severity of the CAC categories; Pearson, Spearman, and Kendall's correlation coefficients showed a significant correlation between AVC and CAC with r = 0.29, ρ = 0.32, and τB = 0.28 (all p values < 0.0001), respectively. CAC and AVC were significant predictors of CVD death when considered alone using multivariable Cox regression analysis (adjusted HR of CAC = 1.57, p = 0.04; adjusted HR of AVC = 1.39, p = 0.045). When AVC > 0 and CAC ≥ 4, the hazard ratio was 2.35 (95%CI 1.57-3.50) compared with the reference group of AVC = 0 and CAC < 4, when adjusted for other risk factors. CONCLUSIONS The presence of AVC identified on LDCT is a significant predictor of future CVD death, particularly for those with ordinal CAC score ≥ 4. KEY POINTS • Aortic valve calcification (AVC) and coronary artery calcification (CAC) are both due to atherosclerotic disease. The prevalence of AVC in lung cancer screening cohort significantly increased with the increasing severity of CAC. • CAC and AVC were significant predictors of cardiovascular disease (CVD) death when considered alone. Participants who underwent lung cancer screening with AVC > 0 and CAC ≥ 4 had more than a 2-fold increased risk of CVD death than the group with AVC = 0 and CAC < 4, when adjusted for other risk factors.
Collapse
|
8
|
Zhu Y, Wang Y, Gioia WE, Yip R, Jirapatnakul AC, Chung MS, Yankelevitz DF, Henschke CI. Visual scoring of aortic valve calcifications on low-dose CT in lung cancer screening. Eur Radiol 2020; 30:2658-2668. [PMID: 32040729 DOI: 10.1007/s00330-019-06614-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/18/2019] [Accepted: 12/09/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVES To evaluate risk factors for prevalence and progression of aortic valve calcification (AVC) in lung cancer screening participants and also to assess the sensitivity and reliability of visual AVCs on low-dose CT (LDCT) for predicting aortic stenosis (AS) in high-risk smokers. METHODS We reviewed 1225 consecutive participants in annual LDCT screening for lung cancer at the Mount Sinai Hospital between 2010 and 2017. Sensitivity and specificity of moderate/severe AVC score on LDCT to identify AS on echocardiogram were calculated for 126 participants who had both within 12 months. Using regression analyses, risk factors for AVC at baseline, for progression, and for new AVC on annual rounds of screening were identified. Reliability of AVC assessment on LDCT was assessed by comparing visual AVC scores (1) with standard-dose, electrocardiography (ECG)-gated CT for 31 participants who had both within 12 months and (2) with Agatston scores of 1225 participants and by determining (3) the intra-reader agreement of 1225 participants. RESULTS Visual AVC scores on LDCT had substantial agreement with the severity of AS on echocardiography and substantial inter-observer and excellent intra-observer agreement. Sensitivity and specificity of moderate/severe visual AVC scores for moderate/severe AS on echocardiogram were 100% and 94%, respectively. Significant predictors for baseline AVC were male sex (OR = 2.52), age (OR10 years = 2.87), and coronary artery calcification score (OR = 1.18), the significant predictor for AVC progression after baseline was pack-years of smoking (HR10 packyears = 1.14), and significant predictors for new AVC on annual LDCT were male sex (HR = 1.51), age (HR10 years = 2.17), CAC (HR = 1.09) and BMI (HR = 1.06). CONCLUSIONS AVC scores on LDCT should be documented, especially in lung cancer screening program. KEY POINTS • LDCT screening for lung cancer provides an opportunity to identify lung cancer and cardiovascular disease in asymptomatic smokers. • Visual aortic valve calcification scores could be reliably evaluated on LDCT and had substantial agreement with the severity of aortic valve stenosis on echocardiography. • Sensitivity and specificity of moderate/severe visual AVC scores on LDCT for moderate/severe AS on echocardiogram were 100% and 94%, respectively.
Collapse
Affiliation(s)
- Yeqing Zhu
- Department of Radiology, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy Place, New York, NY, 10029, USA.,Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yong Wang
- Department of Radiology, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy Place, New York, NY, 10029, USA.,Department of Radiology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - William E Gioia
- Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rowena Yip
- Department of Radiology, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy Place, New York, NY, 10029, USA
| | - Artit C Jirapatnakul
- Department of Radiology, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy Place, New York, NY, 10029, USA
| | - Michael S Chung
- Department of Radiology, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy Place, New York, NY, 10029, USA
| | - David F Yankelevitz
- Department of Radiology, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy Place, New York, NY, 10029, USA
| | - Claudia I Henschke
- Department of Radiology, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
9
|
Choi TS, Yong HS, Kim C, Suh YJ. Clinical Value of Cardiovascular Calcifications on Non-Enhanced, Non-ECG-Gated Chest CT. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2020; 81:324-336. [PMID: 36237389 PMCID: PMC9431822 DOI: 10.3348/jksr.2020.81.2.324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/22/2019] [Accepted: 03/24/2020] [Indexed: 11/15/2022]
Abstract
심혈관계 석회화는 다양한 심혈관계 질환에서 나타나며 심혈관 사건 발생의 표지자의 역할을 한다. CT의 기술이 발전함에 따라 심전도동기 CT뿐만이 아닌 비 심전도동기 CT에서도 심혈관계 석회화를 평가하는 것이 가능해졌다. 이번 종설에서는 비 조영증강 비 심전도동기 흉부 CT에서 발견되는 심혈관계 석회화를 심혈관 사건 발생과 연관되었다고 알려진 3가지 석회화(관상동맥, 흉부 대동맥, 판막 석회화)에 대해 자세히 살펴보고 추가적으로 우연적으로 발견될 수 있는 심막 석회화에 대해서도 간단히 기술하였다. 우리나라에서 2019년 하반기부터 폐암 검진이 시작되면서 고령 흡연자의 비 조영증강 비 심전도동기 저선량 CT의 영상의 수가 늘어나고 있고 이에 우연히 발견되는 심혈관계 석회화도 늘어나고 있다. 그러므로 비 조영증강 비 심전도동기 흉부 CT에서 발견되는 심혈관계 석회화의 의미를 이해하고 적절히 보고하는 것이 영상의학과 의사에게 중요할 것이다.
Collapse
Affiliation(s)
- Tae Seop Choi
- Department of Radiology, Korea University Guro Hospital, College of Medicine, Korea University, Seoul, Korea
| | - Hwan Seok Yong
- Department of Radiology, Korea University Guro Hospital, College of Medicine, Korea University, Seoul, Korea
| | - Cherry Kim
- Department of Radiology, Korea University Ansan Hospital, College of Medicine, Korea University, Ansan, Korea
| | - Young Joo Suh
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Willemink MJ, Maret E, Moneghetti KJ, Kim JB, Haddad F, Kobayashi Y, Nishi T, Nieman K, Cauwenberghs N, Kuznetsova T, Higashigaito K, Sailer AM, Yeung AC, Lee AM, Miller DC, Fischbein M, Fearon WF, Fleischmann D. Incremental Value of Aortomitral Continuity Calcification for Risk Assessment after Transcatheter Aortic Valve Replacement. Radiol Cardiothorac Imaging 2019; 1:e190067. [PMID: 33778530 DOI: 10.1148/ryct.2019190067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/10/2019] [Accepted: 09/05/2019] [Indexed: 11/11/2022]
Abstract
Purpose To investigate the association of aortomitral continuity calcification (AMCC) with all-cause mortality, postprocedural paravalvular leak (PVL), and prolonged hospital stay in patients undergoing transcatheter aortic valve replacement (TAVR). Materials and Methods The authors retrospectively evaluated 329 patients who underwent TAVR between March 2013 and March 2016. AMCC, aortic valve calcification (AVC), and coronary artery calcification (CAC) were quantified by using preprocedural CT. Pre-procedural Society of Thoracic Surgeons (STS) score was recorded. Associations between baseline AMCC, AVC, and CAC and 1-year mortality, PVL, and hospital stay longer than 7 days were analyzed. Results The median follow-up was 415 days (interquartiles, 344-727 days). After 1 year, 46 of the 329 patients (14%) died and 52 (16%) were hospitalized for more than 7 days. Of the 326 patients who underwent postprocedural echocardiography, 147 (45%) had postprocedural PVL. The CAC score (hazard ratio: 1.11 per 500 points) and AMCC mass (hazard ratio: 1.13 per 500 mg) were associated with 1-year mortality. AVC mass (odds ratio: 1.93 per 100 mg) was associated with postprocedural PVL. Only the STS score was associated with prolonged hospital stay (odds ratio: 1.19 per point). Conclusion AMCC is associated with mortality within 1 year after TAVR and substantially improves individual risk classification when added to a model consisting of STS score and AVC mass only.Supplemental material is available for this article.© RSNA, 2019See also the commentary by Brown and Leipsic in this issue.
Collapse
Affiliation(s)
- Martin J Willemink
- Department of Radiology (M.J.W., E.M., K.H., A.M.S., D.F.), Stanford Cardiovascular Institute (M.J.W., E.M., K.J.M., J.B.K., F.H., Y.K., T.N., K.N., K.H., A.M.S., A.C.Y., A.M.L., D.C.M., M.F., W.F.F., D.F.), Division of Cardiovascular Medicine (J.B.K., F.H., Y.K., T.N., K.N., A.C.Y., W.F.F.), and Department of Cardiothoracic Surgery (A.M.L., D.C.M., M.F.), Stanford University School of Medicine, 300 Pasteur Dr, S-072, Stanford, CA 94305-5105; Department of Clinical Physiology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden (E.M.); and Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium (N.C., T.K.)
| | - Eva Maret
- Department of Radiology (M.J.W., E.M., K.H., A.M.S., D.F.), Stanford Cardiovascular Institute (M.J.W., E.M., K.J.M., J.B.K., F.H., Y.K., T.N., K.N., K.H., A.M.S., A.C.Y., A.M.L., D.C.M., M.F., W.F.F., D.F.), Division of Cardiovascular Medicine (J.B.K., F.H., Y.K., T.N., K.N., A.C.Y., W.F.F.), and Department of Cardiothoracic Surgery (A.M.L., D.C.M., M.F.), Stanford University School of Medicine, 300 Pasteur Dr, S-072, Stanford, CA 94305-5105; Department of Clinical Physiology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden (E.M.); and Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium (N.C., T.K.)
| | - Kegan J Moneghetti
- Department of Radiology (M.J.W., E.M., K.H., A.M.S., D.F.), Stanford Cardiovascular Institute (M.J.W., E.M., K.J.M., J.B.K., F.H., Y.K., T.N., K.N., K.H., A.M.S., A.C.Y., A.M.L., D.C.M., M.F., W.F.F., D.F.), Division of Cardiovascular Medicine (J.B.K., F.H., Y.K., T.N., K.N., A.C.Y., W.F.F.), and Department of Cardiothoracic Surgery (A.M.L., D.C.M., M.F.), Stanford University School of Medicine, 300 Pasteur Dr, S-072, Stanford, CA 94305-5105; Department of Clinical Physiology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden (E.M.); and Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium (N.C., T.K.)
| | - Juyong Brian Kim
- Department of Radiology (M.J.W., E.M., K.H., A.M.S., D.F.), Stanford Cardiovascular Institute (M.J.W., E.M., K.J.M., J.B.K., F.H., Y.K., T.N., K.N., K.H., A.M.S., A.C.Y., A.M.L., D.C.M., M.F., W.F.F., D.F.), Division of Cardiovascular Medicine (J.B.K., F.H., Y.K., T.N., K.N., A.C.Y., W.F.F.), and Department of Cardiothoracic Surgery (A.M.L., D.C.M., M.F.), Stanford University School of Medicine, 300 Pasteur Dr, S-072, Stanford, CA 94305-5105; Department of Clinical Physiology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden (E.M.); and Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium (N.C., T.K.)
| | - Francois Haddad
- Department of Radiology (M.J.W., E.M., K.H., A.M.S., D.F.), Stanford Cardiovascular Institute (M.J.W., E.M., K.J.M., J.B.K., F.H., Y.K., T.N., K.N., K.H., A.M.S., A.C.Y., A.M.L., D.C.M., M.F., W.F.F., D.F.), Division of Cardiovascular Medicine (J.B.K., F.H., Y.K., T.N., K.N., A.C.Y., W.F.F.), and Department of Cardiothoracic Surgery (A.M.L., D.C.M., M.F.), Stanford University School of Medicine, 300 Pasteur Dr, S-072, Stanford, CA 94305-5105; Department of Clinical Physiology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden (E.M.); and Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium (N.C., T.K.)
| | - Yukari Kobayashi
- Department of Radiology (M.J.W., E.M., K.H., A.M.S., D.F.), Stanford Cardiovascular Institute (M.J.W., E.M., K.J.M., J.B.K., F.H., Y.K., T.N., K.N., K.H., A.M.S., A.C.Y., A.M.L., D.C.M., M.F., W.F.F., D.F.), Division of Cardiovascular Medicine (J.B.K., F.H., Y.K., T.N., K.N., A.C.Y., W.F.F.), and Department of Cardiothoracic Surgery (A.M.L., D.C.M., M.F.), Stanford University School of Medicine, 300 Pasteur Dr, S-072, Stanford, CA 94305-5105; Department of Clinical Physiology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden (E.M.); and Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium (N.C., T.K.)
| | - Takeshi Nishi
- Department of Radiology (M.J.W., E.M., K.H., A.M.S., D.F.), Stanford Cardiovascular Institute (M.J.W., E.M., K.J.M., J.B.K., F.H., Y.K., T.N., K.N., K.H., A.M.S., A.C.Y., A.M.L., D.C.M., M.F., W.F.F., D.F.), Division of Cardiovascular Medicine (J.B.K., F.H., Y.K., T.N., K.N., A.C.Y., W.F.F.), and Department of Cardiothoracic Surgery (A.M.L., D.C.M., M.F.), Stanford University School of Medicine, 300 Pasteur Dr, S-072, Stanford, CA 94305-5105; Department of Clinical Physiology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden (E.M.); and Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium (N.C., T.K.)
| | - Koen Nieman
- Department of Radiology (M.J.W., E.M., K.H., A.M.S., D.F.), Stanford Cardiovascular Institute (M.J.W., E.M., K.J.M., J.B.K., F.H., Y.K., T.N., K.N., K.H., A.M.S., A.C.Y., A.M.L., D.C.M., M.F., W.F.F., D.F.), Division of Cardiovascular Medicine (J.B.K., F.H., Y.K., T.N., K.N., A.C.Y., W.F.F.), and Department of Cardiothoracic Surgery (A.M.L., D.C.M., M.F.), Stanford University School of Medicine, 300 Pasteur Dr, S-072, Stanford, CA 94305-5105; Department of Clinical Physiology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden (E.M.); and Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium (N.C., T.K.)
| | - Nicholas Cauwenberghs
- Department of Radiology (M.J.W., E.M., K.H., A.M.S., D.F.), Stanford Cardiovascular Institute (M.J.W., E.M., K.J.M., J.B.K., F.H., Y.K., T.N., K.N., K.H., A.M.S., A.C.Y., A.M.L., D.C.M., M.F., W.F.F., D.F.), Division of Cardiovascular Medicine (J.B.K., F.H., Y.K., T.N., K.N., A.C.Y., W.F.F.), and Department of Cardiothoracic Surgery (A.M.L., D.C.M., M.F.), Stanford University School of Medicine, 300 Pasteur Dr, S-072, Stanford, CA 94305-5105; Department of Clinical Physiology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden (E.M.); and Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium (N.C., T.K.)
| | - Tatiana Kuznetsova
- Department of Radiology (M.J.W., E.M., K.H., A.M.S., D.F.), Stanford Cardiovascular Institute (M.J.W., E.M., K.J.M., J.B.K., F.H., Y.K., T.N., K.N., K.H., A.M.S., A.C.Y., A.M.L., D.C.M., M.F., W.F.F., D.F.), Division of Cardiovascular Medicine (J.B.K., F.H., Y.K., T.N., K.N., A.C.Y., W.F.F.), and Department of Cardiothoracic Surgery (A.M.L., D.C.M., M.F.), Stanford University School of Medicine, 300 Pasteur Dr, S-072, Stanford, CA 94305-5105; Department of Clinical Physiology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden (E.M.); and Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium (N.C., T.K.)
| | - Kai Higashigaito
- Department of Radiology (M.J.W., E.M., K.H., A.M.S., D.F.), Stanford Cardiovascular Institute (M.J.W., E.M., K.J.M., J.B.K., F.H., Y.K., T.N., K.N., K.H., A.M.S., A.C.Y., A.M.L., D.C.M., M.F., W.F.F., D.F.), Division of Cardiovascular Medicine (J.B.K., F.H., Y.K., T.N., K.N., A.C.Y., W.F.F.), and Department of Cardiothoracic Surgery (A.M.L., D.C.M., M.F.), Stanford University School of Medicine, 300 Pasteur Dr, S-072, Stanford, CA 94305-5105; Department of Clinical Physiology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden (E.M.); and Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium (N.C., T.K.)
| | - Anna M Sailer
- Department of Radiology (M.J.W., E.M., K.H., A.M.S., D.F.), Stanford Cardiovascular Institute (M.J.W., E.M., K.J.M., J.B.K., F.H., Y.K., T.N., K.N., K.H., A.M.S., A.C.Y., A.M.L., D.C.M., M.F., W.F.F., D.F.), Division of Cardiovascular Medicine (J.B.K., F.H., Y.K., T.N., K.N., A.C.Y., W.F.F.), and Department of Cardiothoracic Surgery (A.M.L., D.C.M., M.F.), Stanford University School of Medicine, 300 Pasteur Dr, S-072, Stanford, CA 94305-5105; Department of Clinical Physiology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden (E.M.); and Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium (N.C., T.K.)
| | - Alan C Yeung
- Department of Radiology (M.J.W., E.M., K.H., A.M.S., D.F.), Stanford Cardiovascular Institute (M.J.W., E.M., K.J.M., J.B.K., F.H., Y.K., T.N., K.N., K.H., A.M.S., A.C.Y., A.M.L., D.C.M., M.F., W.F.F., D.F.), Division of Cardiovascular Medicine (J.B.K., F.H., Y.K., T.N., K.N., A.C.Y., W.F.F.), and Department of Cardiothoracic Surgery (A.M.L., D.C.M., M.F.), Stanford University School of Medicine, 300 Pasteur Dr, S-072, Stanford, CA 94305-5105; Department of Clinical Physiology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden (E.M.); and Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium (N.C., T.K.)
| | - Anson M Lee
- Department of Radiology (M.J.W., E.M., K.H., A.M.S., D.F.), Stanford Cardiovascular Institute (M.J.W., E.M., K.J.M., J.B.K., F.H., Y.K., T.N., K.N., K.H., A.M.S., A.C.Y., A.M.L., D.C.M., M.F., W.F.F., D.F.), Division of Cardiovascular Medicine (J.B.K., F.H., Y.K., T.N., K.N., A.C.Y., W.F.F.), and Department of Cardiothoracic Surgery (A.M.L., D.C.M., M.F.), Stanford University School of Medicine, 300 Pasteur Dr, S-072, Stanford, CA 94305-5105; Department of Clinical Physiology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden (E.M.); and Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium (N.C., T.K.)
| | - D Craig Miller
- Department of Radiology (M.J.W., E.M., K.H., A.M.S., D.F.), Stanford Cardiovascular Institute (M.J.W., E.M., K.J.M., J.B.K., F.H., Y.K., T.N., K.N., K.H., A.M.S., A.C.Y., A.M.L., D.C.M., M.F., W.F.F., D.F.), Division of Cardiovascular Medicine (J.B.K., F.H., Y.K., T.N., K.N., A.C.Y., W.F.F.), and Department of Cardiothoracic Surgery (A.M.L., D.C.M., M.F.), Stanford University School of Medicine, 300 Pasteur Dr, S-072, Stanford, CA 94305-5105; Department of Clinical Physiology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden (E.M.); and Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium (N.C., T.K.)
| | - Michael Fischbein
- Department of Radiology (M.J.W., E.M., K.H., A.M.S., D.F.), Stanford Cardiovascular Institute (M.J.W., E.M., K.J.M., J.B.K., F.H., Y.K., T.N., K.N., K.H., A.M.S., A.C.Y., A.M.L., D.C.M., M.F., W.F.F., D.F.), Division of Cardiovascular Medicine (J.B.K., F.H., Y.K., T.N., K.N., A.C.Y., W.F.F.), and Department of Cardiothoracic Surgery (A.M.L., D.C.M., M.F.), Stanford University School of Medicine, 300 Pasteur Dr, S-072, Stanford, CA 94305-5105; Department of Clinical Physiology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden (E.M.); and Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium (N.C., T.K.)
| | - William F Fearon
- Department of Radiology (M.J.W., E.M., K.H., A.M.S., D.F.), Stanford Cardiovascular Institute (M.J.W., E.M., K.J.M., J.B.K., F.H., Y.K., T.N., K.N., K.H., A.M.S., A.C.Y., A.M.L., D.C.M., M.F., W.F.F., D.F.), Division of Cardiovascular Medicine (J.B.K., F.H., Y.K., T.N., K.N., A.C.Y., W.F.F.), and Department of Cardiothoracic Surgery (A.M.L., D.C.M., M.F.), Stanford University School of Medicine, 300 Pasteur Dr, S-072, Stanford, CA 94305-5105; Department of Clinical Physiology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden (E.M.); and Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium (N.C., T.K.)
| | - Dominik Fleischmann
- Department of Radiology (M.J.W., E.M., K.H., A.M.S., D.F.), Stanford Cardiovascular Institute (M.J.W., E.M., K.J.M., J.B.K., F.H., Y.K., T.N., K.N., K.H., A.M.S., A.C.Y., A.M.L., D.C.M., M.F., W.F.F., D.F.), Division of Cardiovascular Medicine (J.B.K., F.H., Y.K., T.N., K.N., A.C.Y., W.F.F.), and Department of Cardiothoracic Surgery (A.M.L., D.C.M., M.F.), Stanford University School of Medicine, 300 Pasteur Dr, S-072, Stanford, CA 94305-5105; Department of Clinical Physiology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden (E.M.); and Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium (N.C., T.K.)
| |
Collapse
|
11
|
Emaus MJ, Išgum I, van Velzen SGM, van den Bongard HJGD, Gernaat SAM, Lessmann N, Sattler MGA, Teske AJ, Penninkhof J, Meijer H, Pignol JP, Verkooijen HM. Bragatston study protocol: a multicentre cohort study on automated quantification of cardiovascular calcifications on radiotherapy planning CT scans for cardiovascular risk prediction in patients with breast cancer. BMJ Open 2019; 9:e028752. [PMID: 31352417 PMCID: PMC6661654 DOI: 10.1136/bmjopen-2018-028752] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Cardiovascular disease (CVD) is an important cause of death in breast cancer survivors. Some breast cancer treatments including anthracyclines, trastuzumab and radiotherapy can increase the risk of CVD, especially for patients with pre-existing CVD risk factors. Early identification of patients at increased CVD risk may allow switching to less cardiotoxic treatments, active surveillance or treatment of CVD risk factors. One of the strongest independent CVD risk factors is the presence and extent of coronary artery calcifications (CAC). In clinical practice, CAC are generally quantified on ECG-triggered cardiac CT scans. Patients with breast cancer treated with radiotherapy routinely undergo radiotherapy planning CT scans of the chest, and those scans could provide the opportunity to routinely assess CAC before a potentially cardiotoxic treatment. The Bragatston study aims to investigate the association between calcifications in the coronary arteries, aorta and heart valves (hereinafter called 'cardiovascular calcifications') measured automatically on planning CT scans of patients with breast cancer and CVD risk. METHODS AND ANALYSIS In a first step, we will optimise and validate a deep learning algorithm for automated quantification of cardiovascular calcifications on planning CT scans of patients with breast cancer. Then, in a multicentre cohort study (University Medical Center Utrecht, Utrecht, Erasmus MC Cancer Institute, Rotterdam and Radboudumc, Nijmegen, The Netherlands), the association between cardiovascular calcifications measured on planning CT scans of patients with breast cancer (n≈16 000) and incident (non-)fatal CVD events will be evaluated. To assess the added predictive value of these calcifications over traditional CVD risk factors and treatment characteristics, a case-cohort analysis will be performed among all cohort members diagnosed with a CVD event during follow-up (n≈200) and a random sample of the baseline cohort (n≈600). ETHICS AND DISSEMINATION The Institutional Review Boards of the participating hospitals decided that the Medical Research Involving Human Subjects Act does not apply. Findings will be published in peer-reviewed journals and presented at conferences. TRIAL REGISTRATION NUMBER NCT03206333.
Collapse
Affiliation(s)
- Marleen J Emaus
- Imaging Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ivana Išgum
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sanne G M van Velzen
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Sofie A M Gernaat
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nikolas Lessmann
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Margriet G A Sattler
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Arco J Teske
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joan Penninkhof
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Hanneke Meijer
- Department of Radiation Oncology, Radboudumc, Nijmegen, The Netherlands
| | - Jean-Philippe Pignol
- Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Helena M Verkooijen
- Imaging Division, University Medical Center Utrecht, Utrecht, The Netherlands
- Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
12
|
Noncontrast Chest Computed Tomographic Imaging of Obesity and the Metabolic Syndrome. J Thorac Imaging 2019; 34:116-125. [DOI: 10.1097/rti.0000000000000391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
Dudink EAMP, Peeters FECM, Altintas S, Heckman LIB, Haest RJ, Kragten H, Kietselaer BLJH, Wildberger J, Luermans JGLM, Weijs B, Crijns HJGM. Agatston score of the descending aorta is independently associated with coronary events in a low-risk population. Open Heart 2018; 5:e000893. [PMID: 30564374 PMCID: PMC6269642 DOI: 10.1136/openhrt-2018-000893] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/03/2018] [Accepted: 11/10/2018] [Indexed: 12/31/2022] Open
Abstract
Objectives A standard coronary artery calcium scan includes part of the aorta. This additional information is often not included in routine analyses. We aimed to determine the feasibility of assessing the Agatston score of the descending aorta calcification (DAC) on standard coronary calcium scans and the association of this score with coronary events in a low-risk study population. Methods Between January 2008 and March 2011, 390 consecutive patients who were referred for cardiac CT as part of work-up for pulmonary vein isolation (n=115) or assessment of presence of coronary artery disease (n=275) were included. At baseline, all patients were free of a history of cardiovascular disease. Two independent observers determined the Agatston score of the ascending aorta and descending aorta. Results A total of 16 patients (4.1%) developed coronary events (acute coronary syndrome (n=6) and symptomatic significant coronary artery disease requiring treatment (n=10)) during a follow-up of 67±12 months, with more events in patients with calcifications in the descending aorta than in those without (8.4% vs 3.7 %; p=0.08). Multivariable Cox regression, corrected for Framingham Risk Score (FRS) and coronary Agatston score (CAC), revealed that DAC was independently associated with coronary events (per 100 units; HR: 1.06, 95% CI 1.02 to 1.09; p=0.001). DAC furthermore increased the identification of patients that will experience a coronary event (area under the curve: 0.68 for FRS only, 0.75 for FRS+CAC and 0.78 for FRS+CAC+DAC). Conclusions The Agatston score of the descending aorta could be included in the standard analysis of cardiac CT scans of low-risk patients since it holds valuable information for the prediction of coronary events.
Collapse
Affiliation(s)
- Elton A M P Dudink
- Department of Cardiology, Maastricht University Medical Center (MUMC+) and Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Frederique E C M Peeters
- Department of Cardiology, Maastricht University Medical Center (MUMC+) and Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Sibel Altintas
- Department of Cardiology, Maastricht University Medical Center (MUMC+) and Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Luuk I B Heckman
- Department of Cardiology, Maastricht University Medical Center (MUMC+) and Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Rutger J Haest
- Department of Cardiology, St. Anna Hospital, Geldrop, The Netherlands
| | - Hans Kragten
- Department of Cardiology, Zuyderland Medical Center, Heerlen, The Netherlands
| | - Bas L J H Kietselaer
- Department of Cardiology, Maastricht University Medical Center (MUMC+) and Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+) and Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Joachim Wildberger
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+) and Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Justin G L M Luermans
- Department of Cardiology, Maastricht University Medical Center (MUMC+) and Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Bob Weijs
- Department of Cardiology, Maastricht University Medical Center (MUMC+) and Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Harry J G M Crijns
- Department of Cardiology, Maastricht University Medical Center (MUMC+) and Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| |
Collapse
|
14
|
Malcolm KB, Dinwoodey DL, Cundiff MC, Regis SM, Kitts AKB, Wald C, Lynch ML, Al-Husami W, McKee AB, McKee BJ. Qualitative coronary artery calcium assessment on CT lung screening exam helps predict first cardiac events. J Thorac Dis 2018; 10:2740-2751. [PMID: 29997936 DOI: 10.21037/jtd.2018.04.76] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Results A total of 1,513 individuals underwent CTLS. Downstream data, pre-test cardiac risk factors and CAC scores were available for 88.3% (1,336/1,513). The average length of follow-up was 2.64 (SD ±0.72) years. There were a total of 43 events, occurring in 1.55% (6/386) of patients with mild CAC, 3.24% (11/339) of patients with moderate CAC, and 8.90% (26/292) of patients with marked CAC. There were no events among patients with no reported CAC (0/319). Using multivariable logistic modeling, the increased odds of an initial cardiac event was 2.56 (95% CI, 1.76-3.92, P<0.001) for mild CAC, 6.57 (95% CI, 3.10-15.4, P<0.001) for moderate CAC, and 16.8 (95% CI, 5.46-60.3, P<0.001) for marked CAC, as compared to individuals with no CAC. Time to event analysis showed distinct differences among the four CAC categories (P<0.001). Conclusions Qualitative coronary artery calcification scoring of CTLS exams may provide a novel method to help select individuals at elevated risk for an initial cardiac event.
Collapse
Affiliation(s)
- Katherine B Malcolm
- Department of Radiation Oncology, Radiology, Cardiology, Lahey Hospital & Medical Center, Burlington, MA, USA.,Department of Internal Medicine, University of California, San Francisco, CA, USA
| | - Danya L Dinwoodey
- Department of Radiation Oncology, Radiology, Cardiology, Lahey Hospital & Medical Center, Burlington, MA, USA
| | - Michael C Cundiff
- Department of Radiation Oncology, Radiology, Cardiology, Lahey Hospital & Medical Center, Burlington, MA, USA
| | - Shawn M Regis
- Department of Radiation Oncology, Radiology, Cardiology, Lahey Hospital & Medical Center, Burlington, MA, USA
| | - Andrea K Borondy Kitts
- Department of Radiation Oncology, Radiology, Cardiology, Lahey Hospital & Medical Center, Burlington, MA, USA
| | - Christoph Wald
- Department of Radiation Oncology, Radiology, Cardiology, Lahey Hospital & Medical Center, Burlington, MA, USA
| | - Miranda L Lynch
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Wael Al-Husami
- Department of Radiation Oncology, Radiology, Cardiology, Lahey Hospital & Medical Center, Burlington, MA, USA
| | - Andrea B McKee
- Department of Radiation Oncology, Radiology, Cardiology, Lahey Hospital & Medical Center, Burlington, MA, USA
| | - Brady J McKee
- Department of Radiation Oncology, Radiology, Cardiology, Lahey Hospital & Medical Center, Burlington, MA, USA
| |
Collapse
|
15
|
Lessmann N, van Ginneken B, Zreik M, de Jong PA, de Vos BD, Viergever MA, Isgum I. Automatic Calcium Scoring in Low-Dose Chest CT Using Deep Neural Networks With Dilated Convolutions. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:615-625. [PMID: 29408789 DOI: 10.1109/tmi.2017.2769839] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Heavy smokers undergoing screening with low-dose chest CT are affected by cardiovascular disease as much as by lung cancer. Low-dose chest CT scans acquired in screening enable quantification of atherosclerotic calcifications and thus enable identification of subjects at increased cardiovascular risk. This paper presents a method for automatic detection of coronary artery, thoracic aorta, and cardiac valve calcifications in low-dose chest CT using two consecutive convolutional neural networks. The first network identifies and labels potential calcifications according to their anatomical location and the second network identifies true calcifications among the detected candidates. This method was trained and evaluated on a set of 1744 CT scans from the National Lung Screening Trial. To determine whether any reconstruction or only images reconstructed with soft tissue filters can be used for calcification detection, we evaluated the method on soft and medium/sharp filter reconstructions separately. On soft filter reconstructions, the method achieved F1 scores of 0.89, 0.89, 0.67, and 0.55 for coronary artery, thoracic aorta, aortic valve, and mitral valve calcifications, respectively. On sharp filter reconstructions, the F1 scores were 0.84, 0.81, 0.64, and 0.66, respectively. Linearly weighted kappa coefficients for risk category assignment based on per subject coronary artery calcium were 0.91 and 0.90 for soft and sharp filter reconstructions, respectively. These results demonstrate that the presented method enables reliable automatic cardiovascular risk assessment in all low-dose chest CT scans acquired for lung cancer screening.
Collapse
|
16
|
Automatic Coronary Artery Calcium Scoring on Radiotherapy Planning CT Scans of Breast Cancer Patients: Reproducibility and Association with Traditional Cardiovascular Risk Factors. PLoS One 2016; 11:e0167925. [PMID: 27936125 PMCID: PMC5148008 DOI: 10.1371/journal.pone.0167925] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/22/2016] [Indexed: 01/07/2023] Open
Abstract
Objectives Coronary artery calcium (CAC) is a strong and independent predictor of cardiovascular disease (CVD) risk. This study assesses reproducibility of automatic CAC scoring on radiotherapy planning computed tomography (CT) scans of breast cancer patients, and examines its association with traditional cardiovascular risk factors. Methods This study included 561 breast cancer patients undergoing radiotherapy between 2013 and 2015. CAC was automatically scored with an algorithm using supervised pattern recognition, expressed as Agatston scores and categorized into five categories (0, 1–10, 11–100, 101–400, >400). Reproducibility between automatic and manual expert scoring was assessed in 79 patients with automatically determined CAC above zero and 84 randomly selected patients without automatically determined CAC. Interscan reproducibility of automatic scoring was assessed in 294 patients having received two scans (82% on the same day). Association between CAC and CVD risk factors was assessed in 36 patients with CAC scores >100, 72 randomly selected patients with scores 1–100, and 72 randomly selected patients without CAC. Reliability was assessed with linearly weighted kappa and agreement with proportional agreement. Results 134 out of 561 (24%) patients had a CAC score above zero. Reliability of CVD risk categorization between automatic and manual scoring was 0.80 (95% Confidence Interval (CI): 0.74–0.87), and slightly higher for scans with breath-hold. Agreement was 0.79 (95% CI: 0.72–0.85). Interscan reliability was 0.61 (95% CI: 0.50–0.72) with an agreement of 0.84 (95% CI: 0.80–0.89). Ten out of 36 (27.8%) patients with CAC scores above 100 did not have other cardiovascular risk factors. Conclusions Automatic CAC scoring on radiotherapy planning CT scans is a reliable method to assess CVD risk based on Agatston scores. One in four breast cancer patients planned for radiotherapy have elevated CAC score. One in three patients with high CAC scores don't have other CVD risk factors and wouldn't have been identified as high risk.
Collapse
|