1
|
Bråtveit M, Van Parys A, Olsen T, Strand E, Marienborg I, Laupsa-Borge J, Haugsgjerd TR, McCann A, Dhar I, Ueland PM, Dierkes J, Dankel SN, Nygård OK, Lysne V. Association between dietary macronutrient composition and plasma one-carbon metabolites and B-vitamin cofactors in patients with stable angina pectoris. Br J Nutr 2024; 131:1678-1690. [PMID: 38361451 PMCID: PMC11063666 DOI: 10.1017/s0007114524000473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/03/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
Elevated plasma concentrations of several one-carbon metabolites are associated with increased CVD risk. Both diet-induced regulation and dietary content of one-carbon metabolites can influence circulating concentrations of these markers. We cross-sectionally analysed 1928 patients with suspected stable angina pectoris (geometric mean age 61), representing elevated CVD risk, to assess associations between dietary macronutrient composition (FFQ) and plasma one-carbon metabolites and related B-vitamin status markers (GC-MS/MS, LC-MS/MS or microbiological assay). Diet-metabolite associations were modelled on the continuous scale, adjusted for age, sex, BMI, smoking, alcohol and total energy intake. Average (geometric mean (95 % prediction interval)) intake was forty-nine (38, 63) energy percent (E%) from carbohydrate, thirty-one (22, 45) E% from fat and seventeen (12, 22) E% from protein. The strongest associations were seen for higher protein intake, i.e. with higher plasma pyridoxal 5'-phosphate (PLP) (% change (95 % CI) 3·1 (2·1, 4·1)), cobalamin (2·9 (2·1, 3·7)), riboflavin (2·4 (1·1, 3·7)) and folate (2·1 (1·2, 3·1)) and lower total homocysteine (tHcy) (-1·4 (-1·9, -0·9)) and methylmalonic acid (MMA) (-1·4 (-2·0, -0·8)). Substitution analyses replacing MUFA or PUFA with SFA demonstrated higher plasma concentrations of riboflavin (5·0 (0·9, 9·3) and 3·3 (1·1, 5·6)), tHcy (2·3 (0·7, 3·8) and 1·3 (0·5, 2·2)) and MMA (2·0 (0·2, 3·9) and 1·7 (0·7, 2·7)) and lower PLP (-2·5 (-5·3, 0·3) and -2·7 (-4·2, -1·2)). In conclusion, a higher protein intake and replacing saturated with MUFA and PUFA were associated with a more favourable metabolic phenotype regarding metabolites associated with CVD risk.
Collapse
Affiliation(s)
- Marianne Bråtveit
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anthea Van Parys
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Elin Strand
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Ingvild Marienborg
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Johnny Laupsa-Borge
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | | | - Indu Dhar
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | | - Jutta Dierkes
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Laboratory Medicine and Pathology, Haukeland University Hospital, Bergen, Norway
| | - Simon Nitter Dankel
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ottar Kjell Nygård
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
- Laboratory Medicine and Pathology, Haukeland University Hospital, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Vegard Lysne
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
2
|
Mogilnicka I, Jaworska K, Koper M, Maksymiuk K, Szudzik M, Radkiewicz M, Chabowski D, Ufnal M. Hypertensive rats show increased renal excretion and decreased tissue concentrations of glycine betaine, a protective osmolyte with diuretic properties. PLoS One 2024; 19:e0294926. [PMID: 38166023 PMCID: PMC10760924 DOI: 10.1371/journal.pone.0294926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/10/2023] [Indexed: 01/04/2024] Open
Abstract
Hypertension leads to water-electrolyte disturbances and end-organ damage. Betaine is an osmolyte protecting cells against electrolyte imbalance and osmotic stress, particularly in the kidneys. This study aimed to evaluate tissue levels and hemodynamic and renal effects of betaine in normotensive and hypertensive rats. Betaine levels were assessed using high-performance liquid chromatography-mass spectrometry (HPLC-MS) in normotensive rats (Wistar-Kyoto, WKYs) and Spontaneously Hypertensive rats (SHRs), a model of genetic hypertension. Acute effects of IV betaine on blood pressure, heart rate, and minute diuresis were evaluated. Gene and protein expression of chosen kidney betaine transporters (SLC6a12 and SLC6a20) were assessed using real-time PCR and Western blot. Compared to normotensive rats, SHRs showed significantly lower concentration of betaine in blood serum, the lungs, liver, and renal medulla. These changes were associated with higher urinary excretion of betaine in SHRs (0.20 ± 0.04 vs. 0.09 ± 0.02 mg/ 24h/ 100g b.w., p = 0.036). In acute experiments, betaine increased diuresis without significantly affecting arterial blood pressure. The diuretic response was greater in SHRs than in WKYs. There were no significant differences in renal expression of betaine transporters between WKYs and SHRs. Increased renal excretion of betaine contributes to decreased concentration of the protective osmolyte in tissues of hypertensive rats. These findings pave the way for studies evaluating a causal relation between depleted betaine and hypertensive organ damage, including kidney injury.
Collapse
Affiliation(s)
- Izabella Mogilnicka
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Kinga Jaworska
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Koper
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Klaudia Maksymiuk
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Szudzik
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Mariusz Radkiewicz
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Dawid Chabowski
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Ufnal
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
3
|
Szkudelska K, Szkudelski T. The anti-diabetic potential of betaine. Mechanisms of action in rodent models of type 2 diabetes. Biomed Pharmacother 2022; 150:112946. [PMID: 35413601 DOI: 10.1016/j.biopha.2022.112946] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/02/2022] Open
Abstract
Betaine (N, N, N-trimethylglycine) is an amino-acid derivative exerting numerous beneficial effects on the organism. This compound is found in human and animal diets but is also endogenously generated. However, its synthesis may be insufficient to maintain or improve health. Moreover, the tissue content of betaine reduces under some pathological conditions, such as type 2 diabetes. This decrease may be, however, easily alleviated by dietary betaine supplementation. Rodent studies provided evidence that betaine effectively limits many diabetes-related disturbances. Betaine therapy improves glucose tolerance and insulin action, which is strongly associated with changes in insulin-sensitive tissues, such as skeletal muscle, adipose tissue, and liver. Betaine supplementation positively affects multiple genes, which expression is dysregulated in diabetes. AMP-activated protein kinase is thought to play a central role in the mechanism underlying the anti-diabetic betaine action. Moreover, studies with animal models of type 2 diabetes have shown that betaine exerts anti-inflammatory and anti-oxidant effects, and also alleviates endoplasmic reticulum stress. These changes contribute to improved insulin sensitivity and better blood glucose clearance. The results of animal studies encourage the exploration of the therapeutic betaine efficacy in humans with type 2 diabetes.
Collapse
Affiliation(s)
- Katarzyna Szkudelska
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland
| | - Tomasz Szkudelski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
| |
Collapse
|
4
|
Associations between Serum Betaine, Methyl-Metabolizing Genetic Polymorphisms and Risk of Incident Type 2 Diabetes: A Prospective Cohort Study in Community-Dwelling Chinese Adults. Nutrients 2022; 14:nu14020362. [PMID: 35057543 PMCID: PMC8778868 DOI: 10.3390/nu14020362] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 12/21/2022] Open
Abstract
Previous studies have explored associations between betaine and diabetes, but few have considered the effects of genes on them. We aimed to examine associations between serum betaine, methyl-metabolizing genetic polymorphisms and the risk of type 2 diabetes in Chinese adults. This prospective study comprised 1565 subjects aged 40–75 without type 2 diabetes at baseline. Serum betaine was measured by high-performance liquid chromatography tandem mass spectrometry. Genotyping of methyl-metabolizing genes was detected by Illumina ASA-750K arrays. Cox proportional hazards model was used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). During a median of 8.9 years of follow-up, 213 participants developed type 2 diabetes. Compared with participants in the lowest quartile of serum betaine, those in the highest quartile had lower risk of type 2 diabetes, adjusted HRs (95%CIs) was 0.46 (0.31, 0.69). For methylenetetrahydrofolate reductase (MTHFR) G1793A (rs2274976) and MTHFR A1298C (rs1801131), participants carrying 1793GA + AA and 1298AC + CC had lower risk of type 2 diabetes. Interactions of serum betaine and genotype of MTHFR G1793A and MTHFR A1298C could be found influencing type 2 diabetes risk. Our findings indicate that higher serum betaine, mutations of MTHFR G1793A and A1298C, as well as the joint effects of them, are associated with lower risk of type 2 diabetes.
Collapse
|
5
|
Yu MC, Wang TM, Chiou YH, Yu MK, Lin CF, Chiu CY. Urine metabolic phenotyping in children with nocturnal enuresis and comorbid neurobehavioral disorders. Sci Rep 2021; 11:16592. [PMID: 34400733 PMCID: PMC8368245 DOI: 10.1038/s41598-021-96104-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022] Open
Abstract
Nocturnal enuresis (NE) is a common problem among 10% school-aged children. The etiologies underlying childhood NE is complex and not fully understood nowadays. Nevertheless, increasing evidence suggests a potential link between neurobehavioral disorders and enuresis in children. In this study, we aimed to explore novel metabolomic insights into the pathophysiology of NE and also, its association with pediatric psychiatric problems. Urine collected from 41 bedwetting children and 27 healthy control children was analyzed by using 1H-nuclear magnetic resonance spectroscopy from August 2017 to December 2018. At regular follow-up, there were 14 children with refractory NE having a diagnosis of attention deficient hyperactivity disorder (ADHD) or anxiety. Eventually, we identified eight significantly differential urinary metabolites and particularly increased urinary excretion of betaine, creatine and guanidinoacetate linked to glycine, serine and threonine metabolism were associated with a comorbidity of neurobehavioral disorders in refractory bedwetting children. Notably, based on physiological functions of betaine acting as a renal osmolyte and methyl group donor, we speculated its potential role in modulation of renal and/or central circadian clock systems, becoming a useful urinary metabolic marker in diagnosis of treatment-resistant NE in children affected by these two disorders.
Collapse
Affiliation(s)
- Mei-Ching Yu
- Division of Pediatric Nephrology, Department of Pediatrics, Lin-Kou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, 5, Fusing Street, Gueishan, Taoyuan, 333, Taiwan.
| | - Ta-Min Wang
- Division of Pediatric Urology, Department of Urology, Lin-Kou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yee-Hsuan Chiou
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Meng-Kung Yu
- Department of Pediatrics, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Chiao-Fan Lin
- Department of Child and Adolescent Psychiatry, Lin-Kou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Yung Chiu
- Division of Pediatric Pulmonology, Department of Pediatrics, Clinical Metabolomics Core Laboratory, Lin-Kou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, 5, Fusing Street, Gueishan, Taoyuan, 333, Taiwan.
| |
Collapse
|
6
|
Development of plasma functionalized polypropylene wound dressing for betaine hydrochloride controlled drug delivery on diabetic wounds. Sci Rep 2021; 11:9641. [PMID: 33953292 PMCID: PMC8100292 DOI: 10.1038/s41598-021-89105-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetes Mellitus is one of the most worrying issues among illnesses, and its chronic subsequences almost refer to inflammations and infections. The loading and local release of antioxidants to wounds may decrease inflammations. However, the low wettability of PolyPropylene (PP) restricts the drug from loading. So, to increase the adhesion of PP for loading an optimum amount of Betaine Hydrochloride (BET), plasma has been applied in two steps of functionalization and polymerization, which has been confirmed with FE-SEM, ATR-FTIR, and EDX. The new chemistry of the surface led to almost 80% of BET loaded. The drug-releasing ratio studied by HPLC approved the presence of a PEG-like layer, which was coated by polymerization of tetraglyme. To evaluate the wound healing potential of the application of PP meshes treated by plasma, 72 Wistar rats were subdivided into four groups. The skin injury site was removed and underwent biomechanical tests, stereological analysis, and RNA extraction. The results showed a significant improvement in the polymerized scaffold containing BET for skin injury. The present study suggests that the use of a modified PP mesh can induce tissue regeneration and accelerate wound healing at the skin injury site.
Collapse
|
7
|
Mueed Z, Mehta D, Rai PK, Kamal MA, Poddar NK. Cross-Interplay between Osmolytes and mTOR in Alzheimer's Disease Pathogenesis. Curr Pharm Des 2021; 26:4699-4711. [PMID: 32418522 DOI: 10.2174/1381612826666200518112355] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease, categorized by the piling of amyloid-β (Aβ), hyperphosphorylated tau, PHFs, NFTs and mTOR hyperactivity, is a neurodegenerative disorder, affecting people across the globe. Osmolytes are known for osmoprotectants and play a pivotal role in protein folding, function and protein stability, thus, preventing proteins aggregation, and counteracting effects of denaturing solutes on proteins. Osmolytes (viz., sorbitol, inositol, and betaine) perform a pivotal function of maintaining homeostasis during hyperosmotic stress. The selective advantage of utilising osmolytes over inorganic ions by cells is in maintaining cell volume without compromising cell function, which is important for organs such as the brain. Osmolytes have been documented not only as neuroprotectors but they also seem to act as neurodegenerators. Betaine, sucrose and trehalose supplementation has been seen to induce autophagy thereby inhibiting the accumulation of Aβ. In contrast, sucrose has also been associated with mTOR hyperactivity, a hallmark of AD pathology. The neuroprotective action of taurine is revealed when taurine supplementation is seen to inhibit neural damage, apoptosis and oxidative damage. Inositol stereoisomers (viz., scyllo-inositol and myo-inositol) have also been seen to inhibit Aβ production and plaque formation in the brain, inhibiting AD pathogenesis. However, TMAO affects the aging process adversely by deregulating the mTOR signalling pathway and then kindling cognitive dysfunction via degradation of chemical synapses and synaptic plasticity. Thus, it can be concluded that osmolytes may act as a probable therapeutic approach for neurodevelopmental disorders. Here, we have reviewed and focussed upon the impact of osmolytes on mTOR signalling pathway and thereby its role in AD pathogenesis.
Collapse
Affiliation(s)
- Zeba Mueed
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Devanshu Mehta
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India
| | - Pankaj K Rai
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Enzymoics; Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW 2770, Australia
| | - Nitesh K Poddar
- Department of Biosciences, Manipal University Jaipur, Rajasthan, India
| |
Collapse
|
8
|
Judy E, Kishore N. Quantitative calorimetric evidences into counteraction mechanism of denaturing effect of guanidine hydrochloride by citrulline and betaine. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Lysne V, Bjørndal B, Grinna ML, Midttun Ø, Ueland PM, Berge RK, Dierkes J, Nygård O, Strand E. Short-term treatment with a peroxisome proliferator-activated receptor α agonist influences plasma one-carbon metabolites and B-vitamin status in rats. PLoS One 2019; 14:e0226069. [PMID: 31805132 PMCID: PMC6894826 DOI: 10.1371/journal.pone.0226069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/18/2019] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Peroxisome proliferator-activated receptors (PPARs) have been suggested to be involved in the regulation of one-carbon metabolism. Previously we have reported effects on plasma concentrations of metabolites along these pathways as well as markers of B-vitamin status in rats following treatment with a pan-PPAR agonist. Here we aimed to investigate the effect on these metabolites after specific activation of the PPARα and PPARγ subtypes. METHODS For a period of 12 days, Male Wistar rats (n = 20) were randomly allocated to receive treatment with the PPARα agonist WY-14.643 (n = 6), the PPARγ agonist rosiglitazone (n = 6) or placebo (n = 8). The animals were sacrificed under fasting conditions, and plasma concentration of metabolites were determined. Group differences were assessed by one-way ANOVA, and planned comparisons were performed for both active treatment groups towards the control group. RESULTS Treatment with a PPARα agonist was associated with increased plasma concentrations of most biomarkers, with the most pronounced differences observed for betaine, dimethylglycine, glycine, nicotinamide, methylnicotinamide, pyridoxal and methylmalonic acid. Lower levels were observed for flavin mononucleotide. Fewer associations were observed after treatment with a PPARγ agonist, and the most notable was increased plasma serine. CONCLUSION Treatment with a PPARα agonist influenced plasma concentration of one-carbon metabolites and markers of B-vitamin status. This confirms previous findings, suggesting specific involvement of PPARα in the regulation of these metabolic pathways as well as the status of closely related B-vitamins.
Collapse
Affiliation(s)
- Vegard Lysne
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
- * E-mail:
| | - Bodil Bjørndal
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | | | - Per Magne Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Bevital A/S, Bergen, Norway
| | - Rolf Kristian Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Jutta Dierkes
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Mohn Nutrition Research Laboratory, Centre for Nutrition, University of Bergen, Bergen, Norway
- Laboratory Medicine and Pathology, Haukeland University Hospital, Bergen, Norway
| | - Ottar Nygård
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Centre for Nutrition, University of Bergen, Bergen, Norway
| | - Elin Strand
- Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
10
|
Sivanesan S, Taylor A, Zhang J, Bakovic M. Betaine and Choline Improve Lipid Homeostasis in Obesity by Participation in Mitochondrial Oxidative Demethylation. Front Nutr 2018; 5:61. [PMID: 30042948 PMCID: PMC6048254 DOI: 10.3389/fnut.2018.00061] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/21/2018] [Indexed: 01/01/2023] Open
Abstract
We investigated the metabolic effects of betaine (Bet) supplementation on CTP:phosphoethanolamine cytidylyltransferase/Pcyt2 heterozygous mice (HET). HET received either no treatment or were allowed access to 1% Bet supplemented water for 8 weeks. As we previously showed with choline (Cho), Bet improved hypertriglyceridemia, and hepatic steatosis in HET. The protection from obesity associated with reduced hepatic steatosis and increased lipid breakdown in adipocytes was attributed to increased energy requirements for metabolism and elimination of supplemented Bet and Cho. 1H-NMR-based profiling revealed metabolic changes caused by Bet and Cho supplementation. Cho increased the citric acid cycle intermediate succinic acid while reducing isoleucine, valine, threonine, and lysine. Bet increased α-ketoglutaric acid and did not stimulate catabolism of amino acids. Increased histidine and alanine are specific biomarkers for Bet treatment. Cho and Bet caused glycerol accumulation and reduced sarcosine, taurine, acetate, and β-hydroxybutyrate levels. These data provide new insights on how Cho and Bet supplementation can aid in treatment of obesity related disorders due to their positive effects on lipolysis, the citric acid cycle, and mitochondrial oxidative demethylation.
Collapse
Affiliation(s)
- Sugashan Sivanesan
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Adrian Taylor
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Junzeng Zhang
- Aquatic and Crop Resource Development, National Research Council Canada, Halifax, NS, Canada
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
11
|
Wei D, Zhu Y, Guo M. Simple determination of betaine, l-carnitine and choline in human urine using self-packed column and column-switching ion chromatography with nonsuppressed conductivity detection. Biomed Chromatogr 2017; 32. [PMID: 28921605 DOI: 10.1002/bmc.4098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 08/14/2017] [Accepted: 09/12/2017] [Indexed: 11/11/2022]
Abstract
A sequential online extraction, clean-up and separation system for the determination of betaine, l-carnitine and choline in human urine using column-switching ion chromatography with nonsuppressed conductivity detection was developed in this work. A self-packed pretreatment column (50 × 4.6 mm, i.d.) was used for the extraction and clean-up of betaine, l-carnitine and choline. The separation was achieved using self-packed cationic exchange column (150 × 4.6 mm, i.d.), followed by nonsuppressed conductivity detection. Under optimized experimental conditions, the developed method presented good analytical performance, with excellent linearity in the range of 0.60-100 μg mL-1 for betaine, 0.75-100 μg mL-1 for l-carnitine and 0.50-100 μg mL-1 for choline, with all correlation coefficients (R2 ) >0.99 in urine. The limits of detection were 0.15 μg mL-1 for betaine, 0.20 μg mL-1 for l-carnitine and 0.09 μg mL-1 for choline. The intra- and inter-day accuracy and precision for all quality controls were within ±10.32 and ±9.05%, respectively. Satisfactory recovery was observed between 92.8 and 102.0%. The validated method was successfully applied to the detection of urinary samples from 10 healthy people. The values detected in human urine using the proposed method showed good agreement with the measurement reported previously.
Collapse
Affiliation(s)
- Dan Wei
- Department of Chemistry, Xixi, Campus, Zhejiang University, Hangzhou, China
| | - Yan Zhu
- Department of Chemistry, Xixi, Campus, Zhejiang University, Hangzhou, China
| | - Ming Guo
- Research Center of Analysis and Measurement, Zhejiang Research Institute of Chemical Industry, Hangzhou, China
| |
Collapse
|
12
|
Betaine in the Brain: Characterization of Betaine Uptake, its Influence on Other Osmolytes and its Potential Role in Neuroprotection from Osmotic Stress. Neurochem Res 2017; 42:3490-3503. [PMID: 28918494 DOI: 10.1007/s11064-017-2397-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/15/2017] [Accepted: 08/29/2017] [Indexed: 01/17/2023]
Abstract
Betaine (N-trimethylglycine), a common osmolyte, has received attention because of the number of clinical reports associating betaine supplementation with improved cognition, neuroprotection and exercise physiology. However, tissue analyses report little accumulation of betaine in brain tissue despite the presence of betaine/GABA transporters (BGT1) at the blood brain barrier and in nervous tissue, calling into question whether betaine influences neuronal function directly or indirectly. Therefore, the focus of this study was to determine what capacity nervous tissue has to accumulate betaine, specifically in the hippocampus, a region of the brain associated with learning and memory and one that is particularly susceptible to damage (e.g., seizure activity). Here we report that hippocampal slices actively accumulate betaine in a time, dose and osmolality dependent manner, resulting in peak intracellular concentrations four times extracellular concentrations within 8 h. Our data also indicate that betaine uptake differentially influences the accumulation of other osmolytes. Under isosmotic conditions, betaine uptake minimally impacted some osmolytes (e.g., glycerylphosphorylcholine and glutamate) while significantly reducing others (taurine, creatine, and myo-inositol). Under osmotic stress (hyperosmotic) conditions, we observed dramatic changes in osmolytes like glycine and glutamine-key players in inhibitory neurotransmission-and little change in osmolytes such as taurine, creatine and myo-inositol when betaine was available. These data suggest that betaine may influence pathways of inhibitory neurotransmitter production/recycling in addition to serving as an osmolyte and metabolic intermediate. In sum, our data provide detailed characterization of betaine uptake in the hippocampus that implicates betaine in the modulation of hippocampal neurophysiology and neuroprotection.
Collapse
|
13
|
Lever M, McEntyre CJ, George PM, Chambers ST. Is N,N-dimethylglycine N-oxide a choline and betaine metabolite? Biol Chem 2017; 398:775-784. [PMID: 27902449 DOI: 10.1515/hsz-2016-0261] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/24/2016] [Indexed: 11/15/2022]
Abstract
Choline metabolism is by oxidation to betaine, which is demethylated to N,N-dimethylglycine; dimethylglycine is oxidatively demethylated to sarcosine. This pathway is important for osmoregulation and as a source of methyl groups. We asked whether another metabolite was involved. We synthesized the N-oxide of dimethylglycine (DMGO) by oxidizing dimethylglycine with peracetic acid, and measured DMGO in human plasma and urine by HPLC-MS/MS with positive ion detection, using two chromatography procedures, based on ion exchange and HILIC separations. The molecular ion DMGOH+ (m/z=120) yielded four significant fragments (m/z=103, 102, 58 and 42). The suspected DMGO peak in human body fluids showed all these fragments, and co-chromatographed with added standard DMGO in both HPLC systems. Typical plasma concentrations of DMGO are under 1 μmol/l. They may be lower in metabolic syndrome patients. Urine concentrations are higher, and DMGO has a higher fractional clearance than dimethylglycine, betaine and choline. It was present in all of over 80 human urine and plasma samples assayed. Plasma DMGO concentrations correlate with plasma DMG concentrations, with betaine and choline concentrations, with the osmolyte myo-inositol, and strongly with urinary DMGO excretion. We conclude that DMGO is probably a normal human metabolite.
Collapse
|
14
|
Lysne V, Strand E, Svingen GFT, Bjørndal B, Pedersen ER, Midttun Ø, Olsen T, Ueland PM, Berge RK, Nygård O. Peroxisome Proliferator-Activated Receptor Activation is Associated with Altered Plasma One-Carbon Metabolites and B-Vitamin Status in Rats. Nutrients 2016; 8:nu8010026. [PMID: 26742069 PMCID: PMC4728640 DOI: 10.3390/nu8010026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/18/2015] [Accepted: 12/28/2015] [Indexed: 12/16/2022] Open
Abstract
Plasma concentrations of metabolites along the choline oxidation pathway have been linked to increased risk of major lifestyle diseases, and peroxisome proliferator-activated receptors (PPARs) have been suggested to be involved in the regulation of key enzymes along this pathway. In this study, we investigated the effect of PPAR activation on circulating and urinary one-carbon metabolites as well as markers of B-vitamin status. Male Wistar rats (n = 20) received for 50 weeks either a high-fat control diet or a high-fat diet with tetradecylthioacetic acid (TTA), a modified fatty acid and pan-PPAR agonist with high affinity towards PPARα. Hepatic gene expression of PPARα, PPARβ/δ and the enzymes involved in the choline oxidation pathway were analyzed and concentrations of metabolites were analyzed in plasma and urine. TTA treatment altered most biomarkers, and the largest effect sizes were observed for plasma concentrations of dimethylglycine, nicotinamide, methylnicotinamide, methylmalonic acid and pyridoxal, which were all higher in the TTA group (all p < 0.01). Hepatic Pparα mRNA was increased after TTA treatment, but genes of the choline oxidation pathway were not affected. Long-term TTA treatment was associated with pronounced alterations on the plasma and urinary concentrations of metabolites related to one-carbon metabolism and B-vitamin status in rats.
Collapse
Affiliation(s)
- Vegard Lysne
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Elin Strand
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Gard F T Svingen
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
- Department of Heart Disease, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Bodil Bjørndal
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Eva R Pedersen
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
- Department of Heart Disease, Haukeland University Hospital, 5021 Bergen, Norway.
| | | | - Thomas Olsen
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Per M Ueland
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
- Laboratory of Clinical Biochemistry, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Rolf K Berge
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
- Department of Heart Disease, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Ottar Nygård
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
- Department of Heart Disease, Haukeland University Hospital, 5021 Bergen, Norway.
- KG Jebsen Centre for Diabetes Research, University of Bergen, 5009 Bergen, Norway.
| |
Collapse
|