1
|
Peters B, Paul JF, Symons R, Franssen WMA, Nchimi A, Ghekiere O. Invasive fractional-flow-reserve prediction by coronary CT angiography using artificial intelligence vs. computational fluid dynamics software in intermediate-grade stenosis. Int J Cardiovasc Imaging 2024; 40:1875-1880. [PMID: 38963591 PMCID: PMC11473557 DOI: 10.1007/s10554-024-03173-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024]
Abstract
Coronary computed angiography (CCTA) with non-invasive fractional flow reserve (FFR) calculates lesion-specific ischemia when compared with invasive FFR and can be considered for patients with stable chest pain and intermediate-grade stenoses according to recent guidelines. The objective of this study was to compare a new CCTA-based artificial-intelligence deep-learning model for FFR prediction (FFRAI) to computational fluid dynamics CT-derived FFR (FFRCT) in patients with intermediate-grade coronary stenoses with FFR as reference standard. The FFRAI model was trained with curved multiplanar-reconstruction CCTA images of 500 stenotic vessels in 413 patients, using FFR measurements as the ground truth. We included 37 patients with 39 intermediate-grade stenoses on CCTA and invasive coronary angiography, and with FFRCT and FFR measurements in this retrospective proof of concept study. FFRAI was compared with FFRCT regarding the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy for predicting FFR ≤ 0.80. Sensitivity, specificity, PPV, NPV, and diagnostic accuracy of FFRAI in predicting FFR ≤ 0.80 were 91% (10/11), 82% (23/28), 67% (10/15), 96% (23/24), and 85% (33/39), respectively. Corresponding values for FFRCT were 82% (9/11), 75% (21/28), 56% (9/16), 91% (21/23), and 77% (30/39), respectively. Diagnostic accuracy did not differ significantly between FFRAI and FFRCT (p = 0.12). FFRAI performed similarly to FFRCT for predicting intermediate-grade coronary stenoses with FFR ≤ 0.80. These findings suggest FFRAI as a potential non-invasive imaging tool for guiding therapeutic management in these stenoses.
Collapse
Affiliation(s)
- Benjamin Peters
- Faculty of Medicine and Life Sciences, Hasselt University, LCRC, Agoralaan, Diepenbeek, 3590, Belgium.
- Department of Radiology, Jessa Hospital, LCRC, Stadsomvaart 11, Hasselt, 3500, Belgium.
| | - Jean-François Paul
- Department of Radiology, Institut Mutualiste Montsouris, 42 Boulevard Jourdan, Paris, France
| | - Rolf Symons
- Department of Radiology, Imelda Hospital, Bonheiden, Belgium
| | - Wouter M A Franssen
- SMRC Sports Medical Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Alain Nchimi
- GIGA Cardiovascular Sciences, Liège University (ULg), Domaine Universitaire du Sart Tilman, rue de l'Hôpital, Liège, Belgium
- Department of Radiology, Centre Hospitalier Universitaire, Luxembourg, Luxembourg, Luxembourg
| | - Olivier Ghekiere
- Faculty of Medicine and Life Sciences, Hasselt University, LCRC, Agoralaan, Diepenbeek, 3590, Belgium
- Department of Radiology, Jessa Hospital, LCRC, Stadsomvaart 11, Hasselt, 3500, Belgium
| |
Collapse
|
3
|
Tavoosi A, Kadoya Y, Chong AY, Small GR, Chow BJW. Utility of FFRCT in Patients with Chest Pain. Curr Atheroscler Rep 2023; 25:427-434. [PMID: 37358803 DOI: 10.1007/s11883-023-01117-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2023] [Indexed: 06/27/2023]
Abstract
PURPOSE OF REVIEW The goal of this article is to review the data supporting the use of fractional flow reserve derived from coronary computed tomography angiography (FFRCT) in patients with chest pain. REVIEW FINDINGS Numerous clinical trials have demonstrated that the diagnostic accuracy of coronary computed tomography angiography (CCTA) can be improved with the use of FFRCT, primarily due to its superior specificity when compared to CCTA alone. This promising development may help reduce the need for invasive angiography in patients presenting with chest pain. Furthermore, some studies have indicated that incorporating FFRCT into decision-making is safe, with an FFRCT value of ≥ 0.8 being associated with favorable outcomes. While FFRCT has been shown to be feasible in patients with acute chest pain, further large-scale studies are warranted to confirm its utility. The emergence of FFRCT as a tool for the management of patients with chest pain is promising. However, potential limitations require the interpretation of FFRCT in conjunction with clinical context.
Collapse
Affiliation(s)
- Anahita Tavoosi
- Department of Medicine (Cardiology), University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y 4W7, Canada
| | - Yoshito Kadoya
- Department of Medicine (Cardiology), University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y 4W7, Canada
| | - Aun Yeong Chong
- Department of Medicine (Cardiology), University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y 4W7, Canada
| | - Gary R Small
- Department of Medicine (Cardiology), University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y 4W7, Canada
| | - Benjamin J W Chow
- Department of Medicine (Cardiology), University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y 4W7, Canada.
- Department of Radiology, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
5
|
Peper J, Schaap J, Rensing BJWM, Kelder JC, Swaans MJ. Diagnostic accuracy of on-site coronary computed tomography-derived fractional flow reserve in the diagnosis of stable coronary artery disease. Neth Heart J 2021; 30:160-171. [PMID: 34910279 PMCID: PMC8881589 DOI: 10.1007/s12471-021-01647-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 10/30/2022] Open
Abstract
PURPOSE Invasive fractional flow reserve (FFR), the reference standard for identifying significant coronary artery disease (CAD), can be estimated non-invasively by computed tomography-derived fractional flow reserve (CT-FFR). Commercially available off-site CT-FFR showed improved diagnostic accuracy compared to coronary computed tomography angiography (CCTA) alone. However, the diagnostic performance of this lumped-parameter on-site method is unknown. The aim of this cross-sectional study was to determine the diagnostic accuracy of on-site CT-FFR in patients with suspected CAD. METHODS A total of 61 patients underwent CCTA and invasive coronary angiography with FFR measured in 88 vessels. Significant CAD was defined as FFR and CT-FFR below 0.80. CCTA with stenosis above 50% was regarded as significant CAD. The diagnostic performance of both CT-FFR and CCTA was assessed using invasive FFR as the reference standard. RESULTS Of the 88 vessels included in the analysis, 34 had an FFR of ≤ 0.80. On a per-vessel basis, the sensitivity, specificity, positive predictive value, negative predictive value and accuracy were 91.2%, 81.4%, 93.6%, 75.6% and 85.2% for CT-FFR and were 94.1%, 68.5%, 94.9%, 65.3% and 78.4% for CCTA. The area under the receiver operating characteristic curve was 0.91 and 0.85 for CT-FFR and CCTA, respectively, on a per-vessel basis. CONCLUSION On-site non-invasive FFR derived from CCTA improves diagnostic accuracy compared to CCTA without additional testing and has the potential to be integrated in the current clinical work-up for diagnosing stable CAD.
Collapse
Affiliation(s)
- J Peper
- Department of Cardiology, St. Antonius Hospital, Nieuwegein, The Netherlands. .,Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | - J Schaap
- Department of Cardiology, Amphia Hospital, Breda, The Netherlands
| | - B J W M Rensing
- Department of Cardiology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - J C Kelder
- Department of Cardiology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - M J Swaans
- Department of Cardiology, St. Antonius Hospital, Nieuwegein, The Netherlands
| |
Collapse
|
6
|
Sirajuddin A, Mirmomen SM, Kligerman SJ, Groves DW, Burke AP, Kureshi F, White CS, Arai AE. Ischemic Heart Disease: Noninvasive Imaging Techniques and Findings. Radiographics 2021; 41:990-1021. [PMID: 34019437 PMCID: PMC8262179 DOI: 10.1148/rg.2021200125] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Ischemic heart disease is a leading cause of death worldwide and comprises a large proportion of annual health care expenditure. Management of ischemic heart disease is now best guided by the physiologic significance of coronary artery stenosis. Invasive coronary angiography is the standard for diagnosing coronary artery stenosis. However, it is expensive and has risks including vascular access site complications and contrast material–induced nephropathy. Invasive coronary angiography requires fractional flow reserve (FFR) measurement to determine the physiologic significance of a coronary artery stenosis. Multiple noninvasive cardiac imaging modalities can also anatomically delineate or functionally assess for significant coronary artery stenosis, as well as detect the presence of myocardial infarction (MI). While coronary CT angiography can help assess the degree of anatomic stenosis, its inability to assess the physiologic significance of lesions limits its specificity. Physiologic significance of coronary artery stenosis can be determined by cardiac MR vasodilator or dobutamine stress imaging, CT stress perfusion imaging, FFR CT, PET myocardial perfusion imaging (MPI), SPECT MPI, and stress echocardiography. Clinically unrecognized MI, another clear indicator of physiologically significant coronary artery disease, is relatively common and is best evaluated with cardiac MRI. The authors illustrate the spectrum of imaging findings of ischemic heart disease (coronary artery disease, myocardial ischemia, and MI); highlight the advantages and disadvantages of the various noninvasive imaging methods used to assess ischemic heart disease, as illustrated by recent clinical trials; and summarize current indications and contraindications for noninvasive imaging techniques for detection of ischemic heart disease. Online supplemental material is available for this article. Published under a CC BY 4.0 license.
Collapse
Affiliation(s)
- Arlene Sirajuddin
- From the Cardiovascular and Pulmonary Branch, National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Dr, Building 10, Room B1D416, Bethesda, MD 20814 (A.S., S.M.M., A.E.A.); Department of Radiology, University of California San Diego, San Diego, Calif (S.J.K.); Departments of Medicine and Radiology, Divisions of Cardiology and Cardiothoracic Imaging, University of Colorado Anschutz Medical Campus, Aurora, Colo (D.W.G.); Department of Pathology (A.P.B.) and Department of Radiology and Nuclear Medicine (C.S.W.), School of Medicine, University of Maryland, Baltimore, Md; and St David's Healthcare and Austin Heart, Austin, Tex (F.K.)
| | - S Mojdeh Mirmomen
- From the Cardiovascular and Pulmonary Branch, National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Dr, Building 10, Room B1D416, Bethesda, MD 20814 (A.S., S.M.M., A.E.A.); Department of Radiology, University of California San Diego, San Diego, Calif (S.J.K.); Departments of Medicine and Radiology, Divisions of Cardiology and Cardiothoracic Imaging, University of Colorado Anschutz Medical Campus, Aurora, Colo (D.W.G.); Department of Pathology (A.P.B.) and Department of Radiology and Nuclear Medicine (C.S.W.), School of Medicine, University of Maryland, Baltimore, Md; and St David's Healthcare and Austin Heart, Austin, Tex (F.K.)
| | - Seth J Kligerman
- From the Cardiovascular and Pulmonary Branch, National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Dr, Building 10, Room B1D416, Bethesda, MD 20814 (A.S., S.M.M., A.E.A.); Department of Radiology, University of California San Diego, San Diego, Calif (S.J.K.); Departments of Medicine and Radiology, Divisions of Cardiology and Cardiothoracic Imaging, University of Colorado Anschutz Medical Campus, Aurora, Colo (D.W.G.); Department of Pathology (A.P.B.) and Department of Radiology and Nuclear Medicine (C.S.W.), School of Medicine, University of Maryland, Baltimore, Md; and St David's Healthcare and Austin Heart, Austin, Tex (F.K.)
| | - Daniel W Groves
- From the Cardiovascular and Pulmonary Branch, National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Dr, Building 10, Room B1D416, Bethesda, MD 20814 (A.S., S.M.M., A.E.A.); Department of Radiology, University of California San Diego, San Diego, Calif (S.J.K.); Departments of Medicine and Radiology, Divisions of Cardiology and Cardiothoracic Imaging, University of Colorado Anschutz Medical Campus, Aurora, Colo (D.W.G.); Department of Pathology (A.P.B.) and Department of Radiology and Nuclear Medicine (C.S.W.), School of Medicine, University of Maryland, Baltimore, Md; and St David's Healthcare and Austin Heart, Austin, Tex (F.K.)
| | - Allen P Burke
- From the Cardiovascular and Pulmonary Branch, National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Dr, Building 10, Room B1D416, Bethesda, MD 20814 (A.S., S.M.M., A.E.A.); Department of Radiology, University of California San Diego, San Diego, Calif (S.J.K.); Departments of Medicine and Radiology, Divisions of Cardiology and Cardiothoracic Imaging, University of Colorado Anschutz Medical Campus, Aurora, Colo (D.W.G.); Department of Pathology (A.P.B.) and Department of Radiology and Nuclear Medicine (C.S.W.), School of Medicine, University of Maryland, Baltimore, Md; and St David's Healthcare and Austin Heart, Austin, Tex (F.K.)
| | - Faraz Kureshi
- From the Cardiovascular and Pulmonary Branch, National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Dr, Building 10, Room B1D416, Bethesda, MD 20814 (A.S., S.M.M., A.E.A.); Department of Radiology, University of California San Diego, San Diego, Calif (S.J.K.); Departments of Medicine and Radiology, Divisions of Cardiology and Cardiothoracic Imaging, University of Colorado Anschutz Medical Campus, Aurora, Colo (D.W.G.); Department of Pathology (A.P.B.) and Department of Radiology and Nuclear Medicine (C.S.W.), School of Medicine, University of Maryland, Baltimore, Md; and St David's Healthcare and Austin Heart, Austin, Tex (F.K.)
| | - Charles S White
- From the Cardiovascular and Pulmonary Branch, National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Dr, Building 10, Room B1D416, Bethesda, MD 20814 (A.S., S.M.M., A.E.A.); Department of Radiology, University of California San Diego, San Diego, Calif (S.J.K.); Departments of Medicine and Radiology, Divisions of Cardiology and Cardiothoracic Imaging, University of Colorado Anschutz Medical Campus, Aurora, Colo (D.W.G.); Department of Pathology (A.P.B.) and Department of Radiology and Nuclear Medicine (C.S.W.), School of Medicine, University of Maryland, Baltimore, Md; and St David's Healthcare and Austin Heart, Austin, Tex (F.K.)
| | - Andrew E Arai
- From the Cardiovascular and Pulmonary Branch, National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Dr, Building 10, Room B1D416, Bethesda, MD 20814 (A.S., S.M.M., A.E.A.); Department of Radiology, University of California San Diego, San Diego, Calif (S.J.K.); Departments of Medicine and Radiology, Divisions of Cardiology and Cardiothoracic Imaging, University of Colorado Anschutz Medical Campus, Aurora, Colo (D.W.G.); Department of Pathology (A.P.B.) and Department of Radiology and Nuclear Medicine (C.S.W.), School of Medicine, University of Maryland, Baltimore, Md; and St David's Healthcare and Austin Heart, Austin, Tex (F.K.)
| |
Collapse
|