1
|
Kawel-Boehm N, Hetzel SJ, Ambale-Venkatesh B, Captur G, Chin CWL, François CJ, Jerosch-Herold M, Luu JM, Raisi-Estabragh Z, Starekova J, Taylor M, van Hout M, Bluemke DA. Society for Cardiovascular Magnetic Resonance reference values ("normal values") in cardiovascular magnetic resonance: 2025 update. J Cardiovasc Magn Reson 2025; 27:101853. [PMID: 39914499 DOI: 10.1016/j.jocmr.2025.101853] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 05/31/2025] Open
Abstract
Quantitative assessment of morphological and functional cardiac parameters by cardiovascular magnetic resonance (CMR) is essential for research and routine clinical practice. Beyond established parameters of chamber size and function, tissue properties such as relaxation times play an increasing role. Normal reference ranges are required for interpretation of results obtained by quantitative CMR. Since the last publication of the "normal values review" in 2020 many new publications related to CMR reference values have been published, which were integrated in this update. The larger sample size provides greater statistical confidence in the estimates of upper and lower limits, and enables further partitioning, e.g., by age and ethnicity for several parameters. Previous topics were expanded by new sections.
Collapse
Affiliation(s)
| | - Scott J Hetzel
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, USA
| | | | - Gabriella Captur
- Inherited Heart Muscle Conditions Clinic, Royal Free Hospital NHS Foundation Trust, London, UK; Institute of Cardiovascular Science, University College London, London, UK
| | - Calvin W L Chin
- Department of Cardiology, National Heart Centre, Singapore, Singapore; Cardiovascular Sciences ACP, Duke NUS Medical School, Singapore, Singapore
| | | | | | - Judy M Luu
- Department of Medicine, Division of Cardiology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Zahra Raisi-Estabragh
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Jitka Starekova
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Michael Taylor
- Dell Children's Hospital Medical Center, University of Texas Dell Medical School, Austin, Texas, USA
| | - Max van Hout
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - David A Bluemke
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA.
| |
Collapse
|
2
|
Dhore-Patil A, Modi V, Gabr EM, Bersali A, Darwish A, Shah D. Cardiac magnetic resonance findings in cardiac amyloidosis. Curr Opin Cardiol 2024; 39:395-406. [PMID: 38963426 DOI: 10.1097/hco.0000000000001166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to highlight the increasing importance of cardiac magnetic resonance (CMR) imaging in diagnosing and managing cardiac amyloidosis, especially given the recent advancements in treatment options. RECENT FINDINGS This review emphasizes the crucial role of late gadolinium enhancement (LGE) with phase-sensitive inversion recovery (PSIR) techniques in both diagnosing and predicting patient outcomes in cardiac amyloidosis. The review also explores promising new techniques for diagnosing early-stage disease, such as native T1 mapping and ECV quantification. Additionally, it delves into experimental techniques like diffusion tensor imaging, MR elastography, and spectroscopy. SUMMARY This review underscores CMR as a powerful tool for diagnosing cardiac amyloidosis, assessing risk factors, and monitoring treatment response. While LGE imaging remains the current best practice for diagnosis, emerging techniques such as T1 mapping and ECV quantification offer promise for improved detection, particularly in early stages of the disease. This has significant implications for patient management as newer therapeutic options become available for cardiac amyloidosis.
Collapse
Affiliation(s)
- Aneesh Dhore-Patil
- Cardiovascular MRI Laboratory, Division of Cardiovascular Imaging, Houston Methodist DeBakey Heart & Vascular Center, Weill Cornell Medical College, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
3
|
Viezzer D, Hadler T, Gröschel J, Ammann C, Blaszczyk E, Kolbitsch C, Hufnagel S, Kranzusch-Groß R, Lange S, Schulz-Menger J. Post-hoc standardisation of parametric T1 maps in cardiovascular magnetic resonance imaging: a proof-of-concept. EBioMedicine 2024; 102:105055. [PMID: 38490103 PMCID: PMC10951905 DOI: 10.1016/j.ebiom.2024.105055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND In cardiovascular magnetic resonance imaging parametric T1 mapping lacks universally valid reference values. This limits its extensive use in the clinical routine. The aim of this work was the introduction of our self-developed Magnetic Resonance Imaging Software for Standardization (MARISSA) as a post-hoc standardisation approach. METHODS Our standardisation approach minimises the bias of confounding parameters (CPs) on the base of regression models. 214 healthy subjects with 814 parametric T1 maps were used for training those models on the CPs: age, gender, scanner and sequence. The training dataset included both sex, eleven different scanners and eight different sequences. The regression model type and four other adjustable standardisation parameters were optimised among 240 tested settings to achieve the lowest coefficient of variation, as measure for the inter-subject variability, in the mean T1 value across the healthy test datasets (HTE, N = 40, 156 T1 maps). The HTE were then compared to 135 patients with left ventricular hypertrophy including hypertrophic cardiomyopathy (HCM, N = 112, 121 T1 maps) and amyloidosis (AMY, N = 24, 24 T1 maps) after applying the best performing standardisation pipeline (BPSP) to evaluate the diagnostic accuracy. FINDINGS The BPSP reduced the COV of the HTE from 12.47% to 5.81%. Sensitivity and specificity reached 95.83% / 91.67% between HTE and AMY, 71.90% / 72.44% between HTE and HCM, and 87.50% / 98.35% between HCM and AMY. INTERPRETATION Regarding the BPSP, MARISSA enabled the comparability of T1 maps independently of CPs while keeping the discrimination of healthy and patient groups as found in literature. FUNDING This study was supported by the BMBF / DZHK.
Collapse
Affiliation(s)
- Darian Viezzer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany; Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
| | - Thomas Hadler
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany; Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Jan Gröschel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany; Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Clemens Ammann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany; Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Edyta Blaszczyk
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany; Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Christoph Kolbitsch
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Simone Hufnagel
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Riccardo Kranzusch-Groß
- Universitätsklinikum Schleswig-Holstein, Klinik für Radiologie und Nuklearmedizin, Lübeck, Germany
| | - Steffen Lange
- Hochschule Darmstadt (University of Applied Sciences), Faculty for Computer Sciences, Darmstadt, Germany
| | - Jeanette Schulz-Menger
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany; Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation Between the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany; Helios Hospital Berlin-Buch, Department of Cardiology and Nephrology, Berlin, Germany
| |
Collapse
|
4
|
Singh SP, Jagia P, Ojha V, Seth T, Naik N, Ganga KP, Kumar S. Diagnostic Value of T1 Mapping in Detecting Iron Overload in Indian Patients with Thalassemia Major: A Comparison with T2* Mapping. Indian J Radiol Imaging 2024; 34:54-59. [PMID: 38106847 PMCID: PMC10723946 DOI: 10.1055/s-0043-1772467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Purpose T2* is the gold standard for iron quantification in liver as well as myocardium. In this study, we evaluated the diagnostic accuracy of myocardial T1 mapping for the assessment of myocardial iron overload (MIO) as compared to the T2* mapping in patients with thalassemia major (TM). Methods Consecutive TM patients attending the thalassemia clinic were prospectively enrolled. Magnetic resonance imaging was performed on a 1.5 T scanner (Siemens Healthineers, Germany) using a gradient echo T2* as well as a T1 mapping (MOLLI) sequence done at a mid-ventricular short-axis single 8 mm slice of the left ventricle. Values were analyzed by manually drawing a region of interest in the mid-septum. T2*less than 20ms was used as the cutoff for significant MIO. Results One-hundred three patients (58 males, mean age: 17 ± 7.8 years, mean ferritin: 2009.5 µg/L) underwent cardiovascular magnetic resonance. Median T2* of myocardium was 33.45ms. Nineteen patients (18.4%) had T2*less than 20ms. T1 value was low (<850ms) in all the patients with T2* less than 20 ms. Receiver operating characteristic curve analysis revealed the best cutoff of native T1 mapping value as 850 ms which had high specificity (95.2%), sensitivity (94.2%) and negative predictive value (98.8%) for T2* less than 20ms. There was excellent agreement between T1 and T2* for diagnosis of MIO (Kappa-0.848, p <0.001). We did not find any patient who had normal T1 mapping values but had MIO on T2*. Conclusion T1 and T2* correlate well and normal T1 values may rule out presence of MIO. T1 mapping can act as additional imaging marker for MIO and may be helpful in centers with nonavailability or limited experience of T2*.
Collapse
Affiliation(s)
- Surya Pratap Singh
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, New Delhi, India
| | - Priya Jagia
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, New Delhi, India
| | - Vineeta Ojha
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, New Delhi, India
| | - Tulika Seth
- Department of Haematology, All India Institute of Medical Sciences, New Delhi, India
| | - Nitish Naik
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Kartik P. Ganga
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjeev Kumar
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|