1
|
Koi L, Löck S, Linge A, Thurow C, Hering S, Baumann M, Krause M, Gurtner K. EGFR-amplification plus gene expression profiling predicts response to combined radiotherapy with EGFR-inhibition: A preclinical trial in 10 HNSCC-tumour-xenograft models. Radiother Oncol 2017; 124:496-503. [PMID: 28807520 DOI: 10.1016/j.radonc.2017.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE Improvement of the results of radiotherapy by EGFR inhibitors is modest, suggesting significant intertumoural heterogeneity of response. To identify potential biomarkers, a preclinical trial was performed on ten different human squamous cell carcinoma xenografts of the head and neck (HNSCC) studying in vivo and ex vivo the effect of fractionated irradiation and EGFR inhibition. Local tumour control and tumour growth delay were correlated with potential biomarkers, e.g. EGFR gene amplification and radioresponse-associated gene expression profiles. MATERIAL AND METHODS Local tumour control 120days after end of irradiation was determined for fractionated radiotherapy alone (30f, 6weeks) or after simultaneous EGFR-inhibition with cetuximab. The EGFR gene amplification status was determined using FISH. Gene expression analyses were performed using an in-house gene panel. RESULTS Six out of 10 investigated tumour models showed a significant increase in local tumour control for the combined treatment of cetuximab and fractionated radiotherapy compared to irradiation alone. For 3 of the 6 responding tumour models, an amplification of the EGFR gene could be demonstrated. Gene expression profiling of untreated tumours revealed significant differences between amplified and non-amplified tumours as well as between responder and non-responder tumours to combined radiotherapy and cetuximab. CONCLUSION The EGFR amplification status, in combination with gene expression profiling, may serve as a predictive biomarker for personalized interventional strategies regarding combined treatment of cetuximab and fractionated radiotherapy and should, as a next step, be clinically validated.
Collapse
Affiliation(s)
- Lydia Koi
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Germany
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Annett Linge
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), partner site Dresden, Germany
| | - Cedric Thurow
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany
| | - Sandra Hering
- Institute for Legal Medicine, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Michael Baumann
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), partner site Dresden, Germany
| | - Mechthild Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Germany; German Cancer Consortium (DKTK), partner site Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), partner site Dresden, Germany
| | - Kristin Gurtner
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), partner site Dresden, Germany.
| |
Collapse
|
2
|
Higgins GS, Krause M, McKenna WG, Baumann M. Personalized Radiation Oncology: Epidermal Growth Factor Receptor and Other Receptor Tyrosine Kinase Inhibitors. Recent Results Cancer Res 2017; 198:107-22. [PMID: 27318683 DOI: 10.1007/978-3-662-49651-0_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Molecular biomarkers are currently evaluated in preclinical and clinical studies in order to establish predictors for treatment decisions in radiation oncology. The receptor tyrosine kinases (RTK) are described in the following text. Among them, the most data are available for the epidermal growth factor receptor (EGFR) that plays a major role for prognosis of patients after radiotherapy, but seems also to be involved in mechanisms of radioresistance, specifically in repopulation of tumour cells between radiotherapy fractions. Monoclonal antibodies against the EGFR improve locoregional tumour control and survival when applied during radiotherapy, however, the effects are heterogeneous and biomarkers for patient selection are warranted. Also other RTK´s such as c-Met and IGF-1R seem to play important roles in tumour radioresistance. Beside the potential to select patients for molecular targeting approaches combined with radiotherapy, studies are also needed to evluate radiotherapy adaptation approaches for selected patients, i.e. adaptation of radiation dose, or, more sophisticated, of target volumes.
Collapse
Affiliation(s)
- Geoff S Higgins
- Gray Laboratories, Department of Oncology, Cancer Research UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Mechthild Krause
- OncoRay - National Center for Radiation Research in Oncology (NCRO), Carl Gustav Carus Faculty of Medicine, University Hospital, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
- German Cancer Consortium (DKTK) Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf, Insititute of Radiooncology, Dresden, Germany.
- Department of Radiation Oncology, Carl Gustav Carus Faculty of Medicine, University Hospital, Technische Universität Dresden, Dresden, Germany.
| | - W Gillies McKenna
- Gray Laboratories, Department of Oncology, Cancer Research UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Michael Baumann
- OncoRay - National Center for Radiation Research in Oncology (NCRO), Carl Gustav Carus Faculty of Medicine, University Hospital, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- German Cancer Consortium (DKTK) Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Insititute of Radiooncology, Dresden, Germany
- Department of Radiation Oncology, Carl Gustav Carus Faculty of Medicine, University Hospital, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
3
|
Gurtner K, Ebert N, Pfitzmann D, Eicheler W, Zips D, Baumann M, Krause M. Effect of combined irradiation and EGFR/Erb-B inhibition with BIBW 2992 on proliferation and tumour cure in cell lines and xenografts. Radiat Oncol 2014; 9:261. [PMID: 25444177 PMCID: PMC4271482 DOI: 10.1186/s13014-014-0261-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/12/2014] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND AND PURPOSE In previous experiments an enhanced anti-proliterative effect of the EGFR/ErbB tyrosine kinase inhibitor (TKI) BIBW 2992 with single dose irradiation was observed in FaDu tumour xenografts. Aim of the present experiment was to determine if this effect can also be seen in combination with a fractionated radiotherapy. Secondly we investigate the efficacy of BIBW 2992 on local tumour control for UT-SCC-15. MATERIAL AND METHODS Tumour pieces of FaDu, UT-SCC-14, A431, UT-SCC-15 (squamous cell carcinomas) and A7 (glioma) tumour models were transplanted onto the right hind leg of NMRI (nu/nu) nude mice. For evaluation of tumour growth mice were either treated daily orally with BIBW 2992 (30 mg/kg body weight), or carrier up to a final tumour size of 15 mm or with a fractionated radiotherapy (15f/15d, 30 Gy) with simultaneous application of BIBW 2992 or carrier. For local tumour control UT-SCC-15 tumours were treated with a fractionated radiotherapy (30f/6weeks) or received 30f/6 weeks in combination with daily orally BIBW 2992 (22.5 mg/kg b.w.) during RT. RESULTS A significant effect on tumour growth time was observed in all tumour models for BIBW 2992 application alone. However, substantial intertumoural heterogeneity could be seen. In the UT-SCC-14, UT-SCC-15 and A431 tumour models a total regression of the tumours and no recurrence during treatment time (73 days) were determined where as for the A7 tumour only a slight effect was noticeable. For the combined treatment of fractionated radiotherapy (15f/15d) and BIBW 2992 administration a significant effect on tumour growth time was seen compared to irradiation alone for A7, UT-SCC-15 and A431 (ER 1.2 - 3.7), this advantage could not be demonstrated for FaDu and UT-SCC-14. However, the local tumour control was not altered for the UT-SCC-15 tumour model when adding BIBW 2992 to fractionated irradiation (30f/6weeks). CONCLUSION A heterogeneous effect on tumour growth time of BIBW 2992 alone as well as in combination with fractionated irradiation could be demonstrated for all tumour models. However, the significant effect on tumour growth time did not translate into an improvement of local tumour control for the UT-SCC-15 tumour model.
Collapse
Affiliation(s)
- Kristin Gurtner
- Department of Radiation Oncology, UniversityHospital C.G. Carus, Fetscherstr. 74, 01307, Dresden, Germany. .,OncoRay - National Centerfor Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, TechnischeUniversität and Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany.
| | - Nadja Ebert
- Department of Radiation Oncology, UniversityHospital C.G. Carus, Fetscherstr. 74, 01307, Dresden, Germany. .,OncoRay - National Centerfor Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, TechnischeUniversität and Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany.
| | - Dorothee Pfitzmann
- Department of Radiation Oncology, UniversityHospital C.G. Carus, Fetscherstr. 74, 01307, Dresden, Germany. .,OncoRay - National Centerfor Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, TechnischeUniversität and Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany.
| | - Wolfgang Eicheler
- Department of Radiation Oncology, UniversityHospital C.G. Carus, Fetscherstr. 74, 01307, Dresden, Germany. .,OncoRay - National Centerfor Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, TechnischeUniversität and Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany.
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany.
| | - Michael Baumann
- Department of Radiation Oncology, UniversityHospital C.G. Carus, Fetscherstr. 74, 01307, Dresden, Germany. .,OncoRay - National Centerfor Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, TechnischeUniversität and Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany. .,German Cancer consortium (DKTK) Dresden and German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany. .,Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.
| | - Mechthild Krause
- Department of Radiation Oncology, UniversityHospital C.G. Carus, Fetscherstr. 74, 01307, Dresden, Germany. .,OncoRay - National Centerfor Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, TechnischeUniversität and Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany. .,German Cancer consortium (DKTK) Dresden and German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany. .,Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.
| |
Collapse
|
4
|
Exploiting nanotechnology to overcome tumor drug resistance: Challenges and opportunities. Adv Drug Deliv Rev 2013; 65:1731-47. [PMID: 24036273 DOI: 10.1016/j.addr.2013.09.001] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/15/2013] [Accepted: 09/03/2013] [Indexed: 02/06/2023]
Abstract
Tumor cells develop resistance to chemotherapeutic drugs through multiple mechanisms. Overexpression of efflux transporters is an important source of drug resistance. Efflux transporters such as P-glycoprotein reduce intracellular drug accumulation and compromise drug efficacy. Various nanoparticle-based approaches have been investigated to overcome efflux-mediated resistance. These include the use of formulation excipients that inhibit transporter activity and co-delivery of the anticancer drug with a specific inhibitor of transporter function or expression. However, the effectiveness of nanoparticles can be diminished by poor transport in the tumor tissue. Hence, adjunct therapies that improve the intratumoral distribution of nanoparticles may be vital to the successful application of nanotechnology to overcome tumor drug resistance. This review discusses the mechanisms of tumor drug resistance and highlights the opportunities and challenges in the use of nanoparticles to improve the efficacy of anticancer drugs against resistant tumors.
Collapse
|
5
|
Jutten B, Keulers TG, Schaaf MBE, Savelkouls K, Theys J, Span PN, Vooijs MA, Bussink J, Rouschop KMA. EGFR overexpressing cells and tumors are dependent on autophagy for growth and survival. Radiother Oncol 2013; 108:479-83. [PMID: 23891088 DOI: 10.1016/j.radonc.2013.06.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/29/2013] [Accepted: 06/05/2013] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND PURPOSE The epidermal growth factor receptor (EGFR) is overexpressed, amplified or mutated in various human epithelial tumors, and is associated with tumor aggressiveness and therapy resistance. Autophagy activation provides a survival advantage for cells in the tumor microenvironment. In the current study, we assessed the potential of autophagy inhibition (using chloroquine (CQ)) in treatment of EGFR expressing tumors. MATERIAL AND METHODS Quantitative PCR, immunohistochemistry, clonogenic survival, proliferation assays and in vivo tumor growth were used to assess this potential. RESULTS We show that EGFR overexpressing xenografts are sensitive to CQ treatment and are sensitized to irradiation by autophagy inhibition. In HNSSC xenografts, a correlation between EGFR and expression of the autophagy marker LC3b is observed, suggesting a role for autophagy in EGFR expressing tumors. This observation was substantiated in cell lines, showing high EGFR expressing cells to be more sensitive to CQ addition as reflected by decreased proliferation and survival. Surprisingly high EGFR expressing cells display a lower autophagic flux. CONCLUSIONS The EGFR high expressing cells and tumors investigated in this study are highly dependent on autophagy for growth and survival. Inhibition of autophagy may therefore provide a novel treatment opportunity for EGFR overexpressing tumors.
Collapse
Affiliation(s)
- Barry Jutten
- Maastricht Radiation Oncology (MaastRO) Lab, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Paliga A, Onerheim R, Gologan A, Chong G, Spatz A, Niazi T, Garant A, Macheto D, Alcindor T, Vuong T. EGFR and K-ras gene mutation status in squamous cell anal carcinoma: a role for concurrent radiation and EGFR inhibitors? Br J Cancer 2012; 107:1864-8. [PMID: 23093229 PMCID: PMC3504953 DOI: 10.1038/bjc.2012.479] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND There is a growing appreciation for radio-sensitiser use in multi-modal cancer treatment models. Squamous cell anal carcinoma (SCAC) is a rare gastrointestinal tumour traditionally treated with concurrent chemotherapy and radiation. Cetuximab, an epidermal growth factor receptor (EGFR) inhibitor, has demonstrated significant efficacy when combined with radiation in squamous cell carcinoma of the head and neck (SccH&N). We wanted to assess EGFR and Kirsten-ras (K-ras) status in SCAC to see whether it compares with SccH&N. METHODS Over 90 SCAC paraffin-embedded biopsies were mounted onto a tissue microarray and were assessed for EGFR expression by immunohistochemistry. These samples were also assessed for the most frequently mutated K-ras and EGFR exons by high-resolution melting analysis. RESULTS The EGFR was present in over 90% of samples tested. The K-ras and EGFR mutations were absent in all samples tested, although a synonymous single-nucleotide polymorphism was found in 3 out of 89 samples tested for EGFR exon 19. CONCLUSION The low rate of K-ras and EGFR mutations, coupled with the high surface expression of EGFR, suggests similarity in the EGFR signalling pathway between SCAC and SccH&N, and thus a potential role for EGFR inhibitors in SCAC. To our knowledge this is the largest cohort of invasive SCAC samples investigated for EGFR and K-ras mutations reported to date.
Collapse
Affiliation(s)
- A Paliga
- Faculty of Medicine, McGill University, Montreal, Quebec, Canada H3G 1Y6.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Torres-Roca JF. A molecular assay of tumor radiosensitivity: a roadmap towards biology-based personalized radiation therapy. Per Med 2012; 9:547-557. [PMID: 23105945 DOI: 10.2217/pme.12.55] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The last two decades have seen technological developments that have led to more accurate delivery of radiation therapy (RT), which has resulted in clinical gains in many solid tumors. However, a fundamental question and perhaps the next major hurdle is whether biological strategies can be developed to further enhance the effectiveness and efficiency of RT. This article addresses the development of a novel genomics-based molecular assay to predict tumor radiosensitivity, and proposes that this assay may prove pivotal in the development of biologically guided RT.
Collapse
Affiliation(s)
- Javier F Torres-Roca
- Department of Experimental Therapeutics & Radiation Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL, USA, Tel.: +1 813 745 1824
| |
Collapse
|
8
|
Combined treatment of the immunoconjugate bivatuzumab mertansine and fractionated irradiation improves local tumour control in vivo. Radiother Oncol 2012; 102:444-9. [DOI: 10.1016/j.radonc.2011.10.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 10/14/2011] [Accepted: 10/18/2011] [Indexed: 11/19/2022]
|
9
|
Qayum N, Im J, Stratford MR, Bernhard EJ, McKenna WG, Muschel RJ. Modulation of the Tumor Microvasculature by Phosphoinositide-3 Kinase Inhibition Increases Doxorubicin Delivery In Vivo. Clin Cancer Res 2011; 18:161-9. [DOI: 10.1158/1078-0432.ccr-11-1413] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Gurtner K, Deuse Y, Bütof R, Schaal K, Eicheler W, Oertel R, Grenman R, Thames H, Yaromina A, Baumann M, Krause M. Diverse effects of combined radiotherapy and EGFR inhibition with antibodies or TK inhibitors on local tumour control and correlation with EGFR gene expression. Radiother Oncol 2011; 99:323-30. [PMID: 21665304 DOI: 10.1016/j.radonc.2011.05.035] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 05/16/2011] [Accepted: 05/16/2011] [Indexed: 12/19/2022]
Abstract
PURPOSE To compare functional effects of combined irradiation and EGFR inhibition in different HNSCC tumour models in vivo with the results of molecular evaluations, aiming to set a basis for the development of potential biomarkers for local tumour control. MATERIAL AND METHODS In five HNSCC tumour models, all wild-type for EGFR and KRAS, the effect of radiotherapy alone (30 fractions/6 weeks) and with simultaneous cetuximab or erlotinib treatment on local tumour control were evaluated and compared with molecular data on western blot, immunohistochemistry and fluorescence-in situ-hybridisation (FISH). RESULTS Erlotinib and cetuximab alone significantly prolonged tumour growth time in 4/5 tumour models. Combined irradiation and cetuximab treatment significantly improved local tumour control in 3/5 tumour models, whereas erlotinib did not alter local tumour control in any of the tumour models. The amount of the cetuximab-effect on local tumour control significantly correlated with the EGFR/CEP-7 ratios obtained by FISH. CONCLUSION Both drugs prolonged growth time in most tumour models, but only application of cetuximab during irradiation significantly improved local tumour control in 3/5 tumour models. The significant correlation of this curative effect with the genetic EGFR expression measured by FISH will be further validated in preclinical and clinical studies.
Collapse
Affiliation(s)
- Kristin Gurtner
- OncoRay-National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Effect of cetuximab and fractionated irradiation on tumour micro-environment. Radiother Oncol 2011; 97:322-9. [PMID: 20667608 DOI: 10.1016/j.radonc.2010.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Revised: 07/04/2010] [Accepted: 07/07/2010] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND PURPOSE Previous experiments have shown that application of the anti-EGFR monoclonal antibody C225 (cetuximab) improves local tumour control after irradiation in FaDu human squamous cell carcinoma (hSCC) due to the combined effect of decreased repopulation and improved reoxygenation. The present study investigates early changes of the pimonidazole hypoxic fraction of FaDu tumours and the expression and phosphorylation of the EGFR and its downstream signal transduction molecules after treatment with C225 alone or in combination with irradiation. MATERIAL AND METHODS FaDu tumour xenografts were irradiated with up to 3×3Gy with or without additional C225 treatment and excised at different time points. Tumour hypoxia was evaluated using pimonidazole. EGFR expression and phosphorylation and intratumoural distribution of C225 were assessed by immunofluorescence analysis. Western blots were performed to evaluate expression and phosphorylation of EGFR, ErbB2, AKT and MAPK (ERK1/2). RESULTS Hypoxia did not change during the 4days of treatment in the tumours treated with C225 alone or combined with irradiation. C225 treatment led to downregulation of the total EGFR in FaDu tumours, accompanied by a change of the spatial distribution of the receptor favouring the membranous expression. An induction of phosphorylation of the EGFR (tyr992, tyr1173) was observed with C225 alone or combined with irradiation. AKT phosphorylation was decreased, whereas MAPK phosphorylation remained unchanged. C225 membrane staining was homogeneously distributed over the whole tumour with no differences between hypoxic and non-hypoxic tumour cells. CONCLUSION Pimonidazole-hypoxia of FaDu tumours during the initial part of fractionated irradiation is not influenced by C225, indicating that external hypoxia markers may not be promising as biomarkers for tumour response to combined treatment. The downregulation of the total EGFR, but at the same time higher membrane staining, as well as the changes in downstream signal transduction molecules, warrants further investigation in other tumour models.
Collapse
|
12
|
Prediction of response to preoperative chemoradiotherapy in rectal cancer by multiplex kinase activity profiling. Int J Radiat Oncol Biol Phys 2010; 78:555-62. [PMID: 20675069 DOI: 10.1016/j.ijrobp.2010.04.036] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 04/09/2010] [Accepted: 04/14/2010] [Indexed: 11/23/2022]
Abstract
PURPOSE Tumor response of rectal cancer to preoperative chemoradiotherapy (CRT) varies considerably. In experimental tumor models and clinical radiotherapy, activity of particular subsets of kinase signaling pathways seems to predict radiation response. This study aimed to determine whether tumor kinase activity profiles might predict tumor response to preoperative CRT in locally advanced rectal cancer (LARC). METHODS AND MATERIALS Sixty-seven LARC patients were treated with a CRT regimen consisting of radiotherapy, fluorouracil, and, where possible, oxaliplatin. Pretreatment tumor biopsy specimens were analyzed using microarrays with kinase substrates, and the resulting substrate phosphorylation patterns were correlated with tumor response to preoperative treatment as assessed by histomorphologic tumor regression grade (TRG). A predictive model for TRG scores from phosphosubstrate signatures was obtained by partial-least-squares discriminant analysis. Prediction performance was evaluated by leave-one-out cross-validation and use of an independent test set. RESULTS In the patient population, 73% and 15% were scored as good responders (TRG 1-2) or intermediate responders (TRG 3), whereas 12% were assessed as poor responders (TRG 4-5). In a subset of 7 poor responders and 12 good responders, treatment outcome was correctly predicted for 95%. Application of the prediction model on the remaining patient samples resulted in correct prediction for 85%. Phosphosubstrate signatures generated by poor-responding tumors indicated high kinase activity, which was inhibited by the kinase inhibitor sunitinib, and several discriminating phosphosubstrates represented proteins derived from signaling pathways implicated in radioresistance. CONCLUSIONS Multiplex kinase activity profiling may identify functional biomarkers predictive of tumor response to preoperative CRT in LARC.
Collapse
|
13
|
Sambade MJ, Kimple RJ, Camp JT, Peters E, Livasy CA, Sartor CI, Shields JM. Lapatinib in combination with radiation diminishes tumor regrowth in HER2+ and basal-like/EGFR+ breast tumor xenografts. Int J Radiat Oncol Biol Phys 2010; 77:575-81. [PMID: 20457354 DOI: 10.1016/j.ijrobp.2009.12.063] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 12/14/2009] [Accepted: 12/17/2009] [Indexed: 11/26/2022]
Abstract
PURPOSE To determine whether lapatinib, a dual epidermal growth factor receptor (EGFR)/HER2 kinase inhibitor, can radiosensitize EGFR+ or HER2+ breast cancer xenografts. METHODS AND MATERIALS Mice bearing xenografts of basal-like/EGFR+ SUM149 and HER2+ SUM225 breast cancer cells were treated with lapatinib and fractionated radiotherapy and tumor growth inhibition correlated with alterations in ERK1 and AKT activation by immunohistochemistry. RESULTS Basal-like/EGFR+ SUM149 breast cancer tumors were completely resistant to treatment with lapatinib alone but highly growth impaired with lapatinib plus radiotherapy, exhibiting an enhancement ratio average of 2.75 and a fractional tumor product ratio average of 2.20 during the study period. In contrast, HER2+ SUM225 breast cancer tumors were highly responsive to treatment with lapatinib alone and yielded a relatively lower enhancement ratio average of 1.25 during the study period with lapatinib plus radiotherapy. Durable tumor control in the HER2+ SUM225 model was more effective with the combination treatment than either lapatinib or radiotherapy alone. Immunohistochemical analyses demonstrated that radiosensitization by lapatinib correlated with ERK1/2 inhibition in the EGFR+ SUM149 model and with AKT inhibition in the HER2+ SUM225 model. CONCLUSION Our data suggest that lapatinib combined with fractionated radiotherapy may be useful against EGFR+ and HER2+ breast cancers and that inhibition of downstream signaling to ERK1/2 and AKT correlates with sensitization in EGFR+ and HER2+ cells, respectively.
Collapse
Affiliation(s)
- Maria J Sambade
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, NC 27599-7295, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
de Gramont A, Haller DG, Sargent DJ, Tabernero J, Matheson A, Schilsky RL. Toward Efficient Trials in Colorectal Cancer: The ARCAD Clinical Trials Program. J Clin Oncol 2010; 28:527-30. [DOI: 10.1200/jco.2009.25.2544] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | - Daniel G. Haller
- Abramson Cancer Center at the University of Pennsylvania, Philadelphia, PA
| | | | - Josep Tabernero
- Vall d'Hebron University Hospital, Medical Oncology Service, Barcelona, Spain
| | | | | |
Collapse
|
15
|
Krause M, Gurtner K, Deuse Y, Baumann M. Heterogeneity of tumour response to combined radiotherapy and EGFR inhibitors: Differences between antibodies and TK inhibitors. Int J Radiat Biol 2009; 85:943-54. [DOI: 10.3109/09553000903232835] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
16
|
Epidermal growth factor receptor inhibition modulates the microenvironment by vascular normalization to improve chemotherapy and radiotherapy efficacy. PLoS One 2009; 4:e6539. [PMID: 19657384 PMCID: PMC2716529 DOI: 10.1371/journal.pone.0006539] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 07/02/2009] [Indexed: 11/22/2022] Open
Abstract
Background Epidermal growth factor receptor (EGFR) inhibitors have shown only modest clinical activity when used as single agents to treat cancers. They decrease tumor cell expression of hypoxia-inducible factor 1-α (HIF-1α) and vascular endothelial growth factor (VEGF). Hypothesizing that this might normalize tumor vasculature, we examined the effects of the EGFR inhibitor erlotinib on tumor vascular function, tumor microenvironment (TME) and chemotherapy and radiotherapy sensitivity. Methodology/Principal Findings Erlotinib treatment of human tumor cells in vitro and mice bearing xenografts in vivo led to decreased HIF-1α and VEGF expression. Treatment altered xenograft vessel morphology assessed by confocal microscopy (following tomato lectin injection) and decreased vessel permeability (measured by Evan's blue extravasation), suggesting vascular normalization. Erlotinib increased tumor blood flow measured by Power Doppler ultrasound and decreased hypoxia measured by EF5 immunohistochemistry and tumor O2 saturation measured by optical spectroscopy. Predicting that these changes would improve drug delivery and increase response to chemotherapy and radiation, we performed tumor regrowth studies in nude mice with xenografts treated with erlotinib and either radiotherapy or the chemotherapeutic agent cisplatin. Erlotinib therapy followed by cisplatin led to synergistic inhibition of tumor growth compared with either treatment by itself (p<0.001). Treatment with erlotinib before cisplatin led to greater tumor growth inhibition than did treatment with cisplatin before erlotinib (p = 0.006). Erlotinib followed by radiation inhibited tumor regrowth to a greater degree than did radiation alone, although the interaction between erlotinib and radiation was not synergistic. Conclusions/Significance EGFR inhibitors have shown clinical benefit when used in combination with conventional cytotoxic therapy. Our studies show that targeting tumor cells with EGFR inhibitors may modulate the TME via vascular normalization to increase response to chemotherapy and radiotherapy. These studies suggest ways to assess the response of tumors to EGFR inhibition using non-invasive imaging of the TME.
Collapse
|
17
|
Theys J, Jutten B, Dubois L, Rouschop KMA, Chiu RK, Li Y, Paesmans K, Lambin P, Lammering G, Wouters BG. The deletion mutant EGFRvIII significantly contributes to stress resistance typical for the tumour microenvironment. Radiother Oncol 2009; 92:399-404. [PMID: 19616331 DOI: 10.1016/j.radonc.2009.06.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 06/10/2009] [Accepted: 06/24/2009] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND PURPOSE The epidermal growth factor receptor (EGFR) is overexpressed or mutated in many tumour types. The truncated, constitutively active EGFRvIII variant has not been detected in normal tissues but is found in many malignancies. In the current study, we have investigated the hypothesis that EGFRvIII contributes to a growth and survival advantage under tumour microenvironment-related stress conditions. MATERIALS AND METHODS U373MG doxycycline-regulated isogenic cells expressing EGFRwt or EGFRvIII were created and validated using Western blot, FACS and qRT-PCR. In vitro proliferation was evaluated with standard growth assays. Cell survival was assayed using clonogenic survival. Animal experiments were performed using NMRI-nu-xenografted mice. RESULTS Inducible isogenic cell lines were created and showed high induction of EGFRwt and EGFRvIII upon doxycycline addition. Overexpression of EGFRvIII but not of EGFRwt in this model resulted in a growth and survival advantage upon different tumour microenvironment-related stress conditions in vitro. Induction of EGFRvIII increased tumour growth in vivo, which was reversible upon loss of expression. CONCLUSIONS Under conditions where nutrients are limited and stress is apparent, as in the tumour microenvironment, expression of EGFRvIII leads to a growth and survival advantage. These data indicate a potential selection of EGFRvIII-expressing tumour cells under such stress conditions.
Collapse
Affiliation(s)
- Jan Theys
- Maastricht Radiation Oncology (MaastRo) Lab, Grow-School for Oncology and Developmental Biology, University of Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Dhani N, Tu D, Sargent DJ, Seymour L, Moore MJ. Alternate endpoints for screening phase II studies. Clin Cancer Res 2009; 15:1873-82. [PMID: 19276273 DOI: 10.1158/1078-0432.ccr-08-2034] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phase II trials are screening trials that seek to identify agents with sufficient activity to continue development and those for which further evaluation should be halted. Although definitive phase III trials use progression-free or overall survival to confirm clinical benefit, earlier endpoints are preferable for phase II trials. Traditionally, tumor shrinkage of a predetermined degree (response) has been used as a surrogate of eventual survival benefit based on the observation that high response rates (RR), and particularly complete responses, in the phase II setting resulted in survival benefit in subsequent phase III trials. Recently, some molecularly targeted agents have shown survival and clinical benefit despite very modest RRs in early clinical trials. These observations provide a major conundrum, with concerns of inappropriate termination of development for active agents with low RRs being balanced by concerns of inactive agents being taken to late-phase development with resultant increases in the failure rate of phase III trials. Numerous alternate or complementary endpoints have been explored, incorporating multinomial endpoints (including progression and response), progression-free survival, biomarkers, and, more recently, evaluation of tumor size as a continuous variable. In this review, we discuss the current status of phase II endpoints and present retrospective analyses of two international gastrointestinal cancer studies showing the potential utility of one novel approach. Alternate endpoints, although promising, require additional evaluation and prospective validation before their use as a primary endpoint for phase II trials.
Collapse
Affiliation(s)
- Neesha Dhani
- Princess Margaret Hospital, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
19
|
Matta A, Ralhan R. Overview of current and future biologically based targeted therapies in head and neck squamous cell carcinoma. HEAD & NECK ONCOLOGY 2009; 1:6. [PMID: 19284526 PMCID: PMC2660327 DOI: 10.1186/1758-3284-1-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 03/02/2009] [Indexed: 12/18/2022]
Abstract
Recent advances in genomics, proteomics, bioinformatics and systems biology have unraveled the complex aberrant signaling networks in cancer. The knowledge accrued has dramatically increased the opportunities for discovery of novel molecular targets for drug development. Major emphasis is being laid on designing new therapeutic strategies targeting multiple signaling pathways for more effective disease management. However, the translation of in vitro findings to patient management often poses major challenges that limit their clinical efficacy. Here we will discuss how understanding the dysregulated signaling networks can explain the pitfalls in translating the laboratory findings from the bench-to-bedside and suggest novel approaches to overcome these problems using head and neck cancer as a prototype. The five year survival rates of HNSCC patients (about 50% at 5 years) have not improved significantly despite advancements in multimodality therapy including surgery, radiation and chemotherapy. Molecular targeted therapies with inhibitors of EGFR and VEGF either alone, or in combination with conventional treatments have shown limited improved efficacy. The key deregulated signaling pathways in head and neck squamous cell carcinoma (HNSCC) include EGFR, Ras, TGFβ, NFκB, Stat, Wnt/β-catenin and PI3-K/AKT/mTOR. The aberrant activities of these interrelated signaling pathways contribute to HNSCC development. In depth understanding of the cross-talks between these pathways and networks will form the basis of developing novel strategies for targeting multiple molecular components for more effective prevention and treatment of HNSCC.
Collapse
Affiliation(s)
- Ajay Matta
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada.
| | | |
Collapse
|
20
|
Adhesion, Invasion, Integrins, and Beyond. THE IMPACT OF TUMOR BIOLOGY ON CANCER TREATMENT AND MULTIDISCIPLINARY STRATEGIES 2009. [DOI: 10.1007/978-3-540-74386-6_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Zips D, Krause M, Yaromina A, Dörfler A, Eicheler W, Schütze C, Gurtner K, Baumann M. Epidermal growth factor receptor inhibitors for radiotherapy: biological rationale and preclinical results. J Pharm Pharmacol 2008; 60:1019-28. [PMID: 18644194 DOI: 10.1211/jpp.60.8.0008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Blocking the epidermal growth factor receptor (EGFR) represents a role model for a successful biological targeting approach to improving outcomes after radiotherapy. This review summarizes data from several local tumour control experiments in which EGFR inhibitors were combined with radiation in FaDu human squamous cell carcinomas xenografted into nude mice. BIBX1382BS is an oral bioavailable inhibitor of the intracellular tyrosine kinase domain of EGFR. It was administered in different experimental settings: concurrent with fractionated radiotherapy, following completion of irradiation, and in the period between surgery and adjuvant irradiation. Despite beneficial effects on tumour growth, in none of these experimental settings did BIBX1382BS improve local tumour control. In contrast, cetuximab (Erbitux), an IgG1 monoclonal antibody against the extracellular ligand-binding domain of EGFR, improved local tumour control when given concurrently with radiation. Results from a series of local tumour control experiments designed to elucidate the underlying mechanisms of cetuximab suggest that multiple radiobiological mechanisms might contribute to the observed effects: decreased number of clonogenic tumour cells, increased cellular radiation sensitivity, decreased repopulation and improved reoxygenation of clonogenic tumour cells during the combined treatment. In summary, the data suggest that different classes of EGFR inhibitors may have a different potential to improve local tumour control after fractionated irradiation.
Collapse
Affiliation(s)
- Daniel Zips
- Department of Radiation Oncology and OncoRay Centre for Radiation Research, Medical Faculty and University Hospital, Technische Universität Dresden, Germany.
| | | | | | | | | | | | | | | |
Collapse
|