1
|
Cho SK, Darby JR, Williams GK, Holman SL, Rai A, Van Amerom JF, Fan C, Macgowan CK, Selvanayagam JB, Morrison JL, Seed M. Post-Myocardial Infarction Remodeling and Hyperkinetic Remote Myocardium in Sheep Measured by Cardiac MRI Feature Tracking. J Magn Reson Imaging 2025; 61:1323-1335. [PMID: 38940396 PMCID: PMC11803690 DOI: 10.1002/jmri.29496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Cardiac MRI feature tracking (FT) allows objective assessment of segmental left ventricular (LV) function following a myocardial infarction (MI), but its utilization in sheep, where interventions can be tested, is lacking. PURPOSE To apply and validate FT in a sheep model of MI and describe post-MI LV remodeling. STUDY TYPE Animal model, longitudinal. ANIMAL MODEL Eighteen lambs (6 months, male, n = 14; female, n = 4; 25.2 ± 4.5 kg). FIELD STRENGTH/SEQUENCE Two-dimensional balanced steady-state free precession (bSSFP) and 3D inversion recovery fast low angle shot (IR-FLASH) sequences at 3 T. ASSESSMENT Seven lambs underwent test-retest imaging to assess FT interstudy reproducibility. MI was induced in the remaining 11 by coronary ligation with MRI being undertaken before and 15 days post-MI. Injury size was measured by late gadolinium enhancement (LGE) and LV volumes, LV mass, ejection fraction (LVEF), and wall thickness (LVWT) were measured, with FT measures of global and segmental radial, circumferential, and longitudinal strain. STATISTICAL TESTS Sampling variability, inter-study, intra and interobserver reproducibility were assessed using Pearson's correlation, Bland-Altman analyses, and intra-class correlation coefficients (ICC). Diagnostic performance of segmental strain to predict LGE was assessed using receiver operating characteristic curve analysis. Significant differences were considered P < 0.05. RESULTS Inter-study reproducibility of FT was overall good to excellent, with global strain being more reproducible than segmental strain (ICC = 0.89-0.98 vs. 0.77-0.96). MI (4.0 ± 3.7% LV mass) led to LV remodeling, as evident by significantly increased LV volumes and LV mass, and significantly decreased LVWT in injured regions, while LVEF was preserved (54.9 ± 6.9% vs. 55.6 ± 5.7%; P = 0.778). Segmental circumferential strain (CS) correlated most strongly with LGE. Basal and mid- CS increased significantly, while apical CS significantly decreased post-MI. DATA CONCLUSION FT is reproducible and compensation by hyperkinetic remote myocardium may manifest as overall preserved global LV function. EVIDENCE LEVEL N/A TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Steven K.S. Cho
- Department of Physiology, Faculty of MedicineUniversity of TorontoTorontoOntarioCanada
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Jack R.T. Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Georgia K. Williams
- Preclinical, Imaging & Research LaboratoriesSouth Australian Health & Medical Research InstituteAdelaideSouth AustraliaAustralia
| | - Stacey L. Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Archana Rai
- Division of CardiologyThe Hospital for Sick ChildrenTorontoOntarioCanada
- Department of Medical Imaging, University Medical Imaging TorontoUniversity of TorontoTorontoOntarioCanada
- Peter Munk Cardiac CenterToronto General Hospital, University Health Network, University of TorontoTorontoOntarioCanada
| | - Joshua F.P. Van Amerom
- Division of CardiologyThe Hospital for Sick ChildrenTorontoOntarioCanada
- Research InstituteThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Chun‐Po Fan
- Rogers Computational Program, Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre, University Health NetworkUniversity of TorontoTorontoOntarioCanada
| | - Christopher K. Macgowan
- Department of Medical Biophysics, Faculty of MedicineUniversity of TorontoTorontoOntarioCanada
| | - Joseph B. Selvanayagam
- Cardiac Imaging Research Group, Department of Heart Health, South Australian Health and Medical Research InstituteFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Janna L. Morrison
- Department of Physiology, Faculty of MedicineUniversity of TorontoTorontoOntarioCanada
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- Research InstituteThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Mike Seed
- Department of Physiology, Faculty of MedicineUniversity of TorontoTorontoOntarioCanada
- Division of CardiologyThe Hospital for Sick ChildrenTorontoOntarioCanada
- Research InstituteThe Hospital for Sick ChildrenTorontoOntarioCanada
| |
Collapse
|
2
|
Queiroz LDM, Fonseca RA, Dallan LAP, Polastri TF, Hajjar LA, Nicolau JC, Filho RK, Kern KB, Timerman S, Rochitte CE. Hypothermia as an adjunctive therapy to percutaneous intervention after ST-elevation myocardial infarction-Effects on regional myocardial contractility. J Cardiovasc Magn Reson 2025; 27:101850. [PMID: 39955070 PMCID: PMC11986222 DOI: 10.1016/j.jocmr.2025.101850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/13/2024] [Accepted: 01/27/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND The effects of endovascular therapeutic hypothermia (ETH) in ST-elevation myocardial infarction (STEMI) regional contractility are unknown, and its impact on segmental contractility has still not been evaluated. We sought to evaluate segmental myocardial strain after ETH adjuvant to percutaneous coronary intervention (PCI) in STEMI. METHODS We included patients who underwent 1.5T cardiovascular magnetic resonance exams 5 and 30 days after acute anterior or inferior STEMI in a previous randomized trial. Left ventricle (LV) strain was evaluated on infarcted, adjacent, and remote myocardium. Segmental circumferential (CS) and radial strains (RS) were measured using feature-tracking imaging. Repeated measures of analysis of variance were used for comparisons within time and treatment. RESULTS Forty patients were divided into hypothermia (ETH, n = 29) and control (n = 11) groups, with 5210 LV segments. In ETH infarcted areas, RS (11.2 ± 16 vs 14.8 ± 15.2, p = 0.001) and CS (-5.4 ± 11.1 vs -8 ± 11.1, p = 0.001) showed recovery from 5-30 days compared to controls (11.4 ± 14 vs 13.1 ± 1 6.8, p = 0.09; -6.5 ± 10.6 vs -6.4 ± 12.5, p = 0.94). In control remote areas, RS (28 ± 18 vs 31.7 ± 18.5, p = 0.001) and CS (-15.5 ± 10.7 vs -17.1 ± 9, p = 0.001) improved from 5-30 days compared to ETH (28.6 ± 18.6 vs 29 ± 20, p = 0.44; -15.2 ± 10.4 vs -15.3 ± 10.6, p = 0.82). Transmural infarcted areas in ETH improved RS (11.8 ± 13.2 vs 8.17 ± 14.7, p = 0.001) and CS (-6.1 ± 10.9 vs.-3.1 ± 11.3, p = 0.001) compared to controls, with better contractility at 30 days. CONCLUSION In anterior or inferior STEMI patients, ETH adjuvant to PCI is associated with significant improvement in RS and CS of infarcted areas, including transmural segments, but not in remote area. This might further increase our pathophysiological knowledge on early LV remodeling and ultimately suggest potential clinical value. AVAILABILITY OF DATA AND MATERIALS The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.
Collapse
Affiliation(s)
- Lucas de Mello Queiroz
- University of Sao Paulo Medical School, Sao Paulo, SP, Brazil; Heart Institute, InCor, University of Sao Paulo Medical School, Sao Paulo, Sao Paulo, SP, Brazil
| | - Rafael Almeida Fonseca
- Heart Institute, InCor, University of Sao Paulo Medical School, Sao Paulo, Sao Paulo, SP, Brazil
| | - Luis Augusto Palma Dallan
- Department of Cardiovascular Medicine, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | | | - Ludhmila Abrahao Hajjar
- Heart Institute, InCor, University of Sao Paulo Medical School, Sao Paulo, Sao Paulo, SP, Brazil
| | - Jose Carlos Nicolau
- Heart Institute, InCor, University of Sao Paulo Medical School, Sao Paulo, Sao Paulo, SP, Brazil
| | - Roberto Kalil Filho
- Heart Institute, InCor, University of Sao Paulo Medical School, Sao Paulo, Sao Paulo, SP, Brazil
| | - Karl B Kern
- Division of Cardiovascular Medicine, Sarver Heart Center, University of Arizona, Tucson, Arizona, USA
| | - Sergio Timerman
- Heart Institute, InCor, University of Sao Paulo Medical School, Sao Paulo, Sao Paulo, SP, Brazil
| | - Carlos E Rochitte
- Heart Institute, InCor, University of Sao Paulo Medical School, Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
3
|
Rösel SF, Backhaus SJ, Lange T, Schulz A, Kowallick JT, Gowda K, Treiber J, Rolf A, Sossalla ST, Hasenfuß G, Kutty S, Schuster A. Evaluating pulmonary stenosis and regurgitation impact on cardiac strain and strain rate in a porcine model via magnetic resonance feature tracking. Int J Cardiovasc Imaging 2025; 41:257-268. [PMID: 39843561 PMCID: PMC11811483 DOI: 10.1007/s10554-024-03305-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/27/2024] [Indexed: 01/24/2025]
Abstract
BACKGROUND Pulmonary stenosis (PS) is common in congenital heart disease and an integral finding in Tetralogy of Fallot (TOF). Pulmonary regurgitation (PR) is more commonly found following surgery in repaired TOF. We aimed to evaluate the haemodynamic effects of PS and PR on cardiac physiology in a porcine model using cardiac magnetic resonance-based feature tracking (CMR-FT) deformation imaging. METHODS CMR-FT was performed in 14 pigs before and 10-12 weeks after surgery. Surgery included either pulmonary artery banding to simulate PS (n = 7), or an incision to the pulmonary valve to simulate PR (n = 7). CMR-FT assessment included left and right ventricular global longitudinal (LV/RV GLS) and LV circumferential (GCS) strain and strain rates (SR) as well as left and right atrial reservoir/conduit/booster pump (LA/RA Es, Ee, Ea) strain and SR. RESULTS RV GLS was significantly reduced following PS compared to PR induction (PS -7.51 vs. PR -23.84, p < 0.001). RV GLS improved after induction of PR (before - 20.50 vs. after - 23.84, p = 0.018) as opposed to PS (before - 11.73 vs. after - 7.51, p = 0.128). Similarly, RA Es (PS 14.22 vs. PR 27.34, p = 0.017) and Ee (PS 8.65 vs. PR 20.51, p = 0.004) were decreased in PS compared to PR with detrimental impact of PS (Es before 23.20 vs. after 14.22, p = 0.018, Ee before 15.04 vs. after 8.65, p = 0.028) but not PR (Es before 31.65 vs. after 27.34, p = 0.176, Ee before 20.63 vs. after 20.51, p = 0.499). CONCLUSIONS In a porcine model of RV pressure vs. volume overload, increased after- but not preload shows detrimental impact on RV and RA physiology.
Collapse
Affiliation(s)
- Simon F Rösel
- University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Robert-Koch-Str. 40, 37099, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Sören J Backhaus
- Department of Cardiology, Campus Kerckhoff of the Justus-Liebig-University Giessen, Kerckhoff-Clinic, Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Torben Lange
- University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Robert-Koch-Str. 40, 37099, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Alexander Schulz
- University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Robert-Koch-Str. 40, 37099, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| | | | - Kritika Gowda
- Helen B. Taussig Heart Center, The Johns Hopkins Hospital and School of Medicine, Baltimore, MD, USA
| | - Julia Treiber
- Department of Cardiology, Campus Kerckhoff of the Justus-Liebig-University Giessen, Kerckhoff-Clinic, Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Andreas Rolf
- Department of Cardiology, Campus Kerckhoff of the Justus-Liebig-University Giessen, Kerckhoff-Clinic, Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Department of Cardiology and Angiology, Medical Clinic I, University Hospital Giessen, Justus-Liebig-University Giessen, Giessen, Germany
| | - Samuel T Sossalla
- Department of Cardiology, Campus Kerckhoff of the Justus-Liebig-University Giessen, Kerckhoff-Clinic, Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Department of Cardiology and Angiology, Medical Clinic I, University Hospital Giessen, Justus-Liebig-University Giessen, Giessen, Germany
| | - Gerd Hasenfuß
- University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Robert-Koch-Str. 40, 37099, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Shelby Kutty
- Helen B. Taussig Heart Center, The Johns Hopkins Hospital and School of Medicine, Baltimore, MD, USA
| | - Andreas Schuster
- University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Robert-Koch-Str. 40, 37099, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
- FORUM Cardiology, Rosdorf, Germany
| |
Collapse
|
4
|
Ismailov T, Khamitova Z, Jumadilova D, Khissamutdinov N, Toktarbay B, Zholshybek N, Rakhmanov Y, Salustri A. Reliability of left ventricular hemodynamic forces derived from feature-tracking cardiac magnetic resonance. PLoS One 2024; 19:e0306481. [PMID: 39052620 PMCID: PMC11271850 DOI: 10.1371/journal.pone.0306481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Hemodynamic forces (HDF) analysis has been proposed as a method to quantify intraventricular pressure gradients, however data on its reliability are still scanty. Thus, the aim of this study is to assess the reliability of HDF parameters derived from cardiac magnetic resonance (CMR). METHODS CMR studies of 25 athletes were analysed by two independent observers and then re-analysed by the same observer one week apart. Intraclass Correlation Coefficient (ICC [95% CI]) and Bland-Altman plots were used to assess association, agreement, and bias of the longitudinal (A-B) HDF, transverse (L-S) HDF, and Impulse Angle. The sample size required to detect a relative change in the HDF parameters was also calculated. RESULTS In terms of inter-observer variability, there was a good correlation for the A-B and L-S (ICC 0.85 [0.67-0.93] and 0.86 [0.69-0.94]; p<0.001 for both, respectively) and a moderate correlation for the Impulse Angle (ICC 0.73 [0.39-0.87]; p = 0.001). For intra-observer variability, A-B and L-S showed excellent correlation (ICC 0.91 [0.78-0.93] and 0.93 [0.83-0.97]; p<0.001 for both, respectively). Impulse Angle presented good correlation (ICC 0.80 [0.56-0.90]; p<0.001). Frame selection and aortic valve area measurements were the most vulnerable step in terms of reliability of the method. Sample size calculation to detect relative changes ranged from n = 1 to detect a 15% relative change in Impulse Angle to n = 171 for the detection of 10% relative change in A-B HDF. CONCLUSIONS The results of this study showed a low inter- and intra-observer variability of HDF parameters derived from feature-tracking CMR. This provides the fundamental basis for their use both in research and clinical practice, which could eventually lead to the detection of significant changes at follow-up studies.
Collapse
|
5
|
Faragli A, Hüllebrand M, Berendsen AJ, Solà LT, Lo Muzio FP, Götze C, Tanacli R, Doeblin P, Stehning C, Schnackenburg B, Van der Vosse FN, Nagel E, Post H, Hennemuth A, Alogna A, Kelle S. Pulmonary 4D-flow MRI imaging in landrace pigs under rest and stress. Int J Cardiovasc Imaging 2024; 40:1511-1524. [PMID: 38819601 PMCID: PMC11258182 DOI: 10.1007/s10554-024-03132-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/04/2024] [Indexed: 06/01/2024]
Abstract
4D-flow MRI is a promising technique for assessing vessel hemodynamics. However, its utilization is currently limited by the lack of reference values, particularly for pulmonary vessels. In this work, we have analysed flow and velocity in the pulmonary trunk (PT), left and right pulmonary arteries (LPA and RPA, respectively) in Landrace pigs at both rest and stress through the software MEVISFlow. Nine healthy Landrace pigs were acutely instrumented closed-chest and transported to the CMR facility for evaluation. After rest measurements, dobutamine was administered to achieve a 25% increase in heart rate compared to rest. 4D-flow MRI images have been analysed through MEVISFlow by two independent observers. Inter- and intra-observer reproducibility was quantified using intraclass correlation coefficient. A significant difference between rest and stress regarding flow and velocity in all the pulmonary vessels was observed. Mean flow increased 55% in PT, 75% in LPA and 40% in RPA. Mean peak velocity increased 55% in PT, 75% in LPA and 66% in RPA. A good-to-excellent reproducibility was observed in rest and stress for flow measurements in all three arteries. An excellent reproducibility for velocity was found in PT at rest and stress, a good one for LPA and RPA at rest, while poor reproducibility was found at stress. The current study showed that pulmonary flow and velocity assessed through 4D-flow MRI follow the physiological alterations during cardiac cycle and after stress induced by dobutamine. A clinical translation to assess pulmonary diseases with 4D-flow MRI under stress conditions needs investigation.
Collapse
Affiliation(s)
- A Faragli
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research) partner site Berlin, Berlin, Germany
| | - M Hüllebrand
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Herzzentrum der Charité (DHZC), Institute of Computer-assisted Cardiovascular Medicine, Berlin, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, Berlin, Germany
| | - A J Berendsen
- Department of Biomedical Engineering, Cardiovascular Biomechanics Group, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | - F P Lo Muzio
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Augustenburger Platz 1, 13353, Berlin, Germany
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - C Götze
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - R Tanacli
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research) partner site Berlin, Berlin, Germany
| | - P Doeblin
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research) partner site Berlin, Berlin, Germany
| | - C Stehning
- Clinical Science, Philips Healthcare, Hamburg, Germany
| | | | | | - E Nagel
- Institute of Experimental and Translational Cardiac Imaging, DZHK Centre for Cardiovascular Imaging, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - H Post
- Department of Cardiology, Contilia Heart and Vessel Centre, St. Marien-Hospital Mülheim, Mülheim, Germany
| | - A Hennemuth
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Herzzentrum der Charité (DHZC), Institute of Computer-assisted Cardiovascular Medicine, Berlin, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, Berlin, Germany
| | - A Alogna
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research) partner site Berlin, Berlin, Germany
| | - Sebastian Kelle
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Augustenburger Platz 1, 13353, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research) partner site Berlin, Berlin, Germany.
| |
Collapse
|
6
|
Aimo A, Martinez-Falguera D, Barison A, Musetti V, Masotti S, Morfino P, Passino C, Martinelli G, Pucci A, Crisostomo V, Sanchez-Margallo F, Blanco-Blazquez V, Galvez-Monton C, Emdin M, Bayes-Genis A. Colchicine added to standard therapy further reduces fibrosis in pigs with myocardial infarction. J Cardiovasc Med (Hagerstown) 2023; 24:840-846. [PMID: 37773884 DOI: 10.2459/jcm.0000000000001554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
BACKGROUND The anti-inflammatory drug colchicine improves the outcome of patients with myocardial infarction (MI). As an intense inflammatory and fibrotic response after MI may lead to scar expansion and left ventricular (LV) remodeling, the clinical benefit of colchicine could be related to a positive effect on the infarct scar and LV remodeling. METHODS Pigs underwent left anterior descending artery occlusion through an angioplasty balloon for 90 min and were then randomized into two groups: standard therapy [ACE inhibitor, beta blocker, mineralocorticoid receptor antagonist (MRA), aspirin] plus colchicine (n = 14) or standard therapy alone (n = 13). The pigs were treated for 30 days and underwent two cardiac magnetic resonance (CMR) scans at 72 h and 30 days. The pigs were then sacrificed the day after the second CMR. The primary efficacy end point was the extent of fibrosis in the infarct zone (calculated on eight samples from this zone and averaged). RESULTS In the hearts explanted after 31 days, pigs in the colchicine group had less fibrosis in the infarct zone than the other animals [41.6% (20.4-51.0) vs. 57.4% (42.9-66.5); P = 0.022]. There was a trend toward a higher myocardial salvage index (MSI; an index of the efficacy of revascularization) in pigs on colchicine (P = 0.054). Conversely, changes in LV volumes, ejection fraction and mass did not differ between groups. CONCLUSION Colchicine therapy for 1 month after reperfused MI further reduces myocardial fibrosis when added to standard therapy, while it does not have additional effects on LV remodeling.
Collapse
Affiliation(s)
- Alberto Aimo
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | | | - Andrea Barison
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Veronica Musetti
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Silvia Masotti
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Paolo Morfino
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna
| | - Claudio Passino
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Giulia Martinelli
- Institut del Cor, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Angela Pucci
- Histopathology Department, University Hospital of Pisa, Italy
| | - Veronica Crisostomo
- Jesús Usón Minimally Invasive Surgery Centre, Cáceres
- CIBERCV, Instituto de Salud Carlos III, Madrid
| | | | - Virginia Blanco-Blazquez
- Jesús Usón Minimally Invasive Surgery Centre, Cáceres
- CIBERCV, Instituto de Salud Carlos III, Madrid
| | - Carolina Galvez-Monton
- Institut del Cor, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Michele Emdin
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Antoni Bayes-Genis
- Institut del Cor, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
7
|
Li Z, Han D, Qi T, Deng J, Li L, Gao C, Gao W, Chen H, Zhang L, Chen W. Hemoglobin A1c in type 2 diabetes mellitus patients with preserved ejection fraction is an independent predictor of left ventricular myocardial deformation and tissue abnormalities. BMC Cardiovasc Disord 2023; 23:49. [PMID: 36698087 PMCID: PMC9878773 DOI: 10.1186/s12872-023-03082-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Early detection of subclinical myocardial dysfunction in patients with type 2 diabetes mellitus (T2DM) is essential for preventing heart failure. This study aims to search for predictors of left ventricular (LV) myocardial deformation and tissue abnormalities in T2DM patients with preserved ejection fraction by using CMR T1 mapping and feature tracking. METHODS 70 patients and 44 sex- and age-matched controls (Cs) were recruited and underwent CMR examination to obtain LV myocardial extracellular volume fraction (ECV) and global longitudinal strain (GLS). The patients were subdivided into three groups, including 19 normotensive T2DM patients (G1), 19 hypertensive T2DM patients (G2) and 32 hypertensive patients (HT). The baseline biochemical indices were collected before CMR examination. RESULTS LV ECV in T2DM patients was significantly higher than that in Cs (30.75 ± 3.65% vs. 26.33 ± 2.81%; p < 0.05). LV GLS in T2DM patients reduced compared with that in Cs (-16.51 ± 2.53% vs. -19.66 ± 3.21%, p < 0.001). In the subgroup analysis, ECV in G2 increased compared with that in G1 (31.92 ± 3.05% vs. 29.59 ± 3.90%, p = 0.032) and that in HT, too (31.92 ± 3.05% vs. 29.22 ± 6.58%, p = 0.042). GLS in G2 significantly reduced compared with that in G1 (-15.75 ± 2.29% vs. -17.27 ± 2.57%, p < 0.05) and in HT, too (-15.75 ± 2.29% vs. -17.54 ± 3.097%, p < 0.05). In T2DM group, including both G1 and G2, hemoglobin A1c (HbA1c) can independently forecast the increase in ECV (β = 0.274, p = 0.001) and decrease in GLS (β = 0.383, p = 0.018). CONCLUSIONS T2DM patients with preserved ejection fraction show increased ECV but deteriorated GLS, which may be exacerbated by hypertension of these patients. Hemoglobin A1c is an index that can independently predict T2DM patients' LV myocardial deformation and tissue abnormalities.
Collapse
Affiliation(s)
- Zhiming Li
- Department of Radiology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China
| | - Dan Han
- Department of Radiology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China
| | - Tianfu Qi
- Department of Radiology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China
| | - Jie Deng
- Department of Radiology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China
| | - Lili Li
- Department of Radiology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China
| | - Chao Gao
- Department of Radiology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China
| | - Wei Gao
- Department of Radiology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China
- Department of Radiology, First People's Hospital of Honghe State, 1 Xiyuan Road, Honghe, 661100, China
| | - Haiyan Chen
- Department of Radiology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China
| | - Lihua Zhang
- Department of General Medicine, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China.
| | - Wei Chen
- Department of Radiology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China.
| |
Collapse
|
8
|
Feature tracking strain analysis detects the onset of regional diastolic dysfunction in territories with acute myocardial injury induced by transthoracic electrical interventions. Sci Rep 2022; 12:19532. [PMID: 36376457 PMCID: PMC9663508 DOI: 10.1038/s41598-022-24199-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Electric interventions are used to terminate arrhythmia. However, myocardial injury from the electrical intervention can follow unique pathways and it is unknown how this affects regional ventricular function. This study investigated the impact of transthoracic electrical shocks on systolic and diastolic myocardial deformation. Ten healthy anaesthetized female swine received five transthoracic shocks (5 × 200 J) and six controls underwent a cardiovascular magnetic resonance exam prior to and 5 h after the intervention. Serial transthoracic shocks led to a global reduction in both left (LV, - 15.6 ± 3.3% to - 13.0 ± 3.6%, p < 0.01) and right ventricular (RV, - 16.1 ± 2.3% to - 12.8 ± 4.2%, p = 0.03) peak circumferential strain as a marker of systolic function and to a decrease in LV early diastolic strain rate (1.19 ± 0.35/s to 0.95 ± 0.37/s, p = 0.02), assessed by feature tracking analysis. The extent of myocardial edema (ΔT1) was related to an aggravation of regional LV and RV diastolic dysfunction, whereas only RV systolic function was regionally associated with an increase in T1. In conclusion, serial transthoracic shocks in a healthy swine model attenuate biventricular systolic function, but it is the acute development of regional diastolic dysfunction that is associated with the onset of colocalized myocardial edema.
Collapse
|
9
|
Faragli A, Alogna A, Lee CB, Zhu M, Ghorbani N, Lo Muzio FP, Schnackenburg B, Stehning C, Kuehne T, Post H, Goubergrits L, Nagel E, Pieske B, Kelle S, Kelm M. Non-invasive CMR-Based Quantification of Myocardial Power and Efficiency Under Stress and Ischemic Conditions in Landrace Pigs. Front Cardiovasc Med 2021; 8:689255. [PMID: 34381823 PMCID: PMC8352437 DOI: 10.3389/fcvm.2021.689255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/18/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Myocardial efficiency should be maintained stable under light-to-moderate stress conditions, but ischemia puts the myocardium at risk for impaired functionality. Additionally, the measurement of such efficiency typically requires invasive heart catheterization and exposure to ionizing radiation. In this work, we aimed to non-invasively assess myocardial power and the resulting efficiency during pharmacological stress testing and ischemia induction. Methods: In a cohort of n = 10 healthy Landrace pigs, dobutamine stress testing was performed, followed by verapamil-induced ischemia alongside cardiac magnetic resonance (CMR) imaging. External myocardial power, internal myocardial power, and myocardial efficiency were assessed non-invasively using geometrical and functional parameters from CMR volumetric as well as blood flow and pressure measurements. Results: External myocardial power significantly increased under dobutamine stress [2.3 (1.6-3.1) W/m2 vs. 1.3 (1.1-1.6) W/m2, p = 0.005] and significantly decreased under verapamil-induced ischemia [0.8 (0.5-0.9) W/m2, p = 0.005]. Internal myocardial power [baseline: 5.9 (4.6-8.5) W/m2] was not affected by dobutamine [7.5 (6.9-9.0) W/m2, p = 0.241] nor verapamil [5.8 (4.7-8.8) W/m2, p = 0.878]. Myocardial efficiency did not change from baseline to dobutamine [21% (15-27) vs. 31% (20-44), p = 0.059] but decreased significantly during verapamil-induced ischemia [10% (8-13), p = 0.005]. Conclusion: In healthy Landrace pigs, dobutamine stress increased external myocardial power, whereas myocardial efficiency was maintained stable. On the contrary, verapamil-induced ischemia substantially decreased external myocardial power and myocardial efficiency. Non-invasive CMR was able to quantify these efficiency losses and might be useful for future clinical studies evaluating the effects of therapeutic interventions on myocardial energetics.
Collapse
Affiliation(s)
- Alessandro Faragli
- Department of Internal Medicine and Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology, Campus Virchow-Klinikum, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Alessio Alogna
- Charité - Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology, Campus Virchow-Klinikum, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Chong Bin Lee
- Department of Internal Medicine and Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Institute for Computational and Imaging Science in Cardiovascular Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Miry Zhu
- Institute for Computational and Imaging Science in Cardiovascular Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Niky Ghorbani
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Institute for Computational and Imaging Science in Cardiovascular Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Francesco Paolo Lo Muzio
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | - Titus Kuehne
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Institute for Computational and Imaging Science in Cardiovascular Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Congenital Heart Disease, Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Heiner Post
- Charité - Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology, Campus Virchow-Klinikum, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Cardiology, Contilia Heart and Vessel Centre, St. Marien-Hospital Mülheim, Mülheim, Germany
| | - Leonid Goubergrits
- Institute for Computational and Imaging Science in Cardiovascular Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Einstein Center Digital Future, Berlin, Germany
| | - Eike Nagel
- Institute of Experimental and Translational Cardiac Imaging, DZHK Centre for Cardiovascular Imaging, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology, Campus Virchow-Klinikum, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Sebastian Kelle
- Department of Internal Medicine and Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology, Campus Virchow-Klinikum, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Marcus Kelm
- Berlin Institute of Health, Berlin, Germany.,Institute for Computational and Imaging Science in Cardiovascular Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Congenital Heart Disease, Deutsches Herzzentrum Berlin, Berlin, Germany
| |
Collapse
|
10
|
Faragli A, Tanacli R, Kolp C, Abawi D, Lapinskas T, Stehning C, Schnackenburg B, Lo Muzio FP, Fassina L, Pieske B, Nagel E, Post H, Kelle S, Alogna A. Cardiovascular magnetic resonance-derived left ventricular mechanics-strain, cardiac power and end-systolic elastance under various inotropic states in swine. J Cardiovasc Magn Reson 2020; 22:79. [PMID: 33256761 PMCID: PMC7708216 DOI: 10.1186/s12968-020-00679-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 10/06/2020] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Cardiovascular magnetic resonance (CMR) strain imaging is an established technique to quantify myocardial deformation. However, to what extent left ventricular (LV) systolic strain, and therefore LV mechanics, reflects classical hemodynamic parameters under various inotropic states is still not completely clear. Therefore, the aim of this study was to investigate the correlation of LV global strain parameters measured via CMR feature tracking (CMR-FT, based on conventional cine balanced steady state free precession (bSSFP) images) with hemodynamic parameters such as cardiac index (CI), cardiac power output (CPO) and end-systolic elastance (Ees) under various inotropic states. METHODS Ten anaesthetized, healthy Landrace swine were acutely instrumented closed-chest and transported to the CMR facility for measurements. After baseline measurements, two steps were performed: (1) dobutamine-stress (Dobutamine) and (2) verapamil-induced cardiovascular depression (Verapamil). During each protocol, CMR images were acquired in the short axisand apical 2Ch, 3Ch and 4Ch views. MEDIS software was utilized to analyze global longitudinal (GLS), global circumferential (GCS), and global radial strain (GRS). RESULTS Dobutamine significantly increased heart rate, CI, CPO and Ees, while Verapamil decreased them. Absolute values of GLS, GCS and GRS accordingly increased during Dobutamine infusion, while GLS and GCS decreased during Verapamil. Linear regression analysis showed a moderate correlation between GLS, GCS and LV hemodynamic parameters, while GRS correlated poorly. Indexing global strain parameters for indirect measures of afterload, such as mean aortic pressure or wall stress, significantly improved these correlations, with GLS indexed for wall stress reflecting LV contractility as the clinically widespread LV ejection fraction. CONCLUSION GLS and GCS correlate accordingly with LV hemodynamics under various inotropic states in swine. Indexing strain parameters for indirect measures of afterload substantially improves this correlation, with GLS being as good as LV ejection fraction in reflecting LV contractility. CMR-FT-strain imaging may be a quick and promising tool to characterize LV hemodynamics in patients with varying degrees of LV dysfunction.
Collapse
Affiliation(s)
- A Faragli
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site, Berlin, Germany
- Department of Internal Medicine/Cardiology, Deutsches Herzzentrum Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - R Tanacli
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- Department of Internal Medicine/Cardiology, Deutsches Herzzentrum Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - C Kolp
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - D Abawi
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - T Lapinskas
- Department of Internal Medicine/Cardiology, Deutsches Herzzentrum Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu Street 2, 50161, Kaunas, Lithuania
| | - C Stehning
- Clinical Science, Philips Healthcare, Röntgenstr. 24, 22335, Hamburg, Germany
| | - B Schnackenburg
- Clinical Science, Philips Healthcare, Röntgenstr. 24, 22335, Hamburg, Germany
| | - F P Lo Muzio
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Via S. Francesco 22, 37129, Verona, Italy
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - L Fassina
- Department of Electrical, Computer and Biomedical Engineering (DIII), Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 5, 27100, Pavia, Italy
| | - B Pieske
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site, Berlin, Germany
- Department of Internal Medicine/Cardiology, Deutsches Herzzentrum Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - E Nagel
- Institute of Experimental and Translational Cardiac Imaging, DZHK Centre for Cardiovascular Imaging, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - H Post
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site, Berlin, Germany
- Department of Cardiology, Contilia Heart and Vessel Centre, St. Marien-Hospital Mülheim, 45468, Mülheim, Germany
| | - S Kelle
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site, Berlin, Germany
- Department of Internal Medicine/Cardiology, Deutsches Herzzentrum Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - A Alogna
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.
- Berlin Institute of Health (BIH), Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site, Berlin, Germany.
| |
Collapse
|