1
|
Chen R, Luo R, Xu Y, Ou J, Li X, Yang Y, Cao L, Wu Z, Luo W, Liu H. Second-Order Motion-Compensated Echo-Planar Cardiac Diffusion-Weighted MRI: Usefulness of Compressed Sensitivity Encoding. J Magn Reson Imaging 2025; 61:305-318. [PMID: 38587265 DOI: 10.1002/jmri.29383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Cardiac diffusion-weighted imaging (DWI) using second-order motion-compensated spin echo (M2C) can provide noninvasive in-vivo microstructural assessment, but limited by relatively low signal-to-noise ratio (SNR). Echo-planar imaging (EPI) with compressed sensitivity encoding (EPICS) could address these issues. PURPOSE To combine M2C DWI and EPCIS (M2C EPICS DWI), and compare image quality for M2C DWI. STUDY TYPE Prospective. POPULATION Ten ex-vivo hearts, 10 healthy volunteers (females, 5 [50%]; mean ± SD of age, 25 ± 4 years), and 12 patients with diseased hearts (female, 1 [8.3%]; mean ± SD of age, 44 ± 16 years; including coronary artery heart disease, congenital heart disease, dilated cardiomyopathy, amyloidosis, and myocarditis). FIELD STRENGTH/SEQUENCE 3-T, M2C EPICS DWI, and M2C DWI. ASSESSMENT The apparent SNR (aSNR) and the rating scores were used to evaluate and compared image quality of all three groups. The aSNR was calculated using aSNR = Mean intensity myocardium / Standard deviation myocardium , and the myocardium was segmented manually. Three observers independently rated subjective image quality using a 5-point Likert scale. STATISTICAL TESTS Bland-Altman analysis and paired t-tests. The threshold for statistical significance was set at P < 0.05. RESULTS In healthy volunteers, the aSNR with a b-value of 450 s/mm2 acquired by M2C EPICS DWI was significantly higher than M2C DWI at in-plane resolutions of 3.0 × 3.0, 2.5 × 2.5, and 2.0 × 2.0 mm2. In patients with diseased hearts, the aSNR ofM2C EPICS DWI was also significantly higher than that for M2C DWI (bias of M2C EPICS-M2C = 1.999, 95% limits of agreement, 0.362 to 3.636; mean ± SD, 7.80 ± 1.37 vs. 5.80 ± 0.81). The ADC values of M2C EPICS was significantly higher than M2C DWI in in-vivo hearts. Over 80% of the images with rating scores for M2C EPICS DWI were higher than M2C DWI in in-vivo hearts. DATA CONCLUSION Cardiac imaging by M2C EPICS DWI may demonstrate better overall image quality and higher aSNR than M2C DWI. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Rui Chen
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ruohong Luo
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yongzhou Xu
- Department of MSC Clinical & Technical Solutions, Philips Healthcare, Shenzhen, China
| | - Jiehao Ou
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaodan Li
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yuelong Yang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Liqi Cao
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhigang Wu
- Department of MSC Clinical & Technical Solutions, Philips Healthcare, Shenzhen, China
| | - Wei Luo
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Hui Liu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Zhang Y, Liu M, Zhang C, Zou Y, Kang L, Song L. Role of Biomarkers of Myocardial Injury to Predict Adverse Outcomes in Hypertrophic Cardiomyopathy. Circ Cardiovasc Qual Outcomes 2024; 17:e010243. [PMID: 38240157 DOI: 10.1161/circoutcomes.123.010243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/18/2023] [Indexed: 02/22/2024]
Abstract
BACKGROUND Serum troponins and CK-MB (creatine kinase-MB) are readily detectable and reliable cardiac-specific biomarkers of subclinical myocardial injury. This study explores the roles of cTnI (cardiac troponin I) and CK-MB in hypertrophic cardiomyopathy (HCM). METHODS This study included 1045 patients with HCM who had baseline cTnI and CK-MB measurements at Fuwai Hospital between 1999 and 2019. Patients were excluded if they had undergone percutaneous coronary intervention or coronary artery bypass grafting, or had renal failure. Five end points were studied: all-cause death, cardiovascular death, noncardiovascular death, sudden cardiac death, and other cardiovascular death. Cox regression was used to assess the associations of cTnI and CK-MB levels with outcomes. RESULTS Nine hundred seventy patients with available follow-up data were finally analyzed (mean age, 49.3 years; 36.4% female). During the median 4.3-year follow-up period, 87 patients reached the end points. Higher cTnI (per 0.05 ng/mL increase) and CK-MB (per 1 IU/L increase) levels were associated with increased risks of all-cause death (cTnI: adjusted hazard ratio [HR], 1.038, P<0.001; CK-MB: adjusted HR, 1.021, P=0.004), cardiovascular death (cTnI: adjusted HR, 1.040, P<0.001; CK-MB: adjusted HR, 1.025, P=0.006), and sudden cardiac death (cTnI: adjusted HR, 1.045, P<0.001; CK-MB: adjusted HR, 1.032, P=0.001). Patients with elevated levels of both cTnI and CK-MB had worse prognoses than patients with an elevated level of either biomarker alone and patients who did not have an elevated level of either biomarker. Addition of the binary indicator elevation of both cTnI and CK-MB significantly improved the discrimination and reclassification abilities of the standard HCM Risk- sudden cardiac death model (C statistics: P=0.002; net reclassification improvement, 0.652; integrated discrimination improvement, 0.064). CONCLUSIONS Comprehensive evaluations of biomarkers of myocardial injury, cTnI and CK-MB, have considerable value for predicting adverse outcomes among patients with HCM. Routine cTnI and CK-MB assessments may help to guide implantable cardioverter defibrillator implantation for primary prevention in HCM.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Cardiovascular Disease (Y. Zhang, C.Z., L.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minghao Liu
- Department of Cardiology (M.L., Y. Zou), Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Channa Zhang
- State Key Laboratory of Cardiovascular Disease (Y. Zhang, C.Z., L.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yubao Zou
- Department of Cardiology (M.L., Y. Zou), Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianming Kang
- Cardiomyopathy Ward (L.K., L.S.), Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Song
- State Key Laboratory of Cardiovascular Disease (Y. Zhang, C.Z., L.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center of Cardiovascular Diseases (L.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Cardiomyopathy Ward (L.K., L.S.), Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Xiong H, Zhu C, Dai C, Ye X, Li Y, Li P, Yang S, Ashraf G, Wei D, Chen H, Shen H, Kong J, Fang X. An Alternating Current Electroosmotic Flow-Based Ultrasensitive Electrochemiluminescence Microfluidic System for Ultrafast Monitoring, Detection of Proteins/miRNAs in Unprocessed Samples. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307840. [PMID: 38070186 PMCID: PMC10853704 DOI: 10.1002/advs.202307840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/16/2023] [Indexed: 02/10/2024]
Abstract
Early diagnosis of acute diseases is restricted by the sensitivity and complex process of sample treatment. Here, an ultrasensitive, rapid, and portable electrochemiluminescence-microfluidic (ECL-M) system is described via sandwich-type immunoassay and surface plasmonic resonance (SPR) assay. Using a sandwich immunoreaction approach, the ECL-M system employs cardiac troponin-I antigen (cTnI) as a detection model with a Ru@SiO2 NPs labeled antibody as the signal probe. For miR-499-5p detection, gold nanoparticles generate SPR effects to enhance Ru(bpy)3 2+ ECL signals. The system based on alternating current (AC) electroosmotic flow achieves an LOD of 2 fg mL-1 for cTnI in 5 min and 10 aM for miRNAs in 10 min at room temperature. The point-of-care testing (POCT) device demonstrated 100% sensitivity and 98% specificity for cTnI detection in 123 clinical serum samples. For miR-499-5p, it exhibited 100% sensitivity and 97% specificity in 55 clinical serum samples. Continuous monitoring of these biomarkers in rats' saliva, urine, and interstitial fluid samples for 48 hours revealed observations rarely documented in biotic fluids. The ECL-M POCT device stands as a top-performing system for ECL analysis, offering immense potential for ultrasensitive, rapid, highly accurate, and facile detection and monitoring of acute diseases in POC settings.
Collapse
Affiliation(s)
- Huiwen Xiong
- Department of ChemistryFudan UniversityShanghai200438P. R. China
| | - Chenxin Zhu
- Institutes of Biomedical Sciences and Minhang HospitalFudan UniversityShanghai200032P. R. China
| | - Changhao Dai
- State Key Laboratory of Molecular Engineering of PolymersDepartment of Macromolecular ScienceFudan UniversityShanghai200438P. R. China
| | - Xin Ye
- Department of Laboratory MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061P. R. China
| | - Yuanyuan Li
- Yizheng Hospital of Traditional Chinese MedicineYangzhou211400P. R. China
| | - Pintao Li
- Department of ChemistryFudan UniversityShanghai200438P. R. China
| | - Shuang Yang
- Institutes of Biomedical Sciences and Minhang HospitalFudan UniversityShanghai200032P. R. China
| | - Ghazala Ashraf
- Department of ChemistryFudan UniversityShanghai200438P. R. China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of PolymersDepartment of Macromolecular ScienceFudan UniversityShanghai200438P. R. China
| | - Hui Chen
- Department of ChemistryFudan UniversityShanghai200438P. R. China
| | - Huali Shen
- Institutes of Biomedical Sciences and Minhang HospitalFudan UniversityShanghai200032P. R. China
| | - Jilie Kong
- Department of ChemistryFudan UniversityShanghai200438P. R. China
| | - Xueen Fang
- Department of ChemistryFudan UniversityShanghai200438P. R. China
| |
Collapse
|
4
|
Fadl SA, Revels JW, Rezai Gharai L, Hanneman K, Dana F, Proffitt EK, Grizzard JD. Cardiac MRI of Hereditary Cardiomyopathy. Radiographics 2022; 42:625-643. [PMID: 35275782 DOI: 10.1148/rg.210147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hereditary cardiomyopathy comprises a heterogeneous group of diseases of the cardiac muscle that are characterized by the presence of genetic mutations. Cardiac MRI is central to evaluation of patients with cardiomyopathy owing to its ability to allow evaluation of many different tissue properties in a single examination. For example, cine MRI is the standard of care for assessment of myocardial structure and function. It clearly shows regions of asymmetric wall thickening that are typical of hypertrophic cardiomyopathy and allows it to be differentiated from other hereditary disorders such as Fabry disease or transthyretin cardiac amyloidosis that produce concentric hypertrophy. Late gadolinium enhancement provides a different tissue property and allows these latter two causes of concentric hypertrophy to be distinguished on the basis of their enhancement appearances (Fabry disease shows midwall basal inferolateral enhancement, and amyloidosis shows global subendocardial enhancement). Native T1 mapping may similarly allow differentiation between Fabry disease and amyloidosis without the use of contrast material. T2*-weighted MRI is important in the detection and quantification of iron overload cardiomyopathy. Other hereditary entities for which comprehensive MRI has proven essential include Danon disease, familial dilated cardiomyopathy, hereditary muscular dystrophy, arrhythmogenic right ventricular cardiomyopathy, and ventricular noncompaction. As a result of the diagnostic power of cardiac MRI, cardiac MRI examinations are being requested with increasing frequency, not only in academic centers but also in community practices. The genetic background, pathophysiologic characteristics, and clinical presentation of patients with hereditary cardiomyopathy are described; the characteristic cardiac MRI features of hereditary cardiomyopathy are discussed; and the role of MRI in risk stratification, treatment, and prognostication in patients with cardiomyopathy is reviewed. ©RSNA, 2022 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Shaimaa A Fadl
- From the Department of Radiology, Virginia Commonwealth University Health Systems, 1250 E Marshall St, Richmond, VA 23219 (S.A.F., L.R.G., F.D., E.K.P., J.D.G.); Department of Radiology, University of New Mexico, Albuquerque, NM (J.W.R.); and Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ont, Canada (K.H.)
| | - Jonathan W Revels
- From the Department of Radiology, Virginia Commonwealth University Health Systems, 1250 E Marshall St, Richmond, VA 23219 (S.A.F., L.R.G., F.D., E.K.P., J.D.G.); Department of Radiology, University of New Mexico, Albuquerque, NM (J.W.R.); and Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ont, Canada (K.H.)
| | - Leila Rezai Gharai
- From the Department of Radiology, Virginia Commonwealth University Health Systems, 1250 E Marshall St, Richmond, VA 23219 (S.A.F., L.R.G., F.D., E.K.P., J.D.G.); Department of Radiology, University of New Mexico, Albuquerque, NM (J.W.R.); and Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ont, Canada (K.H.)
| | - Kate Hanneman
- From the Department of Radiology, Virginia Commonwealth University Health Systems, 1250 E Marshall St, Richmond, VA 23219 (S.A.F., L.R.G., F.D., E.K.P., J.D.G.); Department of Radiology, University of New Mexico, Albuquerque, NM (J.W.R.); and Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ont, Canada (K.H.)
| | - Franklin Dana
- From the Department of Radiology, Virginia Commonwealth University Health Systems, 1250 E Marshall St, Richmond, VA 23219 (S.A.F., L.R.G., F.D., E.K.P., J.D.G.); Department of Radiology, University of New Mexico, Albuquerque, NM (J.W.R.); and Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ont, Canada (K.H.)
| | - Elizabeth Kate Proffitt
- From the Department of Radiology, Virginia Commonwealth University Health Systems, 1250 E Marshall St, Richmond, VA 23219 (S.A.F., L.R.G., F.D., E.K.P., J.D.G.); Department of Radiology, University of New Mexico, Albuquerque, NM (J.W.R.); and Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ont, Canada (K.H.)
| | - John D Grizzard
- From the Department of Radiology, Virginia Commonwealth University Health Systems, 1250 E Marshall St, Richmond, VA 23219 (S.A.F., L.R.G., F.D., E.K.P., J.D.G.); Department of Radiology, University of New Mexico, Albuquerque, NM (J.W.R.); and Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ont, Canada (K.H.)
| |
Collapse
|
5
|
Sivalokanathan S. The Role of Cardiovascular Magnetic Resonance Imaging in the Evaluation of Hypertrophic Cardiomyopathy. Diagnostics (Basel) 2022; 12:diagnostics12020314. [PMID: 35204405 PMCID: PMC8871211 DOI: 10.3390/diagnostics12020314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/08/2022] [Accepted: 01/25/2022] [Indexed: 01/19/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disorder, affecting 1 out of 500 adults globally. It is a widely heterogeneous disorder characterized by a range of phenotypic expressions, and is most often identified by non-invasive imaging that includes echocardiography and cardiovascular magnetic resonance imaging (CMR). Within the last two decades, cardiac magnetic resonance imaging (MRI) has emerged as the defining tool for the characterization and prognostication of cardiomyopathies. With a higher image quality, spatial resolution, and the identification of morphological variants of HCM, CMR has become the gold standard imaging modality in the assessment of HCM. Moreover, it has been crucial in its management, as well as adding prognostic information that clinical history nor other imaging modalities may not provide. This literature review addresses the role and current applications of CMR, its capacity in evaluating HCM, and its limitations.
Collapse
Affiliation(s)
- Sanjay Sivalokanathan
- Internal Medicine, Pennsylvania Hospital, University of Pennsylvania Health System, Philadelphia, PA 19107, USA;
- Cardiovascular Clinical Academic Group, St. George’s University of London and St George’s University Hospitals NHS Foundation Trust, London SW17 0RE, UK
| |
Collapse
|