1
|
Ko SM. Current Status of Cardiac CT for Nuclear Medicine Professionals: Coronary Artery Disease Evaluation. Nucl Med Mol Imaging 2024; 58:418-430. [PMID: 39635633 PMCID: PMC11612094 DOI: 10.1007/s13139-024-00859-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/08/2024] [Accepted: 03/29/2024] [Indexed: 12/07/2024] Open
Abstract
With advances in computed tomography (CT) technology over the past two decades, cardiac CT has become a noninvasive diagnostic tool for morphological evaluation of coronary artery disease (CAD) caused by atherosclerotic plaques and stenosis and serves as a "gatekeeper" before invasive coronary angiography. Additionally, cardiac CT stress perfusion and CT-derived fractional flow reserve can be used to assess the hemodynamic significance of coronary artery stenosis. Delayed enhancement CT can detect and localize myocardial infarction and assess myocardial viability. Currently, cardiac CT serves as a potential "one-stop-shop" imaging modality for the comprehensive assessment of patients with suspected or known CAD by providing analysis of coronary anatomy, functional significance, and characterization of left ventricular myocardium in a single session. It is crucial for nuclear medicine professionals to be aware of the current capability of cardiac CT and its ability to perform comprehensive and accurate nuclear cardiac imaging studies, which are essential for functional assessment of CAD.
Collapse
Affiliation(s)
- Sung Min Ko
- Department of Radiology, Wonju Severance Christian Hospital, Yonsei University School of Medicine, Ilsan-ro 20, Wonju, 26426 Korea
| |
Collapse
|
2
|
Mironova OI, Isaev GO, Berdysheva MV, Shakhnovich RM, Fomin VV. [Modern methods of assessment of physiological significance of coronary lesions: A review]. TERAPEVT ARKH 2023; 95:472053. [PMID: 38158983 DOI: 10.26442/00403660.2023.04.202169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 01/03/2024]
Abstract
The article describes the main methods of assessment of physiological significance of coronary artery stenoses, their use in clinical practice and future perspectives. New diagnostic methods that are currently under research are discussed.
Collapse
Affiliation(s)
- O I Mironova
- Sechenov First Moscow State Medical University (Sechenov University)
| | - G O Isaev
- Sechenov First Moscow State Medical University (Sechenov University)
| | - M V Berdysheva
- Sechenov First Moscow State Medical University (Sechenov University)
| | | | - V V Fomin
- Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
3
|
Cury RC, Leipsic J, Abbara S, Achenbach S, Berman D, Bittencourt M, Budoff M, Chinnaiyan K, Choi AD, Ghoshhajra B, Jacobs J, Koweek L, Lesser J, Maroules C, Rubin GD, Rybicki FJ, Shaw LJ, Williams MC, Williamson E, White CS, Villines TC, Blankstein R. CAD-RADS™ 2.0 - 2022 Coronary Artery Disease-Reporting and Data System: An Expert Consensus Document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Cardiology (ACC), the American College of Radiology (ACR), and the North America Society of Cardiovascular Imaging (NASCI). JACC Cardiovasc Imaging 2022; 15:1974-2001. [PMID: 36115815 DOI: 10.1016/j.jcmg.2022.07.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/10/2022] [Accepted: 07/02/2022] [Indexed: 12/14/2022]
Abstract
Coronary Artery Disease Reporting and Data System (CAD-RADS) was created to standardize reporting system for patients undergoing coronary CT angiography (CCTA) and to guide possible next steps in patient management. The goal of this updated 2022 CAD-RADS 2.0 is to improve the initial reporting system for CCTA by considering new technical developments in cardiac CT, including data from recent clinical trials and new clinical guidelines. The updated CAD-RADS classification will follow an established framework of stenosis, plaque burden, and modifiers, which will include assessment of lesion-specific ischemia using CT fractional-flow-reserve (CT-FFR) or myocardial CT perfusion (CTP), when performed. Similar to the method used in the original CAD-RADS version, the determinant for stenosis severity classification will be the most severe coronary artery luminal stenosis on a per-patient basis, ranging from CAD-RADS 0 (zero) for absence of any plaque or stenosis to CAD-RADS 5 indicating the presence of at least one totally occluded coronary artery. Given the increasing data supporting the prognostic relevance of coronary plaque burden, this document will provide various methods to estimate and report total plaque burden. The addition of P1 to P4 descriptors are used to denote increasing categories of plaque burden. The main goal of CAD-RADS, which should always be interpreted together with the impression found in the report, remains to facilitate communication of test results with referring physicians along with suggestions for subsequent patient management. In addition, CAD-RADS will continue to provide a framework of standardization that may benefit education, research, peer-review, artificial intelligence development, clinical trial design, population health and quality assurance with the ultimate goal of improving patient care.
Collapse
Affiliation(s)
- Ricardo C Cury
- Miami Cardiac and Vascular Institute and Baptist Health of South Florida, Miami, Florida, USA.
| | - Jonathon Leipsic
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Suhny Abbara
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Stephan Achenbach
- Friedrich-Alexander-Universität, Department of Cardiology, Erlangen, Germany
| | - Daniel Berman
- Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Marcio Bittencourt
- Division of Cardiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Matthew Budoff
- David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | | | - Andrew D Choi
- The George Washington University School of Medicine, Washington, DC, USA
| | - Brian Ghoshhajra
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jill Jacobs
- NYU Langone Medical Center, New York, New York, USA
| | - Lynne Koweek
- Department of Radiology, Duke University, Durham, North Carolina, USA
| | - John Lesser
- Division of Cardiology, Minneapolis Heart Institute, Minneapolis, Minnesota, USA
| | | | - Geoffrey D Rubin
- Department of Medical Imaging, University of Arizona, Tucson, Arizona, USA
| | - Frank J Rybicki
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Leslee J Shaw
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Eric Williamson
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Todd C Villines
- Division of Cardiology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Ron Blankstein
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
4
|
Cury RC, Leipsic J, Abbara S, Achenbach S, Berman D, Bittencourt M, Budoff M, Chinnaiyan K, Choi AD, Ghoshhajra B, Jacobs J, Koweek L, Lesser J, Maroules C, Rubin GD, Rybicki FJ, Shaw LJ, Williams MC, Williamson E, White CS, Villines TC, Blankstein R. CAD-RADS™ 2.0 - 2022 Coronary Artery Disease - Reporting and Data System.: An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Cardiology (ACC), the American College of Radiology (ACR) and the North America Society of Cardiovascular Imaging (NASCI). J Am Coll Radiol 2022; 19:1185-1212. [PMID: 36436841 DOI: 10.1016/j.jacr.2022.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Coronary Artery Disease Reporting and Data System (CAD-RADS) was created to standardize reporting system for patients undergoing coronary CT angiography (CCTA) and to guide possible next steps in patient management. The goal of this updated 2022 CAD-RADS 2.0 is to improve the initial reporting system for CCTA by considering new technical developments in Cardiac CT, including data from recent clinical trials and new clinical guidelines. The updated CAD-RADS classification will follow an established framework of stenosis, plaque burden, and modifiers, which will include assessment of lesion-specific ischemia using CT fractional-flow-reserve (CT-FFR) or myocardial CT perfusion (CTP), when performed. Similar to the method used in the original CAD-RADS version, the determinant for stenosis severity classification will be the most severe coronary artery luminal stenosis on a per-patient basis, ranging from CAD-RADS 0 (zero) for absence of any plaque or stenosis to CAD-RADS 5 indicating the presence of at least one totally occluded coronary artery. Given the increasing data supporting the prognostic relevance of coronary plaque burden, this document will provide various methods to estimate and report total plaque burden. The addition of P1 to P4 descriptors are used to denote increasing categories of plaque burden. The main goal of CAD-RADS, which should always be interpreted together with the impression found in the report, remains to facilitate communication of test results with referring physicians along with suggestions for subsequent patient management. In addition, CAD-RADS will continue to provide a framework of standardization that may benefit education, research, peer-review, artificial intelligence development, clinical trial design, population health and quality assurance with the ultimate goal of improving patient care.
Collapse
Affiliation(s)
- Ricardo C Cury
- Miami Cardiac and Vascular Institute and Baptist Health of South Florida, 8900 N Kendall Drive, Miami FL, 33176, USA.
| | - Jonathon Leipsic
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Suhny Abbara
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Stephan Achenbach
- Friedrich-Alexander-Universität, Department of Cardiology, Erlangen, Germany
| | | | | | - Matthew Budoff
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | | | - Andrew D Choi
- The George Washington University School of Medicine, Washington, DC, USA
| | - Brian Ghoshhajra
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Jill Jacobs
- NYU Langone Medical Center, New York, NY, USA
| | - Lynne Koweek
- Department of Radiology, Duke University, Durham, NC, USA
| | - John Lesser
- Division of Cardiology, Minneapolis Heart Institute, Minneapolis, MN, USA
| | | | - Geoffrey D Rubin
- Department of Medical Imaging, University of Arizona, Tucson, AZ, USA
| | - Frank J Rybicki
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Leslee J Shaw
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | - Todd C Villines
- Division of Cardiology, University of Virginia Health System, Charlottesville, VA, USA
| | - Ron Blankstein
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Cury RC, Leipsic J, Abbara S, Achenbach S, Berman D, Bittencourt M, Budoff M, Chinnaiyan K, Choi AD, Ghoshhajra B, Jacobs J, Koweek L, Lesser J, Maroules C, Rubin GD, Rybicki FJ, Shaw LJ, Williams MC, Williamson E, White CS, Villines TC, Blankstein R. CAD-RADS™ 2.0 - 2022 Coronary Artery Disease-Reporting and Data System: An Expert Consensus Document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Cardiology (ACC), the American College of Radiology (ACR), and the North America Society of Cardiovascular Imaging (NASCI). J Cardiovasc Comput Tomogr 2022; 16:536-557. [PMID: 35864070 DOI: 10.1016/j.jcct.2022.07.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/10/2022] [Accepted: 07/02/2022] [Indexed: 12/14/2022]
Abstract
Coronary Artery Disease Reporting and Data System (CAD-RADS) was created to standardize reporting system for patients undergoing coronary CT angiography (CCTA) and to guide possible next steps in patient management. The goal of this updated 2022 CAD-RADS 2.0 is to improve the initial reporting system for CCTA by considering new technical developments in Cardiac CT, including data from recent clinical trials and new clinical guidelines. The updated CAD-RADS classification will follow an established framework of stenosis, plaque burden, and modifiers, which will include assessment of lesion-specific ischemia using CT fractional-flow-reserve (CT-FFR) or myocardial CT perfusion (CTP), when performed. Similar to the method used in the original CAD-RADS version, the determinant for stenosis severity classification will be the most severe coronary artery luminal stenosis on a per-patient basis, ranging from CAD-RADS 0 (zero) for absence of any plaque or stenosis to CAD-RADS 5 indicating the presence of at least one totally occluded coronary artery. Given the increasing data supporting the prognostic relevance of coronary plaque burden, this document will provide various methods to estimate and report total plaque burden. The addition of P1 to P4 descriptors are used to denote increasing categories of plaque burden. The main goal of CAD-RADS, which should always be interpreted together with the impression found in the report, remains to facilitate communication of test results with referring physicians along with suggestions for subsequent patient management. In addition, CAD-RADS will continue to provide a framework of standardization that may benefit education, research, peer-review, artificial intelligence development, clinical trial design, population health and quality assurance with the ultimate goal of improving patient care.
Collapse
Affiliation(s)
- Ricardo C Cury
- Miami Cardiac and Vascular Institute and Baptist Health of South Florida, Miami FL, USA.
| | - Jonathon Leipsic
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Suhny Abbara
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Stephan Achenbach
- Friedrich-Alexander-Universität, Department of Cardiology, Erlangen, Germany
| | | | | | - Matthew Budoff
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | | | - Andrew D Choi
- The George Washington University School of Medicine, Washington, DC, USA
| | - Brian Ghoshhajra
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Jill Jacobs
- NYU Langone Medical Center, New York, NY, USA
| | - Lynne Koweek
- Department of Radiology, Duke University, Durham, NC, USA
| | - John Lesser
- Division of Cardiology, Minneapolis Heart Institute, Minneapolis, MN, USA
| | | | - Geoffrey D Rubin
- Department of Medical Imaging, University of Arizona, Tucson, AZ, USA
| | - Frank J Rybicki
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Leslee J Shaw
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | - Todd C Villines
- Division of Cardiology, University of Virginia Health System, Charlottesville, VA, USA
| | - Ron Blankstein
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Cury RC, Leipsic J, Abbara S, Achenbach S, Berman D, Bittencourt M, Budoff M, Chinnaiyan K, Choi AD, Ghoshhajra B, Jacobs J, Koweek L, Lesser J, Maroules C, Rubin GD, Rybicki FJ, Shaw LJ, Williams MC, Williamson E, White CS, Villines TC, Blankstein R. CAD-RADS™ 2.0 - 2022 Coronary Artery Disease - Reporting and Data System An Expert Consensus Document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Cardiology (ACC), the American College of Radiology (ACR) and the North America Society of Cardiovascular Imaging (NASCI). Radiol Cardiothorac Imaging 2022; 4:e220183. [PMID: 36339062 PMCID: PMC9627235 DOI: 10.1148/ryct.220183] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/10/2022] [Accepted: 07/02/2022] [Indexed: 06/16/2023]
Abstract
Coronary Artery Disease Reporting and Data System (CAD-RADS) was created to standardize reporting system for patients undergoing coronary CT angiography (CCTA) and to guide possible next steps in patient management. The goal of this updated 2022 CAD-RADS 2.0 is to improve the initial reporting system for CCTA by considering new technical developments in Cardiac CT, including data from recent clinical trials and new clinical guidelines. The updated CAD-RADS classification will follow an established framework of stenosis, plaque burden, and modifiers, which will include assessment of lesion-specific ischemia using CT fractional-flow-reserve (CT-FFR) or myocardial CT perfusion (CTP), when performed. Similar to the method used in the original CAD-RADS version, the determinant for stenosis severity classification will be the most severe coronary artery luminal stenosis on a per-patient basis, ranging from CAD-RADS 0 (zero) for absence of any plaque or stenosis to CAD-RADS 5 indicating the presence of at least one totally occluded coronary artery. Given the increasing data supporting the prognostic relevance of coronary plaque burden, this document will provide various methods to estimate and report total plaque burden. The addition of P1 to P4 descriptors are used to denote increasing categories of plaque burden. The main goal of CAD-RADS, which should always be interpreted together with the impression found in the report, remains to facilitate communication of test results with referring physicians along with suggestions for subsequent patient management. In addition, CAD-RADS will continue to provide a framework of standardization that may benefit education, research, peer-review, artificial intelligence development, clinical trial design, population health and quality assurance with the ultimate goal of improving patient care. Keywords: Coronary Artery Disease, Coronary CTA, CAD-RADS, Reporting and Data System, Stenosis Severity, Report Standardization Terminology, Plaque Burden, Ischemia Supplemental material is available for this article. This article is published synchronously in Radiology: Cardiothoracic Imaging, Journal of Cardiovascular Computed Tomography, JACC: Cardiovascular Imaging, Journal of the American College of Radiology, and International Journal for Cardiovascular Imaging. © 2022 Society of Cardiovascular Computed Tomography. Published by RSNA with permission.
Collapse
Affiliation(s)
- Ricardo C. Cury
- Miami Cardiac and Vascular Institute and Baptist Health of South
Florida, 8900 N Kendall Drive, Miami FL, 33176, USA
| | | | - Suhny Abbara
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX,
USA
| | - Stephan Achenbach
- Friedrich-Alexander-Universität, Department of Cardiology,
Ulmenweg 18, 90154, Erlangen, Germany
| | | | | | | | | | - Andrew D. Choi
- The George Washington University School of Medicine, USA
| | | | - Jill Jacobs
- NYU Langone Medical Center, 550 First Avenue, New York, NY, 10016,
USA
| | | | - John Lesser
- Division of Cardiology, Minneapolis Heart Institute, USA
| | | | | | - Frank J. Rybicki
- Department of Radiology, University of Cincinnati College of
Medicine, USA
| | | | | | | | | | - Todd C. Villines
- Division of Cardiology, University of Virginia Health System,
USA
| | - Ron Blankstein
- Brigham and Women's Hospital, Harvard Medical School,
USA
| |
Collapse
|
7
|
A Multimodality Myocardial Perfusion Phantom: Initial Quantitative Imaging Results. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9090436. [PMID: 36134982 PMCID: PMC9495397 DOI: 10.3390/bioengineering9090436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/21/2022] [Accepted: 08/28/2022] [Indexed: 11/28/2022]
Abstract
This proof-of-concept study explores the multimodal application of a dedicated cardiac flow phantom for ground truth contrast measurements in dynamic myocardial perfusion imaging with CT, PET/CT, and MRI. A 3D-printed cardiac flow phantom and flow circuit mimics the shape of the left ventricular cavity (LVC) and three myocardial regions. The regions are filled with tissue-mimicking materials and the flow circuit regulates and measures contrast flow through LVC and myocardial regions. Normal tissue perfusion and perfusion deficits were simulated. Phantom measurements in PET/CT, CT, and MRI were evaluated with clinically used hardware and software. The reference arterial input flow was 4.0 L/min and myocardial flow 80 mL/min, corresponding to myocardial blood flow (MBF) of 1.6 mL/g/min. The phantom demonstrated successful completion of all processes involved in quantitative, multimodal myocardial perfusion imaging (MPI) applications. Contrast kinetics in time intensity curves were in line with expectations for a mimicked perfusion deficit (38 s vs. 32 s in normal tissue). Derived MBF in PET/CT and CT led to under- and overestimation of reference flow of 0.9 mL/g/min and 4.5 mL/g/min, respectively. Simulated perfusion deficit (0.8 mL/g/min) in CT resulted in MBF of 2.8 mL/g/min. We successfully performed initial, quantitative perfusion measurements with a dedicated phantom setup utilizing clinical hardware and software. These results showcase the multimodal phantom’s potential.
Collapse
|
8
|
Coronary Computer Tomography Angiography in 2021-Acquisition Protocols, Tips and Tricks and Heading beyond the Possible. Diagnostics (Basel) 2021; 11:diagnostics11061072. [PMID: 34200866 PMCID: PMC8230532 DOI: 10.3390/diagnostics11061072] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 01/09/2023] Open
Abstract
Recent technological advances, together with an increasing body of evidence from randomized trials, have placed coronary computer tomography angiography (CCTA) in the center of the diagnostic workup of patients with coronary artery disease. The method was proven reliable in the diagnosis of relevant coronary artery stenosis. Furthermore, it can identify different stages of the atherosclerotic process, including early atherosclerotic changes of the coronary vessel wall, a quality not met by other non-invasive tests. In addition, newer computational software can measure the hemodynamic relevance (fractional flow reserve) of a certain stenosis. In addition, if required, information related to cardiac and valvular function can be provided with specific protocols. Importantly, recent trials have highlighted the prognostic relevance of CCTA in patients with coronary artery disease, which helped establishing CCTA as the first-line method for the diagnostic work-up of such patients in current guidelines. All this can be gathered in one relatively fast examination with minimal discomfort for the patient and, with newer machines, with very low radiation exposure. Herein, we provide an overview of the current technical aspects, indications, pitfalls, and new horizons with CCTA, providing examples from our own clinical practice.
Collapse
|
9
|
Sundell VM, Kortesniemi M, Siiskonen T, Kosunen A, Rosendahl S, Büermann L. PATIENT-SPECIFIC DOSE ESTIMATES IN DYNAMIC COMPUTED TOMOGRAPHY MYOCARDIAL PERFUSION EXAMINATION. RADIATION PROTECTION DOSIMETRY 2021; 193:24-36. [PMID: 33693932 PMCID: PMC8227483 DOI: 10.1093/rpd/ncab016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/09/2020] [Accepted: 01/26/2021] [Indexed: 05/07/2023]
Abstract
The study aimed to implement realistic source models of a computed tomography (CT) scanner and Monte Carlo simulations to actual patient data and to calculate patient-specific organ and effective dose estimates for patients undergoing dynamic CT myocardial perfusion examinations. Source models including bowtie filter, tube output and x-ray spectra were determined for a dual-source Siemens Somatom Definition Flash scanner. Twenty CT angiography patient datasets were merged with a scaled International Commission on Radiological Protection (ICRP) 110 voxel phantom. Dose simulations were conducted with ImpactMC software. Effective dose estimates varied from 5.0 to 14.6 mSv for the 80 kV spectrum and from 8.9 to 24.7 mSv for the 100 kV spectrum. Significant differences in organ doses and effective doses between patients emphasise the need to use actual patient data merged with matched anthropomorphic anatomy in the dose simulations to achieve a reasonable level of accuracy in the dose estimation procedure.
Collapse
Affiliation(s)
- V-M Sundell
- HUS Medical Imaging Center, Helsinki University Central Hospital, Helsinki, Uusimaa, Finland
- Department of Physics, University of Helsinki, P.O. Box 64, 00014 University of Helsinki, Finland
| | - M Kortesniemi
- HUS Medical Imaging Center, Helsinki University Central Hospital, Helsinki, Uusimaa, Finland
| | - T Siiskonen
- STUK-Radiation and Nuclear Safety Authority, Laippatie 4, Helsinki 00880, Finland
| | - A Kosunen
- STUK-Radiation and Nuclear Safety Authority, Laippatie 4, Helsinki 00880, Finland
| | - S Rosendahl
- Department 6.2 Dosimetry for radiation therapy and diagnostic radiology, Physikalisch-Technische Bundesanstalt, Bundesallee 100, Braunschweig 38116, Germany
| | - L Büermann
- Department 6.2 Dosimetry for radiation therapy and diagnostic radiology, Physikalisch-Technische Bundesanstalt, Bundesallee 100, Braunschweig 38116, Germany
| |
Collapse
|
10
|
Grandhi GR, Batlle JC, Maroules CD, Janowitz W, Peña CS, Ziffer JA, Macedo R, Nasir K, Cury RC. Combined stress myocardial CT perfusion and coronary CT angiography as a feasible strategy among patients presenting with acute chest pain to the emergency department. J Cardiovasc Comput Tomogr 2020; 15:129-136. [PMID: 32807703 DOI: 10.1016/j.jcct.2020.06.195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/30/2020] [Accepted: 06/13/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND A combined approach of myocardial CT perfusion (CTP) with coronary CT angiography (CTA) was shown to have better diagnostic accuracy than coronary CTA alone. However, data on cost benefits and length of stay when compared to other perfusion imaging modalities has not been evaluated. Therefore, we aim to perform a feasibility study to assess direct costs and length of stay of a combined stress CTP/CTA and use SPECT myocardial perfusion imaging (SPECT-MPI) as a benchmark, among chest pain patients at intermediate-risk for acute coronary syndrome (ACS) presenting to the emergency department (ED). METHODS This is a prospective two-arm clinical trial (NCT02538861) with 43 patients enrolled in stress CTP/CTA arm (General Electric Revolution CT) and 102 in SPECT-MPI arm. Mean age of the study population was 65 ± 12 years; 56% were men. We used multivariable linear regression analysis to compare length of stay and direct costs between the two modalities. RESULTS Overall, 9 out of the 43 patients (21%) with CTP/CTA testing had an abnormal test. Of these 9 patients, 7 patients underwent invasive coronary angiography and 6 patients were found to have obstructive coronary artery disease. Normal CTP/CTA test was found in 34 patients (79%), who were discharged home and all patients were free of major adverse cardiac events at 30 days. The mean length of stay was significantly shorter by 28% (mean difference: 14.7 h; 95% CI: 0.7, 21) among stress CTP/CTA (20 h [IQR: 16, 37]) compared to SPECT-MPI (30 h [IQR: 19, 44.5]). Mean direct costs were significantly lower by 44% (mean difference: $1535; 95% CI: 987, 2082) among stress CTA/CTP ($1750 [IQR: 1474, 2114] compared to SPECT-MPI ($2837 [IQR: 2491, 3554]). CONCLUSION Combined stress CTP/CTA is a feasible strategy for evaluation of chest pain patients presenting to ED at intermediate-risk for ACS and has the potential to lead to shorter length of stay and lower direct costs.
Collapse
Affiliation(s)
- Gowtham R Grandhi
- Miami Cardiac & Vascular Institute, Baptist Health South Florida, Miami, FL, USA; Department of Medicine, MedStar Union Memorial Hospital, Baltimore, MD, USA
| | - Juan C Batlle
- Miami Cardiac & Vascular Institute, Baptist Health South Florida, Miami, FL, USA; Department of Radiology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | | | - Warren Janowitz
- Miami Cardiac & Vascular Institute, Baptist Health South Florida, Miami, FL, USA; Department of Radiology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Constantino S Peña
- Miami Cardiac & Vascular Institute, Baptist Health South Florida, Miami, FL, USA; Department of Radiology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Jack A Ziffer
- Miami Cardiac & Vascular Institute, Baptist Health South Florida, Miami, FL, USA; Department of Radiology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Robson Macedo
- Miami Cardiac & Vascular Institute, Baptist Health South Florida, Miami, FL, USA; Department of Radiology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Khurram Nasir
- Division of Cardiovascular Prevention & Wellness, Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist, Houston, TX, USA; Center for Outcomes Research, Houston Methodist, Houston, TX, USA
| | - Ricardo C Cury
- Miami Cardiac & Vascular Institute, Baptist Health South Florida, Miami, FL, USA; Department of Radiology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| |
Collapse
|
11
|
Kang EJ. Clinical Applications of Wide-Detector CT Scanners for Cardiothoracic Imaging: An Update. Korean J Radiol 2020; 20:1583-1596. [PMID: 31854147 PMCID: PMC6923215 DOI: 10.3348/kjr.2019.0327] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/23/2019] [Indexed: 12/21/2022] Open
Abstract
Technical developments in multidetector computed tomography (CT) have increased the number of detector rows on the z-axis, and 16-cm wide-area-coverage CT scanners have enabled volumetric scanning of the entire heart. Beyond coronary arterial imaging, such innovations offer several advantages during clinical imaging in the cardiothoracic area. The wide-detector CT scanner markedly reduces the image acquisition time to less than 1 second for coronary CT angiography, thereby decreasing the volume of contrast material and radiation dose required for the examination. It also eliminates stair-step artifacts, allowing robust improvements in myocardial function and perfusion imaging. Additionally, new imaging techniques for the cardiothoracic area, including subtraction imaging and free-breathing scans, have been developed and further improved by using the wide-detector CT scanner. This article investigates the technical developments in wide-detector CT scanners, summarizes their clinical applications in the cardiothoracic area, and provides a review of the recent literature.
Collapse
Affiliation(s)
- Eun Ju Kang
- Department of Radiology, College of Medicine, Dong-A University, Busan, Korea.
| |
Collapse
|
12
|
Dynamic CT perfusion imaging for type 2 endoleak assessment after endograft placement. Med Hypotheses 2020; 139:109701. [DOI: 10.1016/j.mehy.2020.109701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/21/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022]
|
13
|
Andreini D, Mushtaq S, Pontone G, Conte E, Collet C, Sonck J, D’Errico A, Di Odoardo L, Guglielmo M, Baggiano A, Trabattoni D, Ravagnani P, Montorsi P, Teruzzi G, Olivares P, Fabbiocchi F, De Martini S, Calligaris G, Annoni A, Mancini ME, Formenti A, Magatelli M, Consiglio E, Muscogiuri G, Lombardi F, Fiorentini C, Bartorelli AL, Pepi M. CT Perfusion Versus Coronary CT Angiography in Patients With Suspected In-Stent Restenosis or CAD Progression. JACC Cardiovasc Imaging 2020; 13:732-742. [DOI: 10.1016/j.jcmg.2019.05.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 11/28/2022]
|
14
|
Ko SM. Evaluation of Myocardial Ischemia Using Coronary Computed Tomography Angiography in Patients with Stable Angina. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2020; 81:250-271. [PMID: 36237390 PMCID: PMC9431814 DOI: 10.3348/jksr.2020.81.2.250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/20/2020] [Accepted: 03/29/2020] [Indexed: 11/20/2022]
Abstract
안정형 협심증 환자에서 관상동맥질환의 치료 여부를 결정하고 임상 결과를 예측하기 위해서는 심근허혈의 평가가 중요하다. 현재 심근허혈 진단의 표준검사법으로 분획혈류예비력 검사법이 인정되나 침습적 검사라는 제한점이 있다. 또한, 관상동맥 전산화단층촬영은 형태적인 관상동맥질환 진단에 유용한 방법으로 정립되었지만, 혈역학적으로 유의한 협착에 의한 심근허혈 진단에는 한계가 있다. 최근 이러한 문제를 해결하고자 관상동맥 전산화단층촬영 영상을 기반으로 측정한 관상동맥 죽상경화판의 정량화, 심근관류, 그리고 심근 분획혈류예비력을 이용한 연구들이 진행되어 왔고, 그 진단적 가치를 점차 인정받고 있다. 본 종설에서는 심근허혈진단과 관련된 관상동맥 전산화단층촬영 혈관조영술의 여러 영상기법들에 대해서 알아보고자 한다.
Collapse
Affiliation(s)
- Sung Min Ko
- Department of Radiology, Yonsei University Wonju College of Medicine, Wonju Severance Christian Hospital, Wonju, Korea
| |
Collapse
|
15
|
Reference parameters for left ventricular wall thickness, thickening, and motion in stress myocardial perfusion CT: Global and regional assessment. Clin Imaging 2019; 56:81-87. [DOI: 10.1016/j.clinimag.2019.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 02/11/2019] [Accepted: 04/09/2019] [Indexed: 11/23/2022]
|
16
|
Galanakis N, Maris TG, Kontopodis N, Ioannou CV, Kehagias E, Matthaiou N, Papadakis AE, Hatzidakis A, Perisinakis K, Tsetis D. CT Foot Perfusion Examination for Evaluation of Percutaneous Transluminal Angioplasty Outcome in Patients with Critical Limb Ischemia: A Feasibility Study. J Vasc Interv Radiol 2019; 30:560-568. [DOI: 10.1016/j.jvir.2018.10.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 10/27/2022] Open
|
17
|
Ischemic burden assessment of myocardial perfusion CT, compared with SPECT using semi-quantitative and quantitative approaches. Int J Cardiol 2019; 278:287-294. [DOI: 10.1016/j.ijcard.2018.12.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/28/2018] [Accepted: 12/13/2018] [Indexed: 01/14/2023]
|
18
|
|
19
|
|