1
|
Baba Ali N, Attaripour Esfahani S, Scalia IG, Farina JM, Pereyra M, Barry T, Lester SJ, Alsidawi S, Steidley DE, Ayoub C, Palermi S, Arsanjani R. The Role of Cardiovascular Imaging in the Diagnosis of Athlete's Heart: Navigating the Shades of Grey. J Imaging 2024; 10:230. [PMID: 39330450 PMCID: PMC11433181 DOI: 10.3390/jimaging10090230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/12/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
Athlete's heart (AH) represents the heart's remarkable ability to adapt structurally and functionally to prolonged and intensive athletic training. Characterized by increased left ventricular (LV) wall thickness, enlarged cardiac chambers, and augmented cardiac mass, AH typically maintains or enhances systolic and diastolic functions. Despite the positive health implications, these adaptations can obscure the difference between benign physiological changes and early manifestations of cardiac pathologies such as dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), and arrhythmogenic cardiomyopathy (ACM). This article reviews the imaging characteristics of AH across various modalities, emphasizing echocardiography, cardiac magnetic resonance (CMR), and cardiac computed tomography as primary tools for evaluating cardiac function and distinguishing physiological adaptations from pathological conditions. The findings highlight the need for precise diagnostic criteria and advanced imaging techniques to ensure accurate differentiation, preventing misdiagnosis and its associated risks, such as sudden cardiac death (SCD). Understanding these adaptations and employing the appropriate imaging methods are crucial for athletes' effective management and health optimization.
Collapse
Affiliation(s)
- Nima Baba Ali
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA
| | | | - Isabel G. Scalia
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Juan M. Farina
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Milagros Pereyra
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Timothy Barry
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Steven J. Lester
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Said Alsidawi
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA
| | - David E. Steidley
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Chadi Ayoub
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Stefano Palermi
- Public Health Department, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy;
| | - Reza Arsanjani
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA
| |
Collapse
|
2
|
Colne E, Pace N, Fraix A, Gauthier F, Selton-Suty C, Chenuel B, Sadoul N, Girerd N, Lamiral Z, Felloni J, Djaballah K, Filippetti L, Huttin O. Advanced myocardial deformation echocardiography for evaluation of the athlete's heart: Functional and mechanistic analysis. Arch Cardiovasc Dis 2024; 117:490-496. [PMID: 39153877 DOI: 10.1016/j.acvd.2024.05.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/15/2024] [Accepted: 05/13/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Assessment of the athlete's heart is challenging because of a phenotypic overlap between reactive physiological adaptation and pathological remodelling. The potential value of myocardial deformation remains controversial in identifying early cardiomyopathy. AIM To identify the echocardiographic phenotype of athletes using advanced two-dimensional speckle tracking imaging, and to define predictive factors of subtle left ventricular systolic dysfunction. METHODS In total, 191 healthy male athletes who underwent a preparticipation medical evaluation at Nancy University Hospital between 2013 and 2020 were included. Clinical and echocardiographic data were compared with 161 healthy male subjects from the STANISLAS cohort. Borderline global longitudinal strain value was defined as<17.5%. RESULTS Athletes demonstrated lower left ventricular ejection fraction (57.9±5.3% vs. 62.6±6.4%; P<0.01) and lower global longitudinal strain (17.5±2.2% vs. 21.1±2.1%; P<0.01). No significant differences were found between athletes with and without a borderline global longitudinal strain value regarding clinical characteristics, structural echocardiographic features and exercise capacity. A borderline global longitudinal strain value was associated with a lower endocardial global longitudinal strain (18.8±1.2% vs. 22.7±1.9%; P=0.02), a lower epicardial global longitudinal strain (14.0±1.1% vs. 16.6±1.2%; P<0.01) and a higher endocardial/epicardial global longitudinal strain ratio (1.36±0.07 vs. 1.32±0.06; P<0.01). No significant difference was found regarding mechanical dispersion (P=0.46). CONCLUSIONS Borderline global longitudinal strain value in athletes does not appear to be related to structural remodelling, mechanical dispersion or exercise capacity. The athlete's heart is characterized by a specific myocardial deformation pattern with a more pronounced epicardial layer strain impairment.
Collapse
Affiliation(s)
- Eva Colne
- Department of Cardiology, Nancy University Hospital, 54000 Nancy, France
| | - Nathalie Pace
- Department of Cardiology, Nancy University Hospital, 54000 Nancy, France.
| | - Antoine Fraix
- Department of Cardiology, Nancy University Hospital, 54000 Nancy, France
| | - Félix Gauthier
- Department of Cardiology, Nancy University Hospital, 54000 Nancy, France
| | | | - Bruno Chenuel
- University Centre of Sports Medicine and Adapted Physical Activity, Nancy University Hospital, 54000 Nancy, France
| | - Nicolas Sadoul
- Department of Cardiology, Nancy University Hospital, 54000 Nancy, France
| | - Nicolas Girerd
- Department of Cardiology, Nancy University Hospital, 54000 Nancy, France; Inserm, UMR-1116, Lorraine University, 54505 Vandœuvre-Lès-Nancy, France; Inserm, CIC 1433, Lorraine University, 54505 Vandœuvre-Lès-Nancy, France
| | - Zohra Lamiral
- Inserm, CIC 1433, Lorraine University, 54505 Vandœuvre-Lès-Nancy, France
| | - Jérôme Felloni
- Department of Cardiology, Nancy University Hospital, 54000 Nancy, France
| | - Karim Djaballah
- Department of Cardiology, Nancy University Hospital, 54000 Nancy, France
| | - Laura Filippetti
- Department of Cardiology, Nancy University Hospital, 54000 Nancy, France
| | - Olivier Huttin
- Department of Cardiology, Nancy University Hospital, 54000 Nancy, France; Inserm, UMR-1116, Lorraine University, 54505 Vandœuvre-Lès-Nancy, France
| |
Collapse
|
3
|
Flanagan H, Cooper R, George KP, Augustine DX, Malhotra A, Paton MF, Robinson S, Oxborough D. The athlete's heart: insights from echocardiography. Echo Res Pract 2023; 10:15. [PMID: 37848973 PMCID: PMC10583359 DOI: 10.1186/s44156-023-00027-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/07/2023] [Indexed: 10/19/2023] Open
Abstract
The manifestations of the athlete's heart can create diagnostic challenges during an echocardiographic assessment. The classifications of the morphological and functional changes induced by sport participation are often beyond 'normal limits' making it imperative to identify any overlap between pathology and normal physiology. The phenotype of the athlete's heart is not exclusive to one chamber or function. Therefore, in this narrative review, we consider the effects of sporting discipline and training volume on the holistic athlete's heart, as well as demographic factors including ethnicity, body size, sex, and age.
Collapse
Affiliation(s)
- Harry Flanagan
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool, L3 3AF, UK
| | - Robert Cooper
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool, L3 3AF, UK
| | - Keith P George
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool, L3 3AF, UK
| | - Daniel X Augustine
- Royal United Hospitals Bath NHS Foundation Trust, Bath, UK
- Department for Health, University of Bath, Bath, UK
| | - Aneil Malhotra
- Institute of Sport, Manchester Metropolitan University and University of Manchester, Manchester, UK
| | - Maria F Paton
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | | | - David Oxborough
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool, L3 3AF, UK.
| |
Collapse
|
4
|
Engvall JE, Aneq MÅ, Nylander E, Brudin L, Maret E. Moderately trained male football players, compared to sedentary male adults, exhibit anatomical but not functional cardiac remodelling, a cross-sectional study. Cardiovasc Ultrasound 2021; 19:36. [PMID: 34758817 PMCID: PMC8582134 DOI: 10.1186/s12947-021-00263-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 09/22/2021] [Indexed: 11/20/2022] Open
Abstract
Background Elite athletes have been the subject of great interest, but athletes at an intermediate level of physical activity have received less attention in respect to the presence of cardiac enlargement and/or hypertrophy. We hypothesized that playing football, often defined as demanding less endurance components than running or cycling, would still induce remodelling similar to sports with a dominating endurance component. Methods 23 male football players, age 25+/− 3.9 yrs. underwent exercise testing, 2D- and 3D- echocardiography and cardiac magnetic resonance (CMR). The results were compared with a control group of engineering students of similar age. The athletes exercised 12 h/week and the control subjects 1 h/week, p < 0.001. Results The football players achieved a significantly higher maximal load at the exercise test (380 W vs 300 W, p < 0.001) as well as higher calculated maximal oxygen consumption, (49.7 vs 37.4 mL x kg− 1 x min− 1, p < 0.001) compared to the sedentary group. All left ventricular (LV) volumes assessed by 3DEcho and CMR, as well as CMR left atrial (LA) volume were significantly higher in the athletes (3D-LVEDV 200 vs 154 mL, CMR-LVEDV 229 vs 185 mL, CMR-LA volume 100 vs 89 mL, p < 0.001, p = 0.002 and p = 0.009 respectively). LVEF and RVEF, LV strain by CMR or by echo did not differentiate athletes from sedentary participants. Right ventricular (RV) longitudinal strain, LA and right atrial (RA) strain by CMR all showed similar results in the two groups. Conclusion Moderately trained intermediate level football players showed anatomical but not functional cardiac remodelling compared to sedentary males. Supplementary Information The online version contains supplementary material available at 10.1186/s12947-021-00263-0.
Collapse
Affiliation(s)
- Jan E Engvall
- Department of Clinical Physiology and Department of Health, Medicine and Caring Sciences, Linkoping University, Linkoping, Sweden.,CMIV - Center for Medical Image Science and Visualization, Linkoping University, Linkoping, Sweden
| | - Meriam Åström Aneq
- Department of Clinical Physiology and Department of Health, Medicine and Caring Sciences, Linkoping University, Linkoping, Sweden
| | - Eva Nylander
- Department of Clinical Physiology and Department of Health, Medicine and Caring Sciences, Linkoping University, Linkoping, Sweden
| | - Lars Brudin
- Department of Clinical Physiology, Kalmar County Hospital and Department of Health, Medicine and Caring Sciences, Linkoping University, Linkoping, Sweden
| | - Eva Maret
- Department of Clinical Physiology, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
5
|
Cardiac remodeling induced by exercise in Caucasian male master athletes: a cross-sectional study. Int J Cardiovasc Imaging 2021; 38:69-78. [PMID: 34357523 DOI: 10.1007/s10554-021-02368-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022]
Abstract
To describe cardiac remodeling in a population of male master athletes evaluated by transthoracic echocardiography and to analyse its relationship with several exercise-related characteristics. A total of 105 male master athletes aged ≥ 40 years old, mostly involved in endurance sports (81.0%) with a median training-volume of 66 [44; 103] METs/h/week, were studied. Left ventricular end-diastolic and end-systolic volumes were above the references in 84.8% and 75.8% athletes, decreasing in frequency when adjusted for BSA (26.3% and 23.2%). LV geometry was changed in more than half of the athletes (eccentric hypertrophy 28.3%, concentric remodelling 15.2% and concentric hypertrophy 8.1%) and several right ventricular (RV) dimensions were increased. Left atrium was dilated in 53.5% and right atrium in 37.4% athletes; only one athlete had a dilated aorta. Mean LV ejection fraction was 61 ± 7% and global longitudinal strain - 18.3 ± 2.0%. Changes in LV geometry were more common in high intensity sports; LV dilation in athletes exercising > 10 h/week and in high intensity sports; RV dilation in athletes exercising > 66 MET-hour/week and in endurance sports. In multivariate analysis high intensity sports remained an independent predictor of changes in LV geometry. A significant proportion of male master athletes showed altered echocardiographic parameters compared to the reference values, more pronounced in those involved in endurance sports, with high intensity and high volume of exercise. This may correspond to exercise-induced physiological adaptations, reinforcing the concept that the characteristics of exercise are major determinants of cardiac remodeling and should be considered during athletes' evaluation.
Collapse
|
6
|
Trivedi SJ, Claessen G, Stefani L, Flannery MD, Brown P, Janssens K, Elliott A, Sanders P, Kalman J, Heidbuchel H, Thomas L, La Gerche A. Differing mechanisms of atrial fibrillation in athletes and non-athletes: alterations in atrial structure and function. Eur Heart J Cardiovasc Imaging 2021; 21:1374-1383. [PMID: 32757003 DOI: 10.1093/ehjci/jeaa183] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/24/2020] [Indexed: 11/13/2022] Open
Abstract
AIMS Atrial fibrillation (AF) is more common in athletes and may be associated with adverse left atrial (LA) remodelling. We compared LA structure and function in athletes and non-athletes with and without AF. METHODS AND RESULTS Individuals (144) were recruited from four groups (each n = 36): (i) endurance athletes with paroxysmal AF, (ii) endurance athletes without AF, (iii) non-athletes with paroxysmal AF, and (iv) non-athletic healthy controls. Detailed echocardiograms were performed. Athletes had 35% larger LA volumes and 51% larger left ventricular (LV) volumes vs. non-athletes. Non-athletes with AF had increased LA size compared with controls. LA/LV volume ratios were similar in both athlete groups and non-athlete controls, but LA volumes were differentially increased in non-athletes with AF. Diastolic function was impaired in non-athletes with AF vs. non-athletes without, while athletes with and without AF had normal diastolic function. Compared with non-AF athletes, athletes with AF had increased LA minimum volumes (22.6 ± 5.6 vs. 19.2 ± 6.7 mL/m2, P = 0.033), with reduced LA emptying fraction (0.49 ± 0.06 vs. 0.55 ± 0.12, P = 0.02), and LA expansion index (1.0 ± 0.3 vs. 1.2 ± 0.5, P = 0.03). LA reservoir and contractile strain were decreased in athletes and similar to non-athletes with AF. CONCLUSION Functional associations differed between athletes and non-athletes with AF, suggesting different pathophysiological mechanisms. Diastolic dysfunction and reduced strain defined non-athletes with AF. Athletes had low atrial strain and those with AF had enlarged LA volumes and reduced atrial emptying, but preserved LV diastolic parameters. Thus, AF in athletes may be triggered by an atrial myopathy from exercise-induced haemodynamic stretch consequent to increased cardiac output.
Collapse
Affiliation(s)
- Siddharth J Trivedi
- Department of Cardiology, Westmead Hospital, Sydney, Australia.,Westmead Clinical School, The University of Sydney, Sydney, Australia
| | - Guido Claessen
- Sports Cardiology Lab, Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.,University Hospitals Leuven, Leuven, Belgium
| | - Luke Stefani
- Department of Cardiology, Westmead Hospital, Sydney, Australia
| | - M Darragh Flannery
- Sports Cardiology Lab, Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Paula Brown
- Department of Cardiology, Westmead Hospital, Sydney, Australia
| | - Kristel Janssens
- Sports Cardiology Lab, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Adrian Elliott
- South Australian Health and Medical Research Institute, Centre for Heart Rhythm Disorders, University of Adelaide, Adelaide, Australia.,Department of Cardiology, Royal Adelaide Hospital, Adelaide, Australia
| | - Prashanthan Sanders
- South Australian Health and Medical Research Institute, Centre for Heart Rhythm Disorders, University of Adelaide, Adelaide, Australia.,Department of Cardiology, Royal Adelaide Hospital, Adelaide, Australia
| | - Jonathan Kalman
- Department of Medicine, University of Melbourne, Melbourne, Australia.,Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia
| | - Hein Heidbuchel
- Antwerp University Hospital, University of Antwerp, Edegem, Belgium
| | - Liza Thomas
- Department of Cardiology, Westmead Hospital, Sydney, Australia.,Westmead Clinical School, The University of Sydney, Sydney, Australia.,South Western Sydney Clinical School, University of New South Wales, Sydney, Australia
| | - Andre La Gerche
- Sports Cardiology Lab, Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.,Department of Medicine, University of Melbourne, Melbourne, Australia.,National Centre for Sports Cardiology, St Vincent's Hospital Melbourne, Fitzroy, Australia
| |
Collapse
|
7
|
Yaman B, Akpınar O, Kemal HS, Cerit L, Sezenöz B, Açıkgöz E, Duygu H. The beneficial effect of low-intensity exercise on cardiac performance assessed by two-dimensional speckle tracking echocardiography. Echocardiography 2020; 37:1989-1999. [PMID: 33070385 DOI: 10.1111/echo.14891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Regular physical activity is associated with cardiovascular health; however, intensive exercise can have harmful effects on the heart. Two-dimensional (2D) speckle tracking echocardiography (STE) is a well-established diagnostic tool to evaluate subclinical myocardial dysfunction and has been widely used in athletes in recent years. This study is designed to evaluate whether low-intensity exercise has beneficial effects on myocardial performance. We aimed to evaluate systolic and diastolic functions of myocardium derived from STE in sports practitioners in a low-intensity exercise training program. METHOD Eighty-four sports practitioners and eighty-two sedentary healthy controls were prospectively included in our study. In addition to standard 2D echocardiographic measurements, left ventricular (LV) global longitudinal strain (GLS), right ventricular (RV) GLS, RV-free wall strain (FWS), left atrium (LA) strain, and strain rate were analyzed. RESULTS Mean LV GLS was significantly higher in sports practitioners compared with sedentary population (-19.21 ± 2.61% vs -18.37 ± 2.75%, P = .044). RV GLS was significantly higher in sports practitioners than sedentary population (-21.82 ± 4.86% vs -20.04 ± 4.62%, P = .016). Longitudinal strain and strain rate of LA conduit phase were significantly higher in sports practitioners than sedentary participants (-23.60 ± 6.83% vs -20.20 ± 6.64%, P = .001; -2.45 ± 0.81 L/s vs -2.10 ± 0.89 L/s, P = .010; respectively). Also, LA conduit phase strain/contraction phase strain and conduit phase strain rate/contraction phase strain rate ratios were higher in sports practitioners (1.88 ± 0.93 vs 1.48 ± 0.63, P = .001; 1.42 ± 0.65 vs 1.16 ± 0.53, P = .005; respectively). CONCLUSION The findings in the current study suggest that regular low-intensity exercise may have a beneficial effect on both systolic and diastolic functions of the myocardium.
Collapse
Affiliation(s)
- Belma Yaman
- Department of Cardiology, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Onur Akpınar
- Department of Cardiology, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Hatice S Kemal
- Department of Cardiology, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Levent Cerit
- Department of Cardiology, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Burak Sezenöz
- Department of Cardiology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Eser Açıkgöz
- Department of Cardiology, Ankara Oncology Training and Research Hospital, Ankara, Turkey
| | - Hamza Duygu
- Department of Cardiology, Faculty of Medicine, Near East University, Nicosia, Cyprus
| |
Collapse
|
8
|
A Vegan Athlete's Heart-Is It Different? Morphology and Function in Echocardiography. Diagnostics (Basel) 2020; 10:diagnostics10070477. [PMID: 32674452 PMCID: PMC7400409 DOI: 10.3390/diagnostics10070477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/02/2020] [Accepted: 07/10/2020] [Indexed: 12/24/2022] Open
Abstract
Plant-based diets are a growing trend, including among athletes. This study compares the differences in physical performance and heart morphology and function between vegan and omnivorous amateur runners. A study group and a matched control group were recruited comprising N = 30 participants each. Eight members of the study group were excluded, leaving N = 22 participants. Members of both groups were of similar age and trained with similar frequency and intensity. Vegans displayed a higher VO2max (54.08 vs. 50.10 mL/kg/min, p < 0.05), which correlated positively with carbohydrate intake (ρ = 0.52) and negatively with MUFA (monounsaturated fatty acids) intake (ρ = −0.43). The vegans presented a more eccentric form of remodelling with greater left ventricular end diastolic diameter (LVEDd, 2.93 vs. 2.81 cm/m2, p = 0.04) and a lower relative wall thickness (RWT, 0.39 vs. 0.42, p = 0.04) and left ventricular mass (LVM, 190 vs. 210 g, p = 0.01). The left ventricular mass index (LVMI) was similar (108 vs. 115 g/m2, p = NS). Longitudinal strain was higher in the vegan group (−20.5 vs. −19.6%, p = 0.04), suggesting better systolic function. Higher E-wave velocities (87 vs. 78 cm/s, p = 0.001) and E/e′ ratios (6.32 vs. 5.6, p = 0.03) may suggest better diastolic function in the vegan group. The results demonstrate that following a plant-based diet does not impair amateur athletes’ performance and influences both morphological and functional heart remodelling. The lower RWT and better LV systolic and diastolic function are most likely positive echocardiographic findings.
Collapse
|
9
|
Starekova J, Thottakara T, Lund GK, Welsch GH, Brunner FJ, Muellerleile K, Adam G, Regier M, Tahir E. Increased myocardial mass and attenuation of myocardial strain in professional male soccer players and competitive male triathletes. Int J Cardiovasc Imaging 2020; 36:2187-2197. [PMID: 32564331 PMCID: PMC7568698 DOI: 10.1007/s10554-020-01918-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 06/11/2020] [Indexed: 01/10/2023]
Abstract
The purpose of this prospective study was to analyze the relationship between ventricular morphology and parameters of cardiac function in two different athletic groups and controls, using feature tracking cardiac magnetic resonance (FT-CMR). Twenty-three professional soccer players (22 ± 4 years), 19 competitive triathletes (28 ± 6 years) and 16 controls (26 ± 3 years) were included in the study. CMR was performed using a 1.5 T scanner. Cardiac chamber volumes, mass and biventricular global myocardial strain were obtained and compared. In comparison to the control subjects, athletes were characterized by a higher cardiac volume (p < 0.0001), higher cardiac mass (p < 0.001), reduced longitudinal strain of the left and right ventricle (p < 0.05 and p < 0.01 respectively) and reduced left ventricular radial strain (p < 0.05). Soccer players revealed higher amounts of left ventricular mass (87 ± 15 vs. 75 ± 13 g/m2, p < 0.05) than triathletes. Moreover, they showed a greater decrease in left and right ventricular longitudinal strain (p < 0.05 and p < 0.05) as well as in radial left ventricular strain (p < 0.05) in comparison to triathletes. An increase in left ventricular mass correlated significantly with a decrease in longitudinal (r = 0.47, p < 0.001) and radial (r = − 0.28, p < 0.05) strain. In athletes, attenuation of strain values is associated with cardiac hypertrophy and differ between soccer players and triathletes. Further studies are needed to investigate whether it is an adaptive or maladaptive change of the heart induced by intense athletic training.
Collapse
Affiliation(s)
- Jitka Starekova
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 202 46, Hamburg, Germany.
| | - Tilo Thottakara
- Department of Cardiology, University Heart and Vascular Center, Martinistr. 52, 20246, Hamburg, Germany
| | - Gunnar K Lund
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 202 46, Hamburg, Germany
| | - Götz H Welsch
- Center for Athletic Medicine - Athleticum, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 202 46, Hamburg, Germany
| | - Fabian J Brunner
- Department of Cardiology, University Heart and Vascular Center, Martinistr. 52, 20246, Hamburg, Germany
| | - Kai Muellerleile
- Department of Cardiology, University Heart and Vascular Center, Martinistr. 52, 20246, Hamburg, Germany
| | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 202 46, Hamburg, Germany
| | - Marc Regier
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 202 46, Hamburg, Germany
| | - Enver Tahir
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 202 46, Hamburg, Germany
| |
Collapse
|
10
|
Christou GA, O'Driscoll JM. The impact of demographic, anthropometric and athletic characteristics on left atrial size in athletes. Clin Cardiol 2020; 43:834-842. [PMID: 32271473 PMCID: PMC7403671 DOI: 10.1002/clc.23368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 03/24/2020] [Indexed: 01/01/2023] Open
Abstract
The structural adaptations of the “athlete's heart” include left atrial (LA) enlargement. A literature search was performed based on PubMed listings up to November 2, 2019 using “athletes AND left atrium,” “athletes AND LA,” “sports AND left atrium,” “sports AND LA,” “exercise AND left atrium,” and “exercise AND LA” as the search terms. Eligible studies included those reporting the influence of demographic, anthropometric and athletic characteristics on LA size in athletes. A total of 58 studies were included in this review article. Although LA volume has been reported to be greater in males compared to females when indexed for body surface area (BSA), there was no difference between sexes. The positive association between LA size and age in athletes may reflect the increase in body size with maturation in nonadult athletes and the training age of endurance athletic activity in adult athletes. Caucasian and black athletes have been demonstrated to exhibit similar LA enlargement. The positive association of LA size with lean body mass (LBM) possibly accounts for the relationship of LA size with BSA. LA enlargement has been reported only in endurance‐trained, but not in strength‐trained athletes. LA size appears to increase with an increase in both the volume and intensity of endurance training. LA size correlates independently with the training age of endurance athletes. The athlete's characteristics that independently determine LA size include LBM, endurance training, and training age.
Collapse
Affiliation(s)
- Georgios A Christou
- Laboratory of Sports Medicine, Sports Medicine Division, Aristotle University of Thessaloniki, Thessaloniki, Greece.,MSc Sports Cardiology, St George's University of London, London, UK
| | - Jamie M O'Driscoll
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, UK.,Department of Cardiology, St George's Healthcare NHS Trust, London, UK
| |
Collapse
|