1
|
Uraoka D, Matsuda M, Tanabe Y, Kawaguchi N, Nishiyama C, Okada A, Uda K, Suekuni H, Nishiyama H, Kamei Y, Kurata M, Kitazawa R, Nakano S, Kido T. Usefulness of four-dimensional noise reduction filtering using a similarity algorithm in low-dose dynamic computed tomography for the evaluation of breast cancer: a preliminary study. Jpn J Radiol 2025; 43:787-799. [PMID: 39849240 PMCID: PMC12053336 DOI: 10.1007/s11604-024-01730-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
PURPOSE To evaluate the effects of four-dimensional noise reduction filtering using a similarity algorithm (4D-SF) on the image quality and tumor visibility of low-dose dynamic computed tomography (CT) in evaluating breast cancer. MATERIALS AND METHODS Thirty-four patients with 38 lesions who underwent low-dose dynamic breast CT and were pathologically diagnosed with breast cancer were enrolled. Dynamic CT images were reconstructed using iterative reconstruction alone or in combination with 4D-SF. We selected the peak enhancement phase image of breast cancer for each patient for quantitative and qualitative evaluations of image quality and measurement of the maximum diameter of breast cancer. The signal-to-noise and contrast-to-noise ratios were calculated for quantitative evaluation. The maximum diameters of the breast cancer were measured from the images obtained with and without 4D-SF (4D-SF ±) (size-4D-SF + and size-4D-SF-) and for the pathological specimen (size-PS) and compared. RESULTS The median and interquartile ranges of the signal-to-noise ratio [4D-SF-: 3.03 (2.54-4.17) vs 4D-SF + : 5.52 (4.75-6.66)] and contrast-to-noise ratio [4D-SF-: 2.88 (2.00-3.60) vs 4D-SF + : 7.84 (4.65-10.35)] were significantly higher for 4D-SF + than for 4D-SF- (p < 0.001). The overall image quality (Observer 1, p < 0.001; Observer 2, p < 0.001) and tumor margin sharpness scores (Observer 1, p = 0.003; Observer 2, p < 0.001) were significantly higher for 4D-SF + than for 4D-SF-. The tumor contrast scores for 4D-SF + and 4D-SF- were not significantly different (Observers 1, 2; p = 0.083). Size-4D-SF- was significantly smaller than size-PS (p < 0.001); size-4D-SF + was also smaller than size-PS, but the difference was not significant (p = 0.088). The Spearman's rank correlation coefficient was 0.65 for size-PS and size-4D-SF- and 0.77 for size-PS and size-4D-SF + . CONCLUSION The 4D-SF can improve the image quality and tumor visibility of low-dose dynamic CT in evaluating breast cancer extent due to noise reduction.
Collapse
Affiliation(s)
- Daichi Uraoka
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Megumi Matsuda
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Yuki Tanabe
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Naoto Kawaguchi
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Chihiro Nishiyama
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Ayaka Okada
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Koichiro Uda
- Department of Radiology, Ehime Prefectural Central Hospital, Kasugamachi, Matsuyama, Ehime, 790-0024, Japan
| | - Hiroshi Suekuni
- Department of Radiology, Ehime University Hospital, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Hikaru Nishiyama
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yoshiaki Kamei
- Breast Center, Ehime University Hospital, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Mie Kurata
- Department of Pathology, Ehime University Proteo-Science Center, Shitsukawa, Toon, Ehime, 791-0295, Japan
- Department of Analytical Pathology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Riko Kitazawa
- Division of Diagnostic Pathology, Ehime University Hospital, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Shota Nakano
- Canon Medical Systems Corporation, Shimoishigami, Otawara, Tochigi, 324-8550, Japan
| | - Teruhito Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
2
|
Hinderks MJ, Sliwicka O, Salah K, Sechopoulos I, Brink M, Cetinyurek-Yavuz A, Prokop WM, Nijveldt R, Habets J, Damman P. Accuracy of dynamic stress CT myocardial perfusion in patients with suspected non-ST elevation myocardial infarction. Int J Cardiovasc Imaging 2025; 41:83-92. [PMID: 39641891 PMCID: PMC11742333 DOI: 10.1007/s10554-024-03292-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
Coronary CT angiography (CCTA) and dynamic stress CT myocardial perfusion (CT-MPI) are established modalities in the analysis of patients with chronic coronary syndromes. Their role in patients with suspected non-ST elevation myocardial infarction (NSTEMI) is unknown. CCTA with CT-MPI might assist in the triage of NSTEMI patients to the Cath lab. We investigated the correlation of significant epicardial lesions by CT-MPI in addition to CCTA compared to invasive coronary angiography (ICA) with fractional flow reserve (FFR) in patients with NSTEMI. Twenty NSTEMI patients scheduled for ICA were enrolled in this study with planned ICA. CCTA and CT-MPI was performed pre-ICA. For each coronary artery, the presence or absence of significant lesions was interpreted by CCTA with CT-MPI, using an FFR of ≤ 0.8 or angiographic culprit (stenosis > 90%, suspected plaque rupture) as reference. The main outcome was the per-vessel correlation. Sixteen out of 20 patients had a culprit lesion that required immediate revascularization. CCTA with ≥ 50% stenosis demonstrated a per vessel sensitivity and specificity for the detection of significant stenosis of respectively 100% (95% CI: 86-100%) and 75% (95% CI: 58-88%). CCTA with CT-MPI showed a lower sensitivity 90% (95% CI: 70-99%) but higher specificity of 100% (95% CI: 90-100%). CCTA with CT-MPI exhibits a strong correlation for identifying significant CAD in patients with NSTEMI. Thereby, it might assist in the triage of ICA in NSTEMI patients.
Collapse
Affiliation(s)
- M J Hinderks
- Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - O Sliwicka
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - K Salah
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - I Sechopoulos
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M Brink
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A Cetinyurek-Yavuz
- Department of Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - W M Prokop
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - R Nijveldt
- Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J Habets
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Radiology & Nuclear Medicine, Haaglanden Medical Center, The Hague, The Netherlands
| | - P Damman
- Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
3
|
Toritani H, Yoshida K, Hosokawa T, Tanabe Y, Yamamoto Y, Nishiyama H, Kido T, Kawaguchi N, Matsuda M, Nakano S, Miyazaki S, Uetani T, Inaba S, Yamaguchi O, Kido T. The Feasibility of a Model-Based Iterative Reconstruction Technique Tuned for the Myocardium on Myocardial Computed Tomography Late Enhancement. J Comput Assist Tomogr 2025; 49:85-92. [PMID: 39095055 DOI: 10.1097/rct.0000000000001652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
OBJECTIVES This study evaluated the feasibility of a model-based iterative reconstruction technique (MBIR) tuned for the myocardium on myocardial computed tomography late enhancement (CT-LE). METHODS Twenty-eight patients who underwent myocardial CT-LE and late gadolinium enhancement (LGE) magnetic resonance imaging (MRI) within 1 year were retrospectively enrolled. Myocardial CT-LE was performed using a 320-row CT with low tube voltage (80 kVp). Myocardial CT-LE images were scanned 7 min after CT angiography (CTA) without additional contrast medium. All myocardial CT-LE images were reconstructed with hybrid iterative reconstruction (HIR), conventional MBIR (MBIR_cardiac), and new MBIR tuned for the myocardium (MBIR_myo). Qualitative (5-grade scale) scores and quantitative parameters (signal-to-noise ratio [SNR] and contrast-to-noise ratio [CNR]) were assessed as image quality. The sensitivity, specificity, and accuracy of myocardial CT-LE were evaluated at the segment level using an American Heart Association (AHA) 16-segment model, with LGE-MRI as a reference standard. These results were compared among the different CT image reconstructions. RESULTS In 28 patients with 448 segments, 160 segments were diagnosed with positive by LGE-MRI. In the qualitative assessment of myocardial CT-LE, the mean image quality scores were 2.9 ± 1.2 for HIR, 3.0 ± 1.1 for MBIR_cardiac, and 4.0 ± 1.0 for MBIR_myo. MBIR_myo showed a significantly higher score than HIR ( P < 0.001) and MBIR_cardiac ( P = 0.018). In the quantitative image quality assessment of myocardial CT-LE, the median image SNR was 10.3 (9.1-11.1) for HIR, 10.8 (9.8-12.1) for MBIR_cardiac, and 16.8 (15.7-18.4) for MBIR_myo. The median image CNR was 3.7 (3.0-4.6) for HIR, 3.8 (3.2-5.1) for MBIR_cardiac, and 6.4 (5.0-7.7) for MBIR_myo. MBIR_myo significantly improved the SNR and CNR of CT-LE compared to HIR and MBIR_cardiac ( P < 0.001). The sensitivity, specificity, and accuracy for the detection of myocardial CT-LE were 70%, 92%, and 84% for HIR; 71%, 92%, and 85% for MBIR_cardiac; and 84%, 92%, and 89% for MBIR_myo, respectively. MBIR_myo showed significantly higher image quality, sensitivity, and accuracy than the others ( P < 0.05). CONCLUSIONS MBIR tuned for myocardium improved image quality and diagnostic performance for myocardial CT-LE assessment.
Collapse
Affiliation(s)
| | - Kazuki Yoshida
- Department of Radiology, Ehime University Graduate School of Medicine, Toon City
| | - Takaaki Hosokawa
- Department of Radiology, Ehime University Graduate School of Medicine, Toon City
| | - Yuki Tanabe
- Department of Radiology, Ehime University Graduate School of Medicine, Toon City
| | - Yuta Yamamoto
- Department of Radiology, Saiseikai Matsuyama Hospital, Matsuyama City, Ehime Prefecture
| | - Hikaru Nishiyama
- Department of Radiology, Ehime University Graduate School of Medicine, Toon City
| | - Tomoyuki Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Toon City
| | - Naoto Kawaguchi
- Department of Radiology, Ehime University Graduate School of Medicine, Toon City
| | - Megumi Matsuda
- Department of Radiology, Ehime University Graduate School of Medicine, Toon City
| | - Shota Nakano
- Canon Medical Systems Corporation, Otawara City, Tochigi Prefecture
| | - Shigehiro Miyazaki
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Toon City, Ehime Prefecture, Japan
| | - Teruyoshi Uetani
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Toon City, Ehime Prefecture, Japan
| | - Shinji Inaba
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Toon City, Ehime Prefecture, Japan
| | - Osamu Yamaguchi
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Toon City, Ehime Prefecture, Japan
| | - Teruhito Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Toon City
| |
Collapse
|
4
|
Sadia RT, Chen J, Zhang J. CT image denoising methods for image quality improvement and radiation dose reduction. J Appl Clin Med Phys 2024; 25:e14270. [PMID: 38240466 PMCID: PMC10860577 DOI: 10.1002/acm2.14270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 02/13/2024] Open
Abstract
With the ever-increasing use of computed tomography (CT), concerns about its radiation dose have become a significant public issue. To address the need for radiation dose reduction, CT denoising methods have been widely investigated and applied in low-dose CT images. Numerous noise reduction algorithms have emerged, such as iterative reconstruction and most recently, deep learning (DL)-based approaches. Given the rapid advancements in Artificial Intelligence techniques, we recognize the need for a comprehensive review that emphasizes the most recently developed methods. Hence, we have performed a thorough analysis of existing literature to provide such a review. Beyond directly comparing the performance, we focus on pivotal aspects, including model training, validation, testing, generalizability, vulnerability, and evaluation methods. This review is expected to raise awareness of the various facets involved in CT image denoising and the specific challenges in developing DL-based models.
Collapse
Affiliation(s)
- Rabeya Tus Sadia
- Department of Computer ScienceUniversity of KentuckyLexingtonKentuckyUSA
| | - Jin Chen
- Department of Medicine‐NephrologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Jie Zhang
- Department of RadiologyUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
5
|
Yamamoto Y, Tanabe Y, Kurata A, Yamamoto S, Kido T, Uetani T, Ikeda S, Nakano S, Yamaguchi O, Kido T. Feasibility of four-dimensional similarity filter for radiation dose reduction in dynamic myocardial computed tomography perfusion imaging. FRONTIERS IN RADIOLOGY 2023; 3:1214521. [PMID: 38105799 PMCID: PMC10722229 DOI: 10.3389/fradi.2023.1214521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
Rationale and objectives We aimed to evaluate the impact of four-dimensional noise reduction filtering using a four-dimensional similarity filter (4D-SF) on radiation dose reduction in dynamic myocardial computed tomography perfusion (CTP). Materials and methods Forty-three patients who underwent dynamic myocardial CTP using 320-row computed tomography (CT) were included in the study. The original images were reconstructed using iterative reconstruction (IR). Three different CTP datasets with simulated noise, corresponding to 25%, 50%, and 75% reduction of the original dose (300 mA), were reconstructed using a combination of IR and 4D-SF. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were assessed, and CT-derived myocardial blood flow (CT-MBF) was quantified. The results were compared between the original and simulated images with radiation dose reduction. Results The median SNR (first quartile-third quartile) at the original, 25%-, 50%-, and 75%-dose reduced-simulated images with 4D-SF was 8.3 (6.5-10.2), 16.5 (11.9-21.7), 15.6 (11.0-20.1), and 12.8 (8.8-18.1) and that of CNR was 4.4 (3.2-5.8), 6.7 (4.6-10.3), 6.6 (4.3-10.1), and 5.5 (3.5-9.1), respectively. All the dose-reduced-simulated CTPs with 4D-SF had significantly higher image quality scores in SNR and CNR than the original ones (25%-, 50%-, and 75%-dose reduced vs. original images, p < 0.05, in each). The CT-MBF in 75%-dose reduced-simulated CTP was significantly lower than 25%-, 50%- dose-reduced-simulated, and original CTPs (vs. 75%-dose reduced-simulated images, p < 0.05, in each). Conclusion 4D-SF has the potential to reduce the radiation dose associated with dynamic myocardial CTP imaging by half, without impairing the robustness of MBF quantification.
Collapse
Affiliation(s)
- Yuta Yamamoto
- Department of Radiology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Yuki Tanabe
- Department of Radiology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Akira Kurata
- Department of Radiology, Ehime University Graduate School of Medicine, Toon, Japan
- Department of Cardiology, National Hospital Organization Shikoku Cancer Center, Matsuyama, Japan
| | - Shuhei Yamamoto
- Department of Radiology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Tomoyuki Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Teruyoshi Uetani
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Shuntaro Ikeda
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Shota Nakano
- Canon Medical Systems Corporation, Otawara, Japan
| | - Osamu Yamaguchi
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Teruhito Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Toon, Japan
| |
Collapse
|
6
|
Zdanowicz A, Guzinski M, Pula M, Witkowska A, Reczuch K. Dynamic CT Myocardial Perfusion: The Role of Functional Evaluation in the Diagnosis of Coronary Artery Disease. J Clin Med 2023; 12:7062. [PMID: 38002675 PMCID: PMC10672614 DOI: 10.3390/jcm12227062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Coronary computed tomography angiography (CTA) is a widely accepted, non-invasive diagnostic modality for the evaluation of patients with suspected coronary artery disease (CAD). However, a limitation of CTA is its inability to provide information on the hemodynamic significance of the coronary lesion. The recently developed stress dynamic CT perfusion technique has emerged as a potential solution to this diagnostic challenge. Dynamic CT myocardial perfusion provides information on the hemodynamic consequences of coronary stenosis and is used to detect myocardial ischemia. The combination of stress dynamic CT myocardial perfusion with CTA provides a comprehensive assessment that integrates anatomical and functional information. CT myocardial perfusion has been validated in several clinical studies and has shown comparable accuracy to Positron Emission Tomography (PET) and stress magnetic resonance imaging (MRI) in the diagnosis of hemodynamically significant coronary stenosis and superior performance to Single Photon Emission Computed Tomography (SPECT). More importantly, CTP-derived myocardial perfusion has been shown to have a strong correlation with FFR, and the use of CTP results in a reduction of negative catheterizations. In the context of suspected stable coronary artery disease, the CT protocol with dynamic perfusion imaging combined with CTA eliminates the need for additional testing, making it a convenient "one-stop-shop" method and an effective gatekeeper to an invasive approach.
Collapse
Affiliation(s)
- Agata Zdanowicz
- Department of General Radiology, Interventional Radiology and Neuroradiology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Maciej Guzinski
- Department of General Radiology, Interventional Radiology and Neuroradiology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Michal Pula
- Lower Silesian Oncology, Pulmonology and Hematology Center, Hirszfelda Square 12, 53-413 Wroclaw, Poland
| | - Agnieszka Witkowska
- Institute of Heart Diseases, University Clinical Hospital in Wroclaw, Borowska 213, 50-556 Wroclaw, Poland (K.R.)
| | - Krzysztof Reczuch
- Institute of Heart Diseases, University Clinical Hospital in Wroclaw, Borowska 213, 50-556 Wroclaw, Poland (K.R.)
- Department of Cardiology, Faculty of Medicine, Institute of Heart Diseases, Wroclaw Medical University, 50-367 Wroclaw, Poland
| |
Collapse
|
7
|
Ozkara BB, Karabacak M, Margetis K, Yedavalli VS, Wintermark M, Bisdas S. Assessment of Computed Tomography Perfusion Research Landscape: A Topic Modeling Study. Tomography 2023; 9:2016-2028. [PMID: 37987344 PMCID: PMC10661298 DOI: 10.3390/tomography9060158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023] Open
Abstract
The number of scholarly articles continues to rise. The continuous increase in scientific output poses a challenge for researchers, who must devote considerable time to collecting and analyzing these results. The topic modeling approach emerges as a novel response to this need. Considering the swift advancements in computed tomography perfusion (CTP), we deem it essential to launch an initiative focused on topic modeling. We conducted a comprehensive search of the Scopus database from 1 January 2000 to 16 August 2023, to identify relevant articles about CTP. Using the BERTopic model, we derived a group of topics along with their respective representative articles. For the 2020s, linear regression models were used to identify and interpret trending topics. From the most to the least prevalent, the topics that were identified include "Tumor Vascularity", "Stroke Assessment", "Myocardial Perfusion", "Intracerebral Hemorrhage", "Imaging Optimization", "Reperfusion Therapy", "Postprocessing", "Carotid Artery Disease", "Seizures", "Hemorrhagic Transformation", "Artificial Intelligence", and "Moyamoya Disease". The model provided insights into the trends of the current decade, highlighting "Postprocessing" and "Artificial Intelligence" as the most trending topics.
Collapse
Affiliation(s)
- Burak B. Ozkara
- Department of Neuroradiology, MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA
| | - Mert Karabacak
- Department of Neurosurgery, Mount Sinai Health System, 1468 Madison Avenue, New York, NY 10029, USA
| | - Konstantinos Margetis
- Department of Neurosurgery, Mount Sinai Health System, 1468 Madison Avenue, New York, NY 10029, USA
| | - Vivek S. Yedavalli
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Hospital, 600 N Wolfe Street, Baltimore, MD 21287, USA
| | - Max Wintermark
- Department of Neuroradiology, MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA
| | - Sotirios Bisdas
- Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London WC1N 3BG, UK
- Department of Brain Repair and Rehabilitation, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
8
|
Sliwicka O, Sechopoulos I, Baggiano A, Pontone G, Nijveldt R, Habets J. Dynamic myocardial CT perfusion imaging-state of the art. Eur Radiol 2023; 33:5509-5525. [PMID: 36997751 PMCID: PMC10326111 DOI: 10.1007/s00330-023-09550-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/02/2023] [Accepted: 02/22/2023] [Indexed: 04/01/2023]
Abstract
In patients with suspected coronary artery disease (CAD), dynamic myocardial computed tomography perfusion (CTP) imaging combined with coronary CT angiography (CTA) has become a comprehensive diagnostic examination technique resulting in both anatomical and quantitative functional information on myocardial blood flow, and the presence and grading of stenosis. Recently, CTP imaging has been proven to have good diagnostic accuracy for detecting myocardial ischemia, comparable to stress magnetic resonance imaging and positron emission tomography perfusion, while being superior to single photon emission computed tomography. Dynamic CTP accompanied by coronary CTA can serve as a gatekeeper for invasive workup, as it reduces unnecessary diagnostic invasive coronary angiography. Dynamic CTP also has good prognostic value for the prediction of major adverse cardiovascular events. In this article, we will provide an overview of dynamic CTP, including the basics of coronary blood flow physiology, applications and technical aspects including protocols, image acquisition and reconstruction, future perspectives, and scientific challenges. KEY POINTS: • Stress dynamic myocardial CT perfusion combined with coronary CTA is a comprehensive diagnostic examination technique resulting in both anatomical and quantitative functional information. • Dynamic CTP imaging has good diagnostic accuracy for detecting myocardial ischemia comparable to stress MRI and PET perfusion. • Dynamic CTP accompanied by coronary CTA may serve as a gatekeeper for invasive workup and can guide treatment in obstructive coronary artery disease.
Collapse
Affiliation(s)
- Olga Sliwicka
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands.
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Ioannis Sechopoulos
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Andrea Baggiano
- Department of Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Gianluca Pontone
- Department of Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Robin Nijveldt
- Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jesse Habets
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
- Department of Radiology and Nuclear Medicine, Haaglanden Medical Center, The Hague, The Netherlands
| |
Collapse
|
9
|
Sliwicka O, Swiderska-Chadaj Z, Snoeren M, Brink M, Salah K, Peters-Bax L, Stille T, van Amerongen MJ, Sechopoulos I, Habets J. Multireader image quality evaluation of dynamic myocardial computed tomography perfusion imaging with a novel four-dimensional noise reduction filter. Acta Radiol 2023; 64:999-1006. [PMID: 35765201 DOI: 10.1177/02841851221108804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Dynamic myocardial computed tomography perfusion (CTP) is a novel technique able to depict cardiac ischemia. PURPOSE To evaluate the impact of a four-dimensional noise reduction filter (similarity filter [4D-SF]) on image quality in dynamic CTP imaging, allowing for substantial radiation dose reduction. MATERIAL AND METHODS Dynamic CTP datasets of 30 patients (16 women) with suspected coronary artery disease, acquired with a 320-slice CT system, were retrieved, reconstructed with the deep learning-based algorithm of the system (DLR), and filtered with the 4D-SF. For each case, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in six regions of interest (33-38mm2) were calculated before and after filtering, in four-chamber and short-axis views, and t-tested. Furthermore, six radiologists of different expertise evaluated subjective image preference by answering five visual grading analysis-type questions (regarding acceptable level of noise, absence of artifacts, natural appearance, cardiac contour sharpness, diagnostic acceptability) using a 5-point scale. The results were analyzed using visual grade characteristics (VGC) and intraclass correlation coefficient (ICC). RESULTS Mean SNR in four-chamber view (unfiltered vs. filtered) were: septum=4.1 ± 2.1 versus 7.6 ± 5.6; lateral wall=4.5 ± 2.0 versus 8.0 ± 4.9; CNRseptum=16.6 ± 8.9 versus 31.7 ± 28; lateral wall=16.2 ± 8.9 versus 31.3 ± 28.9. Similar results were obtained in short-axis view. The perceived filtered image quality indicated decreased noise (VGCAUC=0.96) and artifacts (0.65), improved natural appearance (0.59), cardiac contour sharpness (0.74), and diagnostic acceptability (0.78). The inter-observer variability was excellent (ICC=0.79). All results were statistically significant (P < 0.05). CONCLUSION Similarity filtering after DLR improves image quality, possibly enabling dose reduction in dynamic CTP imaging in patient with suspected chronic coronary syndrome.
Collapse
Affiliation(s)
- Olga Sliwicka
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Miranda Snoeren
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Monique Brink
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Khibar Salah
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Liesbeth Peters-Bax
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tip Stille
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Ioannis Sechopoulos
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jesse Habets
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Murayama K, Smit EJ, Prokop M, Ikeda Y, Fujii K, Nakahara I, Hanamatsu S, Katada K, Ohno Y, Toyama H. A Bayesian estimation method for cerebral blood flow measurement by area-detector CT perfusion imaging. Neuroradiology 2023; 65:65-75. [PMID: 35851924 DOI: 10.1007/s00234-022-03013-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/06/2022] [Indexed: 01/10/2023]
Abstract
PURPOSE Bayesian estimation with advanced noise reduction (BEANR) in CT perfusion (CTP) could deliver more reliable cerebral blood flow (CBF) measurements than the commonly used reformulated singular value decomposition (rSVD). We compared the efficacy of CBF measurement by CTP using BEANR and rSVD, evaluating both relative to N-isopropyl-p-[(123) I]- iodoamphetamine (123I-IMP) single-photon emission computed tomography (SPECT) as a reference standard, in patients with cerebrovascular disease. METHODS Thirty-one patients with suspected cerebrovascular disease underwent both CTP on a 320 detector-row CT system and SPECT. We applied rSVD and BEANR in the ischemic and contralateral regions to create CBF maps and calculate CBF ratios from the ischemic side to the healthy contralateral side (CBF index). The analysis involved comparing the CBF index between CTP methods and SPECT using Pearson's correlation and limits of agreement determined with Bland-Altman analyses, before comparing the mean difference in the CBF index between each CTP method and SPECT using the Wilcoxon matched pairs signed-rank test. RESULTS The CBF indices of BEANR and 123I-IMP SPECT were significantly and positively correlated (r = 0.55, p < 0.0001), but there was no significant correlation between the rSVD method and SPECT (r = 0.15, p > 0.05). BEANR produced smaller limits of agreement for CBF than rSVD. The mean difference in the CBF index between BEANR and SPECT differed significantly from that between rSVD and SPECT (p < 0.001). CONCLUSIONS BEANR has a better potential utility for CBF measurement in CTP than rSVD compared to SPECT in patients with cerebrovascular disease.
Collapse
Affiliation(s)
- Kazuhiro Murayama
- Department of Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-Cho Toyoake, Aichi, 470-1101, Japan.
| | - Ewoud J Smit
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Mathias Prokop
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Yoshihiro Ikeda
- Canon Medical Systems Corporation, 1385 Shimoishigami, Otawara, Tochigi, 325-8550, Japan
| | - Kenji Fujii
- Canon Medical Systems Corporation, 1385 Shimoishigami, Otawara, Tochigi, 325-8550, Japan
| | - Ichiro Nakahara
- Department of Comprehensive Strokology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-Cho Toyoake, Aichi, 470-1101, Japan
| | - Satomu Hanamatsu
- Department of Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-Cho Toyoake, Aichi, 470-1101, Japan
| | - Kazuhiro Katada
- Department of Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-Cho Toyoake, Aichi, 470-1101, Japan
| | - Yoshiharu Ohno
- Department of Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-Cho Toyoake, Aichi, 470-1101, Japan
| | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-Cho Toyoake, Aichi, 470-1101, Japan
| |
Collapse
|
11
|
Perik TH, van Genugten EAJ, Aarntzen EHJG, Smit EJ, Huisman HJ, Hermans JJ. Quantitative CT perfusion imaging in patients with pancreatic cancer: a systematic review. Abdom Radiol (NY) 2022; 47:3101-3117. [PMID: 34223961 PMCID: PMC9388409 DOI: 10.1007/s00261-021-03190-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 01/18/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related death with a 5-year survival rate of 10%. Quantitative CT perfusion (CTP) can provide additional diagnostic information compared to the limited accuracy of the current standard, contrast-enhanced CT (CECT). This systematic review evaluates CTP for diagnosis, grading, and treatment assessment of PDAC. The secondary goal is to provide an overview of scan protocols and perfusion models used for CTP in PDAC. The search strategy combined synonyms for 'CTP' and 'PDAC.' Pubmed, Embase, and Web of Science were systematically searched from January 2000 to December 2020 for studies using CTP to evaluate PDAC. The risk of bias was assessed using QUADAS-2. 607 abstracts were screened, of which 29 were selected for full-text eligibility. 21 studies were included in the final analysis with a total of 760 patients. All studies comparing PDAC with non-tumorous parenchyma found significant CTP-based differences in blood flow (BF) and blood volume (BV). Two studies found significant differences between pathological grades. Two other studies showed that BF could predict neoadjuvant treatment response. A wide variety in kinetic models and acquisition protocol was found among included studies. Quantitative CTP shows a potential benefit in PDAC diagnosis and can serve as a tool for pathological grading and treatment assessment; however, clinical evidence is still limited. To improve clinical use, standardized acquisition and reconstruction parameters are necessary for interchangeability of the perfusion parameters.
Collapse
Affiliation(s)
- T H Perik
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - E A J van Genugten
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - E H J G Aarntzen
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - E J Smit
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - H J Huisman
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - J J Hermans
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|