1
|
Lin D, Wu C, Jiang Y, Li Y, Zhang X, Wang Y. Association of angiotensin-converting enzyme inhibitors or angiotensin II receptor antagonists use with risk of atrial fibrillation after pacemaker implantation among very old patients. Biosci Trends 2021; 15:390-396. [PMID: 34866125 DOI: 10.5582/bst.2021.01461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
It remains unknown whether and to what extend the angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin receptor blockers (ARBs) can play a role in the development of atrial fibrillation (AF) after pacemaker implantation in very old patients. Therefore, we aimed to investigate the association between oral ACEIs or ARBs and the risk of developing AF in very old patients after pacemaker implantation. Patients above 80 years old with pacemaker implantation and without baseline history of AF were included and their real-world information about ACEIs or ARBs use was extracted from electronic medical records. New AF cases were confirmed via the records of outpatient visits. The multivariable Cox proportional-hazards model was used to evaluate the associations between oral ACEIs or ARBs and risk of AF after pacemaker implantation. Among a total of 388 identified patients aged 80 to 98 years, 118 used ACEIs, 174 had ARBs therapy, and 115 AF were identified after pacemaker implantation during a median follow-up time of 3.1 years. After adjustment for potential confounders, patients with daily use of ARBs had a relatively lower risk of AF after pacemaker implantation (HR: 0.627, 95% CI: 0.425, 0.926; P = 0.019) compared with those non-users, whereas ACEIs therapy didn't show a significant relation with AF risk (HR: 1.335, 95% CI: 0.894, 1.995; P = 0.157). In conclusion, for very old patients with a permanent pacemaker, daily use of oral ARBs was associated with a relative lower risk of AF after pacemaker implantation, however, daily use of ACEIs was not related with AF risk.
Collapse
Affiliation(s)
- Dawei Lin
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Wu
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Jiang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yigang Li
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Zhang
- Clinical Research & Innovation Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaosheng Wang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Clinical Research & Innovation Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Zhao Z, Li R, Wang X, Li J, Yuan M, Liu E, Liu T, Li G. Attenuation of atrial remodeling by aliskiren via affecting oxidative stress, inflammation and PI3K/Akt signaling pathway. Cardiovasc Drugs Ther 2021; 35:587-598. [PMID: 32462265 DOI: 10.1007/s10557-020-07002-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Atrial fibrillation (AF) is the most common type of arrhythmia. Atrial remodeling is a major factor to the AF substrate. The purpose of the study is to explore whether aliskiren (ALS) has a cardioprotective effect and its potential molecular mechanisms on atrial remodeling. METHODS In acute experiments, dogs were randomly assigned to Sham, Paced and Paced+aliskiren (10 mg kg-1) (Paced+ALS) groups, with 7 dogs in each group. Rapid atrial pacing (RAP) was maintained at 600 bpm for 2 h for paced and Paced+ALS groups and atrial effective refractory periods (AERPs), inducibility of AF (AFi) and average duration time (ADT) were measured. In chronic experiments, there were 5 groups: Sham, Sham+ALS, Paced, Paced+ALS and Paced+ALS+PI3K antagonist wortmannin (WM) (70 μg kg-1 day-1). RAP at 500 beats/min was maintained for 2 weeks. Inflammation and oxidative stress indicators were measured by ELISA assay, echocardiogram and pathology were used to assess atrial structural remodeling, phosphatidylinositol 3-hydroxy kinase/protein kinase B (PI3K/Akt) signaling pathways were studied by RT-PCR and western blotting to evaluate whether the cardioprotective effect of ALS works through PI3K/Akt signaling pathway. RESULTS The electrophysiological changes were observed after 2-h pacing. The AERP shortened with increased AFi and ADT, which was attenuated by ALS (P < 0.05). After pacing for 2 weeks, oxidative stress and inflammation markers in the Paced group were significantly higher than those in the Sham group (P < 0.01) and were reduced by ALS treatment (P < 0.01). The reduced level of antioxidant enzymes caused by RAP was also found to be elevated in ALS-treated group (P < 0.01). The results of pathology and echocardiography showed that RAP can cause atrial enlargement, fibrosis (P < 0.01), and were attenuated in ALS treatment group. The PI3K/Akt signaling pathway were downregulated induced by RAP. ALS could upregulate the PI3K/Akt pathway expression (P < 0.05). Furthermore, the cardioprotective effects in structural remodeling of ALS were suppressed by WM. CONCLUSIONS ALS may offer cardioprotection in RAP-induced atrial remodeling, which may partly be ascribed to its anti-inflammatory and anti-oxidative stress action and the regulation of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Zhiqiang Zhao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Ruiling Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xinghua Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jian Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Meng Yuan
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Enzhao Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| |
Collapse
|
3
|
Qiu D, Peng L, Ghista DN, Wong KKL. Left Atrial Remodeling Mechanisms Associated with Atrial Fibrillation. Cardiovasc Eng Technol 2021; 12:361-372. [PMID: 33650086 DOI: 10.1007/s13239-021-00527-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/09/2021] [Indexed: 02/05/2023]
Abstract
Heart disease has always been one of the important diseases that endanger health and cause death. Therefore, it is particularly important to understand left atrium reconstruction and atrial fibrillation before heart image processing. The purpose of this paper is to provide an important review of the mechanisms of left atrial remodeling (LAR) associated with atrial fibrillation (AF). LAR refers to the spectrum of pathophysiological changes in (i) atrial structure and physiological function, and (ii) electric, ionic, and molecular milieu of the LA, in response to stresses imposed by conditions such as hypertension, myocardial ischemia, autonomic denervation and congestive heart failure. The main mechanisms of LAR include electrical remodeling, structural remodeling, metabolic remodeling, autonomic remodeling, neurohormones and inflammation, and other influencing factors. LAR is not only the basic mechanism of AF and heart failure, but also the pathophysiological basis of its progression. In clinical practice, AF is the most common persistent arrhythmia, and is believed to be the result of a combination of mechanisms that have triggers and maintenance mechanisms, including spontaneous ectopic pacing and multiple wavelet reentry. While LA electrophysiological, structural, and ultra-structural changes trigger AF, in turn, AF alters the LA electrical and structural properties that promote its maintenance and recurrence. Chronic AF leads to extensive changes in atrial cellular substructures, including loss of myofibrils, accumulation of glycogen, changes in mitochondrial shape and size, fragmentation of sarcoplasmic reticulum, and dispersion of nuclear chromatin. Electrical remodeling and structural remodeling of the atria during AF, involving structural changes and functional impairment of the left atrium, can lead to serious decline in left ventricular function and severe heart failure. Therefore, LAR and AF are inter-activating phenomena, and the resulting complications can cause serious disabling and fatal events. In this paper, we present (i) the mechanisms of LAR, in the form of structural, electrical, metabolic, and neurohormonal changes, and (ii) their interactive roles in initiating and maintaining AF. These in-depth understanding of the atrial remodeling mechanisms can in turn provide useful insights into the treatment of AF and heart failure.
Collapse
Affiliation(s)
- Defu Qiu
- School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Liqing Peng
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dhanjoo N Ghista
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University 2020 Foundation, San Jose, CA, 95126, USA
| | - Kelvin K L Wong
- School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia.
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
4
|
Shinbo H, Tomioka S, Ino T, Koyama K. Systolic modified Look-Locker inversion recovery myocardial T1 mapping improves the accuracy of T1 and extracellular volume fraction measurements of patients with high heart rate or atrial fibrillation. Radiol Phys Technol 2020; 13:405-413. [PMID: 33155177 DOI: 10.1007/s12194-020-00594-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 10/23/2022]
Abstract
Image data for T1 mapping are generally acquired during mid-diastole period. However, T1 mapping tends to fail for patients with high heart rate or atrial fibrillation because of short or irregular R-R interval. Focusing on the evidence that the timing of systole is more stable than that of diastole from the R wave, we compared systolic T1 mapping with conventional diastolic T1 mapping for all participants (n = 58) by visual scoring of T1 calculation error. The systolic scores were significantly better than the diastolic scores (p < 0.05). This advantage of the systolic scores was confirmed selectively for patients with atrial fibrillation (p < 0.05, n = 19). The successful number of nonrigid image registration alignment for extracellular volume fraction (ECV) analysis also increased significantly for systolic images compared with diastolic images (p < 0.05). Thus, systolic T1 mapping improves the accuracy of T1 values and ECV analysis.
Collapse
Affiliation(s)
- Hirohiko Shinbo
- Gunma Prefectural Cardiovascular Center, 3-12 Kamiizumimachi, Maebashi-shi, Gunma, Japan.
| | - Satoshi Tomioka
- Gunma Prefectural Cardiovascular Center, 3-12 Kamiizumimachi, Maebashi-shi, Gunma, Japan
| | - Toshihiko Ino
- Gunma Prefectural Cardiovascular Center, 3-12 Kamiizumimachi, Maebashi-shi, Gunma, Japan
| | - Keiko Koyama
- Gunma Prefectural Cardiovascular Center, 3-12 Kamiizumimachi, Maebashi-shi, Gunma, Japan
| |
Collapse
|
5
|
Zhou T, Han Z, Gu J, Chen S, Fan Y, Zhang H, Yin Y, Zhang J, Wang C. Angiotensin-converting enzyme-2 overexpression improves atrial electrical remodeling through TRPM7 signaling pathway. Oncotarget 2017; 8:78726-78733. [PMID: 29108260 PMCID: PMC5667993 DOI: 10.18632/oncotarget.20221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 07/17/2017] [Indexed: 12/30/2022] Open
Abstract
Atrial electrical remodeling is an important factor in the development and persistence of atrial fibrillation. The aim of this study was to examine the effects of atrial angiotensin-converting enzyme-2 overexpression on atrial electrical remodeling and to elucidate the molecular mechanisms underlying these effects. Twenty-eight male and female dogs were randomly divided into the following 4 groups: a sham-operation group, a control group, an adenovirus-enhanced green fluorescent protein (Ad-EGFP) gene group and an Ad-ACE2 gene group. All dogs in the Ad-EGFP and Ad-ACE2 groups were rhythmized at 450 bpm for 14 days. Two weeks later, all the dogs underwent thoracotomy and epicardial gene painting. On day 21 after gene transfer, all the animals were subjected to electrophysiological and molecular studies. AF induction rates and durations were significantly increased in the control and Ad-EGFP groups compared to the sham-operated and Ad-ACE2 groups. Transient receptor potential melastatin 7 (TRPM7) expression levels in the Ad-EGFP and control groups were significantly higher than those in the sham-operated and Ad-ACE2 groups. Basal [Mg2+]i was significantly decreased in siRNA transfected cells compared with control and non-silencing siRNA-transfected cells. Our results suggest that ACE2 overexpression suppresses atrial electrical remodeling and improves atrial function through the TRPM7 signaling pathway.
Collapse
Affiliation(s)
- Tingquan Zhou
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zhihua Han
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jun Gu
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Shaojie Chen
- Department of Cardiology, Shanghai First People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yuqi Fan
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Huili Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yuehui Yin
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junfeng Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Changqian Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Zhao L, Li S, Ma X, Greiser A, Zhang T, An J, Bai R, Dong J, Fan Z. Systolic MOLLI T1 mapping with heart-rate-dependent pulse sequence sampling scheme is feasible in patients with atrial fibrillation. J Cardiovasc Magn Reson 2016; 18:13. [PMID: 26980571 PMCID: PMC4793619 DOI: 10.1186/s12968-016-0232-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/04/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND T1 mapping enables assessment of myocardial characteristics. As the most common type of arrhythmia, atrial fibrillation (AF) is often accompanied by a variety of cardiac pathologies, whereby the irregular and usually rapid ventricle rate of AF may cause inaccurate T1 estimation due to mis-triggering and inadequate magnetization recovery. We hypothesized that systolic T1 mapping with a heart-rate-dependent (HRD) pulse sequence scheme may overcome this issue. METHODS 30 patients with AF and 13 healthy volunteers were enrolled and underwent cardiovascular magnetic resonance (CMR) at 3 T. CMR was repeated for 3 patients after electric cardioversion and for 2 volunteers after lowering heart rate (HR). A Modified Look-Locker Inversion Recovery (MOLLI) sequence was acquired before and 15 min after administration of 0.1 mmol/kg gadopentetate dimeglumine. For AF patients, both the fixed 5(3)3/4(1)3(1)2 and the HRD sampling scheme were performed at diastole and systole, respectively. The HRD pulse sequence sampling scheme was 5(n)3/4(n)3(n)2, where n was determined by the heart rate to ensure adequate magnetization recovery. Image quality of T1 maps was assessed. T1 times were measured in myocardium and blood. Extracellular volume fraction (ECV) was calculated. RESULTS In volunteers with repeated T1 mapping, the myocardial native T1 and ECV generated from the 1st fixed sampling scheme were smaller than from the 1st HRD and 2nd fixed sampling scheme. In healthy volunteers, the overall native T1 times and ECV of the left ventricle (LV) in diastolic T1 maps were greater than in systolic T1 maps (P < 0.01, P < 0.05). In the 3 AF patients that had received electrical cardioversion therapy, the myocardial native T1 times and ECV generated from the fixed sampling scheme were smaller than in the 1st and 2nd HRD sampling scheme (all P < 0.05). In patients with AF (HR: 88 ± 20 bpm, HR fluctuation: 12 ± 9 bpm), more T1 maps with artifact were found in diastole than in systole (P < 0.01). The overall native T1 times and ECV of the left ventricle (LV) in diastolic T1 maps were greater than systolic T1 maps, either with fixed or HRD sampling scheme (all P < 0.05). CONCLUSION Systolic MOLLI T1 mapping with heart-rate-dependent pulse sequence scheme can improve image quality and avoid T1 underestimation. It is feasible and with further validation may extend clinical applicability of T1 mapping to patients with atrial fibrillation.
Collapse
Affiliation(s)
- Lei Zhao
- />Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Songnan Li
- />Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaohai Ma
- />Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | | | - Tianjing Zhang
- />MR Collaborations NE Asia, Siemens Healthcare, Beijing, China
| | - Jing An
- />MR Collaborations NE Asia, Siemens Healthcare, Beijing, China
| | - Rong Bai
- />Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jianzeng Dong
- />Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhanming Fan
- />Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| |
Collapse
|
7
|
Dzeshka MS, Lip GYH, Snezhitskiy V, Shantsila E. Cardiac Fibrosis in Patients With Atrial Fibrillation: Mechanisms and Clinical Implications. J Am Coll Cardiol 2015; 66:943-59. [PMID: 26293766 DOI: 10.1016/j.jacc.2015.06.1313] [Citation(s) in RCA: 377] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/18/2015] [Accepted: 06/22/2015] [Indexed: 02/06/2023]
Abstract
Atrial fibrillation (AF) is associated with structural, electrical, and contractile remodeling of the atria. Development and progression of atrial fibrosis is the hallmark of structural remodeling in AF and is considered the substrate for AF perpetuation. In contrast, experimental and clinical data on the effect of ventricular fibrotic processes in the pathogenesis of AF and its complications are controversial. Ventricular fibrosis seems to contribute to abnormalities in cardiac relaxation and contractility and to the development of heart failure, a common finding in AF. Given that AF and heart failure frequently coexist and that both conditions affect patient prognosis, a better understanding of the mutual effect of fibrosis in AF and heart failure is of particular interest. In this review paper, we provide an overview of the general mechanisms of cardiac fibrosis in AF, differences between fibrotic processes in atria and ventricles, and the clinical and prognostic significance of cardiac fibrosis in AF.
Collapse
Affiliation(s)
- Mikhail S Dzeshka
- University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham, United Kingdom; Grodno State Medical University, Grodno, Belarus
| | - Gregory Y H Lip
- University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham, United Kingdom; Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | | - Eduard Shantsila
- University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham, United Kingdom.
| |
Collapse
|
8
|
Zhou T, Wang Z, Fan J, Chen S, Tan Z, Yang H, Yin Y. Angiotensin-converting enzyme-2 overexpression improves atrial remodeling and function in a canine model of atrial fibrillation. J Am Heart Assoc 2015; 4:e001530. [PMID: 25792125 PMCID: PMC4392435 DOI: 10.1161/jaha.114.001530] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Atrial fibrosis is an important factor in initiating and maintaining atrial fibrillation. The purpose of this study was to test the hypothesis that atrial angiotensin-converting enzyme-2 (ACE2) overexpression might inhibit atrial collagen accumulation and improve atrial remodeling in a canine atrial pacing model. METHODS AND RESULTS Thirty-two mongrel dogs of both genders were divided randomly into 4 groups: sham-operated, control, gene therapy with adenovirus-enhanced green fluorescent protein (Ad-EGFP), and gene therapy with Ad-ACE2. All of the dogs in the control, Ad-EGFP, and Ad-ACE2 groups were paced at 450 bpm for a period of 14 days. The dogs in the sham group were instrumented without pacing. After 2 weeks, all of the dogs underwent a thoracotomy operation and received epicardial gene painting. On post-gene transfer day 21, the animals underwent electrophysiology, histology, and molecular studies. The percentage of fibrosis in the Ad-ACE2 group was markedly lower than the percentage in the control and Ad-EGFP groups. Compared with the other groups, ACE2 expression was increased significantly in the Ad-ACE2 group. Compared with the sham and Ad-ACE2 groups, the expression levels of transforming growth factor-β1 and Smad3 were significantly higher in the Ad-EGFP and control groups; however, the expression levels of Smad7 were lower in the atrial tissue as detected by Western blot and reverse transcription polymerase chain reaction. CONCLUSIONS Our results demonstrate that the overexpression of ACE2 inhibits atrial collagen accumulation and improves left atrial remodeling and function in a canine model of atrial fibrillation. Thus, targeted gene ACE2 therapy provides a promising approach for the treatment of atrial fibrillation.
Collapse
Affiliation(s)
- Tingquan Zhou
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China (T.Z., Z.W., J.F., S.C., Z.T., H.Y., Y.Y.)
| | - Zhenglong Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China (T.Z., Z.W., J.F., S.C., Z.T., H.Y., Y.Y.)
| | - Jinqi Fan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China (T.Z., Z.W., J.F., S.C., Z.T., H.Y., Y.Y.)
| | - Shaojie Chen
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China (T.Z., Z.W., J.F., S.C., Z.T., H.Y., Y.Y.)
| | - Zhen Tan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China (T.Z., Z.W., J.F., S.C., Z.T., H.Y., Y.Y.)
| | - Hanxuan Yang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China (T.Z., Z.W., J.F., S.C., Z.T., H.Y., Y.Y.)
| | - Yuehui Yin
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China (T.Z., Z.W., J.F., S.C., Z.T., H.Y., Y.Y.)
| |
Collapse
|
9
|
Sun J, Rong Z, Wugeti N, Azhati A, GUo Y, Liu H, Qian R, Zhao L, Ma Y. Experimental evaluation of myocardial fibrosis in a rapid atrial pacing model in New Zealand rabbits using quantitative analysis of ultrasonic backscatter. Med Sci Monit 2014; 20:1884-9. [PMID: 25296565 PMCID: PMC4206398 DOI: 10.12659/msm.891242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background The aim of this study was the establishment of a rapid atrial pacing (RAP)-induced atrial fibrillation (AF) model with electrophotoluminescence and the application of ultrasonic backscatter quantitative analysis of the degree of myocardial fibrosis in New Zealand white rabbits. Material/Methods Sixteen New Zealand white rabbits were randomly divided into 2 groups: 1) a sham operation group (n=8) with implanted electrodes and no rapid pacing and 2) a pacing group (n=8) with an AF model induced by short-term rapid right atrial pacing for 12 h. Establishment of an AF model, atrial myocardium of myocardial fibrosis was tested by Masson staining and expression of collagen I and collagen III protein was detected with pathologic immunohistochemistry integrated back-scatter (IBS). Back scattering integral cycle variation (CVIB) were detected in atrial septal and posterior wall of the right atrium. Results Rapid atrial pacing successfully induced the atrial fibrillation model in rabbits. Masson staining showed myocardial fibrosis significantly increased in the pacing group. Expression of collagen I and collagen III protein was strongly positive in the pacing group, and expression of collagen I and collagen III protein were weakly positive in the sham operation group. Compared with the sham operation group, AII was increased (8.24±0.85 vs. 15.56±1.30, P<0.05) and (7.58±0.56 vs. 16.60±2.45, P<0.05). CVIB was significantly decreased (2.78±0.86 vs. 1.08±0.13, P<0.05) and (3.12±0.65 vs. 1.56±0.15, P<0.05) in septal and posterior wall of the right atrium of the pacing group. Conclusions Ultrasonic backscatter measurement technique can be used to evaluate degree of myocardial fibrosis in a right atrial pacing-induced atrial arrhythmia model.
Collapse
Affiliation(s)
- Juan Sun
- Clinical Postdoctoral Research Station, The First Affiliated Hospital of Xinjiang Medical University, Urumuqi, China (mainland)
| | - Zhang Rong
- Function Center, Xinjiang Medical University, Urumuqi, China (mainland)
| | - Najina Wugeti
- Heart Center, The First Affiliated Hospital of Xinjiang Medical University, Urumuqi, China (mainland)
| | - Adila Azhati
- Heart Center, The First Affiliated Hospital of Xinjiang Medical University, Urumuqi, China (mainland)
| | - Yujun GUo
- Heart Center, The First Affiliated Hospital of Xinjiang Medical University, Urumuqi, China (mainland)
| | - Haili Liu
- Heart Center, The First Affiliated Hospital of Xinjiang Medical University, Urumuqi, China (mainland)
| | - Ruping Qian
- Heart Center, The First Affiliated Hospital of Xinjiang Medical University, Urumuqi, China (mainland)
| | - Long Zhao
- Heart Center, The First Affiliated Hospital of Xinjiang Medical University, Urumuqi, China (mainland)
| | - Yitong Ma
- Heart Center, The First Affiliated Hospital of Xinjiang Medical University, Urumuqi, China (mainland)
| |
Collapse
|
10
|
Losartan affects the substrate for atrial fibrillation maintenance in a rabbit model. Cardiovasc Pathol 2013; 22:383-8. [DOI: 10.1016/j.carpath.2013.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/05/2013] [Accepted: 02/15/2013] [Indexed: 11/24/2022] Open
|
11
|
Overexpression of Smad7 suppressed ROS/MMP9-dependent collagen synthesis through regulation of heme oxygenase-1. Mol Biol Rep 2013; 40:5307-14. [PMID: 23661026 DOI: 10.1007/s11033-013-2631-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 04/30/2013] [Indexed: 12/15/2022]
Abstract
We previously reported that AngiotensinII receptor blocker effectively inhibited TGF-β1-mediated epithelial-to-mesenchymal transition progress through regulating Smad7. However, the underlying mechanism by which Smad7 exerted in regulating MMP9 and fibrogenic response has not been fully elucidated. In the current study, we proved that NADPH p47(phox)-dependent reactive oxygen species (ROS) production contributed to MMP9 activation and collagen expression, which was suppressed by transfecting pcDNA3-Smad7 in cardiac fibroblasts. The effect of Smad7 overexpression on MMP9 activity and collagen expression was further reversed by adding H2O2 (10 μmol/L). In contrast, knockdown of Smad7 caused the enhanced collagen synthesis in cardiac fibroblasts, which was also reversed by treating cells with a ROS inhibitor, YCG063 (2 μmol/L). Further investigation showed that Smad7 regulated NADPH-mediated ROS production through activating Heme oxygenase-1 (HO-1). Meanwhile, the intercellular level of bilirubin (product of hemin) and nitric oxide (NO) in cell supernatant were not significantly increased in cells treated with AngII or transfected with Smad7. Knockdown of HO-1 in Smad7-overexpressed cardiac fibroblasts or cells pretreated with SnPP IX, a competitive inhibitor of HO-1 activity, resulted in increased productions of ROS and NADPH p47(phox), and abolished the inhibitory effects of Smad7 on MMP9 activity and collagen expression. Our results indicated that HO-1 might be critically involved in Smad7-mediated regulation of MMP9 activity and fibrogenic genes expression via antagonizing the enhanced myocardial oxidative stress.
Collapse
|
12
|
Abstract
There are various underlying causes of tachycardia-induced cardiomyopathy (TIC), and it is critical that it be considered in any patient who presents with a newly diagnosed dilated cardiomyopathy. Unlike most other forms of cardiomyopathy, TIC should be considered a treatable form of cardiomyopathy and it is imperative that the diagnosis be fully considered. A 12-lead ECG should be obtained in all patients with a dilated cardiomyopathy. Prompt diagnosis and therapy of this relatively uncommon cause of heart failure is critical and has the potential to completely reverse the ventricular dysfunction that may be present in this abnormality.
Collapse
Affiliation(s)
- Stuart Berger
- Department of Pediatrics, Children's Hospital of Wisconsin, Medical College of Wisconsin, 9000 West Wisconsin Avenue, Milwaukee, WI 53217, USA.
| | | |
Collapse
|
13
|
He X, Gao X, Peng L, Wang S, Zhu Y, Ma H, Lin J, Duan DD. Atrial fibrillation induces myocardial fibrosis through angiotensin II type 1 receptor-specific Arkadia-mediated downregulation of Smad7. Circ Res 2010; 108:164-75. [PMID: 21127293 DOI: 10.1161/circresaha.110.234369] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RATIONALE Tachycardia-induced atrial fibrosis is a hallmark of structural remodeling of atrial fibrillation (AF). The molecular mechanisms underlying the AF-induced atrial fibrosis remain unclear. OBJECTIVE To determine the role of angiotensin II (Ang II)/Ang II type 1 (AT(1)) receptor-coupled transforming growth factor (TGF)-β(1)/Smad signaling pathway in the AF-induced atrial fibrosis. METHODS AND RESULTS Rapid atrial pacing (1000 ppm) was applied to the left atrium of rabbit heart to induce atrial fibrillation and fibrosis. Quantitative PCR and Western blot analysis revealed that rapid atrial pacing caused a marked increase in the expression of Ang II, TGF-β(1), phosphorylated Smad2/3 (P-Smad2/3), Arkadia, and hydroxyproline synthesis. However, the expression of Smad7, a key endogenous antagonist of the TGF-β(1)/Smad-mediated fibrosis, was significantly decreased. These changes were dose-dependently reversed by AT(1) receptor antagonist losartan, implicating the involvement of AF-induced release of Ang II and activation of AT(1) receptor-specific pathway. In the adult rabbit cardiac fibroblasts, Ang II increased the expression of TGF-β(1), P-Smad2/3, Smad4, Arkadia, and collagen I synthesis and significantly reduced Smad7 expression. These effects of Ang II were reversed by losartan but not by the AT(2) antagonist (PD123319). In addition, extracellular signal-regulated kinase inhibitor and anti-TGF-β(1) antibody also blocked the Ang II-induced downregulation of Smad7. Silencing of Smad7 gene by small interfering RNA abolished the antagonism of losartan on the fibrogenic effects of Ang II on cardiac fibroblasts, whereas overexpression of Smad7 blocked Ang II-induced increase in collagen I synthesis. CONCLUSIONS Ang II/AT(1) receptor-specific activation of Arkadia-mediated poly-ubiquitination and degradation of Smad7 may decrease the inhibitory feedback regulation of TGF-β(1)/Smad signaling and serves as a key mechanism for AF-induced atrial fibrosis.
Collapse
Affiliation(s)
- Xuyu He
- Department of Cardiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Matsuyama N, Tsutsumi T, Kubota N, Nakajima T, Suzuki H, Takeyama Y. Direct action of an angiotensin II receptor blocker on angiotensin II-induced left atrial conduction delay in spontaneously hypertensive rats. Hypertens Res 2009; 32:721-6. [DOI: 10.1038/hr.2009.89] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|