1
|
Liu D, Liu L, Zhang X, Zhao X, Li X, Che X, Wu G. Decoding driver and phenotypic genes in cancer: Unveiling the essence behind the phenomenon. Mol Aspects Med 2025; 103:101358. [PMID: 40037122 DOI: 10.1016/j.mam.2025.101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/25/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
Gray hair, widely regarded as a hallmark of aging. While gray hair is associated with aging, reversing this trait through gene targeting does not alter the fundamental biological processes of aging. Similarly, certain oncogenes (such as CXCR4, MMP-related genes, etc.) can serve as markers of tumor behavior, such as malignancy or prognosis, but targeting these genes alone may not lead to tumor regression. We pioneered the name of this class of genes as "phenotypic genes". Historically, cancer genetics research has focused on tumor driver genes, while genes influencing cancer phenotypes have been relatively overlooked. This review explores the critical distinction between driver genes and phenotypic genes in cancer, using the MAPK and PI3K/AKT/mTOR pathways as key examples. We also discuss current research techniques for identifying driver and phenotypic genes, such as whole-genome sequencing (WGS), RNA sequencing (RNA-seq), RNA interference (RNAi), CRISPR-Cas9, and other genomic screening methods, alongside the concept of synthetic lethality in driver genes. The development of these technologies will help develop personalized treatment strategies and precision medicine based on the characteristics of relevant genes. By addressing the gap in discussions on phenotypic genes, this review significantly contributes to clarifying the roles of driver and phenotypic genes, aiming at advancing the field of targeted cancer therapy.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Lei Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiaoman Zhang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xinming Zhao
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiaorui Li
- Department of Oncology, Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China.
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
2
|
Zou J, Shi X, Wu Z, Zuo S, Tang X, Zhou H, Huang Y. MRTX1133 attenuates KRAS G12D mutated-colorectal cancer progression through activating ferroptosis activity via METTL14/LINC02159/FOXC2 axis. Transl Oncol 2025; 52:102235. [PMID: 39657309 PMCID: PMC11683245 DOI: 10.1016/j.tranon.2024.102235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/30/2024] [Accepted: 12/07/2024] [Indexed: 12/12/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the third most commonly diagnosed cancer and the second leading cause of cancer-related deaths worldwide. Studies have shown that CRC patients with KRAS mutations, especially KRASG12D, have an increased risk of metastasis. Emerging evidence indicates that long non-coding RNAs (lncRNAs) are crucial in the carcinogenesis and progression of various cancers, regulating multiple biological processes but the link between KRASG12D mutations and lncRNAs in CRC remains unclear. Therefore, this study was designed to identify a novel lncRNA involved in KRASG12D-mutated CRC and to elucidate its molecular mechanisms. The analysis of differentially expressed lncRNAs in the GSE201412 dataset revealed that LINC02159 was significantly upregulated following treatment with the KRASG12D inhibitor MTRX1133 Data from the GTEx database indicated that LINC02159 is highly expressed in CRC tumour tissues and is associated with better patient outcomes. In vitro and in vivo experiments suggest that LINC02159 acts as a tumour suppressor in CRC progression. Specifically, LINC02159 knockdown negated the inhibitory effects of MRTX1133 on tumourigenesis and its promotive effect on ferroptosis in KRASG12D-mutated CRC cells. LINC02159 expression is regulated by METTL14, with METTL14 knockdown decreasing m6A methylation of LINC02159, leading to its increased expression in CRC cells. Additionally, LINC02159 stabilised FOXC2 expression through de-ubiquitination. Rescue experiments further clarified that the METTL14/LINC02159/FOXC2 signalling axis is crucial for the inhibitory effects of MRTX1133 in KRASG12D-mutated CRC. Our study provides novel insights into the therapeutic potential of MRTX1133 in treating KRASG12D-mutated CRC by identifying a METTL14/LINC02159/FOXC2 signalling axis that mediates drug response. Our findings highlight the importance of understanding the molecular mechanisms of lncRNAs in cancer to develop effective targeted therapies.
Collapse
Affiliation(s)
- Junwei Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Xiuhua Shi
- Department of Radiotherapy & Oncology, The No.2 People's Hospital of Wuhu City, Wuhu, Anhui, China
| | - Zhaoying Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Siyuan Zuo
- School of Clinical Medicine, Wannan Medical College, Wuhu, Anhui, China
| | - Xiaolei Tang
- Center for Translational Medicine, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Hailang Zhou
- Department of Gastroenterology, Lianshui People's Hospital of kangda college Affiliated to Nanjing Medical University, Huai'an, Jiangsu, China.
| | - Yong Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China.
| |
Collapse
|
3
|
Zhang H, Yang B. ADAM12 Silencing Mediated by FOXC2 Represses Meningioma Progression Through Inactivating the JAK1/STAT3/VEGFA Pathway. Biochem Genet 2024:10.1007/s10528-024-10893-4. [PMID: 39066954 DOI: 10.1007/s10528-024-10893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Meningioma is a prevalently intracranial tumor, and the malignant type is aggressive with high recurrence. A Disintegrin and Metalloprotease 12 (ADAM12) is a common oncogene and differentially expressed in meningioma. However, its roles and mechanisms in meningioma development remain obscure. The differentially expressed genes in meningioma were analyzed by GEO (GSE77259 and GSE43290) datasets and weighted gene co-expression network analysis (WGCNA) based on GSE16581. ADAM12 expression was measured via qRT-PCR and western blot. The correlation between ADAM12 and FOXC2 was predicted through JASPER tool and identified via luciferase reporter analysis. Cell proliferation, migration and invasion were investigated using CCK-8, EdU, transwell assays. The JAK1/STAT3/VEGFA signaling was activated by IL-6, and analyzed via western blot. The differentially expressed ADAM12 in meningioma was screened by WGCNA and GEO analyses. ADAM12 silencing repressed meningioma cell proliferation, and decreased migration and invasion. The transcription factor FOXC2 expression was enhanced in meningioma based on GSE77259 and GSE43290 datasets, and positively induced ADAM12 transcription. The JAK1/STAT3/VEGFA signaling was inactivated due to ADAM12 silencing and activated via IL-6. Upregulation of FOXC2 promoted cell proliferation, migration and invasion, and these effects were reversed by silencing ADAM12. ADAM12 knockdown mediated via FOXC2 silencing restrained proliferation, migration and invasion of meningioma cells through inactivating the JAK1/STAT3/VEGFA pathway.
Collapse
Affiliation(s)
- Huaming Zhang
- Department of Neurosurgery, China Resources Wisco General Hospital, Wuhan University of Science and Technology, No. 209 Yejin Avenue, Qingshan District, Wuhan, 430080, Hubei, China.
| | - Bing Yang
- Department of Neurology, Wuhan Eighth Hospital, Wuhan, 430014, Hubei, China
| |
Collapse
|
4
|
Benitha G, Ramani P, Jayakumar S, Ramalingam K. Molecular expression of Forkhead Box C2 gene (FOXC2) and Prospero homeobox gene (PROX-1) in oral squamous carcinoma and their correlation with clinicopathological parameters: A prospective cohort study. J Oral Maxillofac Pathol 2024; 28:216-225. [PMID: 39157851 PMCID: PMC11329087 DOI: 10.4103/jomfp.jomfp_394_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/05/2024] [Accepted: 03/29/2024] [Indexed: 08/20/2024] Open
Abstract
Background Forkhead box C2 gene (FOXC2) acts as an epithelial-mesenchymal transition (EMT) inducer while Prospero homeobox 1 gene (PROX-1) function as a regulator of lymphangiogenesis and angiogenesis in oral squamous cell carcinoma (OSCC). It is presumed that PROX-1 has both tumour-suppressive and oncogenic effects. The main aim of this study is to evaluate the role of PROX-1 and FOXC2 in the invasion and progression of OSCC cases and to correlate their expression with various histopathological parameters. Materials and Methods A prospective cohort study was conducted in a total sample size of 52 OSCC tissues and histologically tumour-free margins of 20. mRNA expression and protein levels of FOXC2 and PROX-1 were evaluated using real-time PCR and sandwich enzyme-linked immunosorbent assay techniques. Chi-square analysis and correlation analysis were done. Kaplan-Meier analysis evaluated the survival rate. Results Mean Ct values of FOXC2 were 1.915 ± 0.519 and PROX-1 was 0.061 ± 0.173. There was a significant 2-fold increase in the FOXC2 expression and a 0.5-fold decrease in the PROX-1 expression in OSCC tissue. Increased levels of FOXC2 protein and decreased levels of PROX-1 with a mean difference of 1.64 ± 0.73 ng/ml and 1.27 ± 0.33 ng/ml were observed in OSCC compared to histologically tumour-free margins. A significant positive correlation was found between the FOXC2 expression and clinicopathological parameters such as staging, perineural invasion (PNI) and lymphovascular invasion (LVI) whereas PROX-1 showed a significant negative correlation with histopathological parameters such as staging, PNI, LVI and tumour staging. There was a significant positive correlation between the PROX-1 and histologically tumour-free margins in disease-free survival patients (P-value = 0.03). Conclusion FOXC2 and PROX-1 expressions were correlated with lymphovascular invasion, OSCC tumour staging and PNI. Thus, FOXC2 and PROX-1 could be possible therapeutic targets in the treatment of OSCC that can inhibit the EMT in OSCC and thereby favouring a better prognosis.
Collapse
Affiliation(s)
- Georgia Benitha
- Department of Oral and Maxillofacial Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Pratibha Ramani
- Department of Oral and Maxillofacial Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Selvaraj Jayakumar
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Karthikeyan Ramalingam
- Department of Oral and Maxillofacial Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
5
|
Zhou M, Li S, Huang C. Physiological and pathological functions of circular RNAs in the nervous system. Neural Regen Res 2024; 19:342-349. [PMID: 37488888 PMCID: PMC10503630 DOI: 10.4103/1673-5374.379017] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/20/2023] [Accepted: 05/29/2023] [Indexed: 07/26/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of covalently closed single-stranded RNAs that are expressed during the development of specific cells and tissues. CircRNAs play crucial roles in physiological and pathological processes by sponging microRNAs, modulating gene transcription, controlling the activity of certain RNA-binding proteins, and producing functional peptides. A key focus of research at present is the functionality of circRNAs in the nervous system and several advances have emerged over the last 2 years. However, the precise role of circRNAs in the nervous system has yet to be comprehensively reviewed. In this review, we first summarize the recently described roles of circRNAs in brain development, maturity, and aging. Then, we focus on the involvement of circRNAs in various diseases of the central nervous system, such as brain cancer, chronic neurodegenerative diseases, acute injuries of the nervous system, and neuropathic pain. A better understanding of the functionality of circRNAs will help us to develop potential diagnostic, prognostic, and therapeutic strategies to treat diseases of the nervous system.
Collapse
Affiliation(s)
- Min Zhou
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Shi Li
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Chuan Huang
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
6
|
Guo C, Li P, Guo X, Wang X, Liu B, Cui L. Identification of bladder cancer subtypes and predictive model for prognosis, immune features, and immunotherapy based on neutrophil extracellular trap-related genes. Sci Rep 2023; 13:20791. [PMID: 38012244 PMCID: PMC10682410 DOI: 10.1038/s41598-023-47824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023] Open
Abstract
Bladder cancer is the most common malignant tumor of urinary system, and its morbidity and mortality are increasing rapidly. Although great advances have been made in medical technology in recent years, there is still a lack of effective prognostic and therapeutic methods for bladder cancer. NETs are reticulated DNA structures decorated with various protein substances released extracellularly by neutrophils stimulated by strong signals. Recently, it has been found that NETs are closely related to the growth, metastasis and drug resistance of many types of cancers. However, up to now, the research on the relationship between NETs and bladder cancer is still not enough. In this study, we aimed to conduct a comprehensive analysis of NRGs in bladder cancer tissues to evaluate the relationship between NRGs and prognosis prediction and sensitivity to therapy in patients with bladder cancer. We scored NRGs in each tissue by using ssGSEA, and selected gene sets that were significantly associated with NRGs scores by using the WCGNA algorithm. Based on the expression profiles of NRGs-related genes, NMF clustering analysis was performed to identify different BLCA molecular subtypes. For the differentially expressed genes between subtypes, we used univariate COX regression, LASSO regression and multivariate COX regression to further construct a hierarchical model of BLCA patients containing 10 genes. This model and the nomogram based on this model can accurately predict the prognosis of BLCA patients in multiple datasets. Besides, BLCA patients classified based on this model differ greatly in their sensitivity to immunotherapy and targeted therapies, which providing a reference for individualized treatment of patients with bladder cancer.
Collapse
Affiliation(s)
- Changhong Guo
- Department of Urology, Civil Aviation General Hospital, Beijing, China
| | - Peiying Li
- Department of Urology, The Fifth Medical Center of the General Hospital of the People's Liberation Army of China, Beijing, China
| | - Xingkui Guo
- Department of Urology, The Second People's Hospital of Juancheng County, Shandong, China
| | - Xinfen Wang
- Department of Urology, The Second People's Hospital of Juancheng County, Shandong, China
| | - Bo Liu
- Department of Urology, The First People's Hospital of Juancheng County, Shandong, China
| | - Liang Cui
- Department of Urology, Civil Aviation General Hospital, Beijing, China.
| |
Collapse
|
7
|
Hargadon KM, Strong EW. The FOXC2 Transcription Factor: A Master Regulator of Chemoresistance in Cancer. Technol Cancer Res Treat 2023; 22:15330338231155284. [PMID: 36740986 PMCID: PMC9903043 DOI: 10.1177/15330338231155284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
FOXC2, a member of the forkhead box family of transcription factors, is an emerging oncogene that has been linked to several hallmarks of cancer progression. Among its many oncogenic functions is the promotion of drug resistance, with evidence supporting roles for FOXC2 in escape from broad classes of chemotherapeutics across an array of cancer types. In this Mini-Review, we highlight the current understanding of the mechanisms by which FOXC2 drives cancer chemoresistance, including its roles in the promotion of epithelial-mesenchymal transition, induction of multidrug transporters, activation of the oxidative stress response, and deregulation of cell survival signaling pathways. We discuss the clinical implications of these findings, including strategies for modulating FOXC2-associated chemoresistance in cancer. Particular attention is given to ways in which FOXC2 and its downstream gene products and pathways can be targeted to restore chemosensitivity in cancer cells. In addition, the utility of FOXC2 expression as a predictor of patient response to chemotherapy is also highlighted, with emphasis on the value of FOXC2 as a novel biomarker that can be used to guide therapeutic choice towards regimens most likely to achieve clinical benefit during frontline therapy.
Collapse
Affiliation(s)
- Kristian M. Hargadon
- Hargadon Laboratory, Hampden-Sydney College, Hampden-Sydney, VA, USA,Kristian M. Hargadon, PhD, Hampden-Sydney College, Brown Student Center, Box 837, Hampden-Sydney, VA 23943, USA.
| | - Elijah W. Strong
- Hargadon Laboratory, Hampden-Sydney College, Hampden-Sydney, VA, USA
| |
Collapse
|
8
|
Recouvreux MS, Miao J, Gozo MC, Wu J, Walts AE, Karlan BY, Orsulic S. FOXC2 Promotes Vasculogenic Mimicry in Ovarian Cancer. Cancers (Basel) 2022; 14:4851. [PMID: 36230774 PMCID: PMC9564305 DOI: 10.3390/cancers14194851] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
FOXC2 is a forkhead family transcription factor that plays a critical role in specifying mesenchymal cell fate during embryogenesis. FOXC2 expression is associated with increased metastasis and poor survival in various solid malignancies. Using in vitro and in vivo assays in mouse ovarian cancer cell lines, we confirmed the previously reported mechanisms by which FOXC2 could promote cancer growth, metastasis, and drug resistance, including epithelial-mesenchymal transition, stem cell-like differentiation, and resistance to anoikis. In addition, we showed that FOXC2 expression is associated with vasculogenic mimicry in mouse and human ovarian cancers. FOXC2 overexpression increased the ability of human ovarian cancer cells to form vascular-like structures in vitro, while inhibition of FOXC2 had the opposite effect. Thus, we present a novel mechanism by which FOXC2 might contribute to cancer aggressiveness and poor patient survival.
Collapse
Affiliation(s)
- Maria Sol Recouvreux
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jiangyong Miao
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Maricel C. Gozo
- Women’s Cancer Program, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jingni Wu
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ann E. Walts
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Beth Y. Karlan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sandra Orsulic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA 90095, USA
| |
Collapse
|