1
|
Chorro FJ, Such-Miquel L, Cuñat S, Arias-Mutis O, Genovés P, Zarzoso M, Alberola A, Such-Belenguer L, Del Canto I. Effects of Eleclazine (GS6615) on the proarrhythmic electrophysiological changes induced by myocardial stretch. Front Physiol 2025; 16:1525836. [PMID: 39958692 PMCID: PMC11825515 DOI: 10.3389/fphys.2025.1525836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/10/2025] [Indexed: 02/18/2025] Open
Abstract
Purpose Myocardial stretch is a proarrhythmic factor. Eleclazine (GS6615) is a late sodium current (INaL) inhibitor that has shown protective effects against arrhythmias in various experimental models. Data on its effects during myocardial stretch are lacking. The aim of this study was to investigate the electrophysiological modifications induced by eleclazine basally and during acute ventricular stretch. Methods Left ventricular stretch was induced at baseline and during perfusion with eleclazine in 26 Langendorff rabbit heart preparations. Programmed stimulation and high-resolution mapping techniques were applied using multiple epicardial electrodes. Results At baseline, both the ventricular refractory period measured at a fixed cycle length (250 m) and its surrogate obtained during ventricular fibrillation (VF) decreased significantly during stretch (baseline 128 ± 15 vs. stretch 110 ± 14 m; n = 15; p < 0.001, and baseline 52 ± 13 vs. stretch 44 ± 9 m; n = 11; p < 0.05), while the VF dominant frequency (DF) increased significantly (DF baseline 13 ± 3 vs. stretch 17 ± 5Hz; n = 11; p < 0.01). Eleclazine 1.4 μM prolonged refractoriness, diminished both DF and conduction velocity during the arrhythmia, and avoided the stretch induced variations in refractoriness (baseline 148 ± 19 vs. stretch 150 ± 23 m; n = 15; ns, and baseline 73 ± 15 vs. stretch 77 ± 15 m; n = 11; ns) and in DF (baseline 12 ± 5 vs. stretch 12 ± 3 Hz; ns). The VF complexity index was inversely related to refractoriness (r = -0.64; p < 0.001). Under eleclazine perfusion, the VF activation patterns were less complex, and the arrhythmia stopped in 6 out of 11 experiments (55%; p < 0.05 vs. baseline). Conclusion Eleclazine (GS6615) reduced the proarrhythmic electrophysiological changes induced by myocardial stretch and slowed and simplified activation patterns during VF in the experimental model used.
Collapse
Affiliation(s)
- Francisco J. Chorro
- Department of Medicine, University of Valencia, Valencia, Spain
- Biomedical Research Center Network - Cardiovascular Diseases (CIBERCV), Carlos III Health Institute, Madrid, Spain
- Research Institute, Valencia Clinic Hospital (INCLIVA), Valencia, Spain
| | - Luis Such-Miquel
- Biomedical Research Center Network - Cardiovascular Diseases (CIBERCV), Carlos III Health Institute, Madrid, Spain
- Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - Samuel Cuñat
- Department of Physiology, University of Valencia, Valencia, Spain
| | - Oscar Arias-Mutis
- Biomedical Research Center Network - Cardiovascular Diseases (CIBERCV), Carlos III Health Institute, Madrid, Spain
- Research Institute, Valencia Clinic Hospital (INCLIVA), Valencia, Spain
| | - Patricia Genovés
- Biomedical Research Center Network - Cardiovascular Diseases (CIBERCV), Carlos III Health Institute, Madrid, Spain
- Research Institute, Valencia Clinic Hospital (INCLIVA), Valencia, Spain
| | - Manuel Zarzoso
- Biomedical Research Center Network - Cardiovascular Diseases (CIBERCV), Carlos III Health Institute, Madrid, Spain
- Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - Antonio Alberola
- Biomedical Research Center Network - Cardiovascular Diseases (CIBERCV), Carlos III Health Institute, Madrid, Spain
- Department of Physiology, University of Valencia, Valencia, Spain
| | - Luis Such-Belenguer
- Biomedical Research Center Network - Cardiovascular Diseases (CIBERCV), Carlos III Health Institute, Madrid, Spain
- Department of Physiology, University of Valencia, Valencia, Spain
| | - Irene Del Canto
- Biomedical Research Center Network - Cardiovascular Diseases (CIBERCV), Carlos III Health Institute, Madrid, Spain
- Department of Electronic Engineering, University of Valencia, Burjassot, Spain
| |
Collapse
|
2
|
De Santis GA, De Ferrari T, Parisi F, Franzino M, Molinero AE, Di Carlo A, Pistelli L, Vetta G, Parlavecchio A, Torre M, Parollo M, Mansi G, Tamborrino PP, Canu A, Grifoni G, Segreti L, Di Cori A, Viani SM, Zucchelli G. Ranolazine Unveiled: Rediscovering an Old Solution in a New Light. J Clin Med 2024; 13:4985. [PMID: 39274195 PMCID: PMC11396555 DOI: 10.3390/jcm13174985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/16/2024] Open
Abstract
Ranolazine is an anti-anginal medication that has demonstrated antiarrhythmic properties by inhibiting both late sodium and potassium currents. Studies have shown promising results for ranolazine in treating both atrial fibrillation and ventricular arrhythmias, particularly when used in combination with other medications. This review explores ranolazine's mechanisms of action and its potential role in cardiac arrhythmias treatment in light of previous clinical studies.
Collapse
Affiliation(s)
- Giulia Azzurra De Santis
- Cardiology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Tommaso De Ferrari
- Cardiology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Francesca Parisi
- Clinical Cardiology and Heart Failure Unit, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), 90127 Palermo, Italy
| | - Marco Franzino
- S.C. Cardiologia, Ospedale Sant'Andrea, 13100 Vercelli, Italy
| | - Agustin Ezequiel Molinero
- Cardiology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Alessandro Di Carlo
- Cardiology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Lorenzo Pistelli
- Second Division of Cardiology, Cardio-Thoracic and Vascular Department, Pisa University Hospital, 56124 Pisa, Italy
| | - Giampaolo Vetta
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, 1050 Brussels, Belgium
| | - Antonio Parlavecchio
- Cardiology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Marco Torre
- Second Division of Cardiology, Cardio-Thoracic and Vascular Department, Pisa University Hospital, 56124 Pisa, Italy
| | - Matteo Parollo
- Second Division of Cardiology, Cardio-Thoracic and Vascular Department, Pisa University Hospital, 56124 Pisa, Italy
| | - Giacomo Mansi
- Second Division of Cardiology, Cardio-Thoracic and Vascular Department, Pisa University Hospital, 56124 Pisa, Italy
| | - Pietro Paolo Tamborrino
- Second Division of Cardiology, Cardio-Thoracic and Vascular Department, Pisa University Hospital, 56124 Pisa, Italy
| | - Antonio Canu
- Second Division of Cardiology, Cardio-Thoracic and Vascular Department, Pisa University Hospital, 56124 Pisa, Italy
| | - Gino Grifoni
- Second Division of Cardiology, Cardio-Thoracic and Vascular Department, Pisa University Hospital, 56124 Pisa, Italy
| | - Luca Segreti
- Second Division of Cardiology, Cardio-Thoracic and Vascular Department, Pisa University Hospital, 56124 Pisa, Italy
| | - Andrea Di Cori
- Second Division of Cardiology, Cardio-Thoracic and Vascular Department, Pisa University Hospital, 56124 Pisa, Italy
| | - Stefano Marco Viani
- Second Division of Cardiology, Cardio-Thoracic and Vascular Department, Pisa University Hospital, 56124 Pisa, Italy
| | - Giulio Zucchelli
- Second Division of Cardiology, Cardio-Thoracic and Vascular Department, Pisa University Hospital, 56124 Pisa, Italy
| |
Collapse
|
3
|
Boycott HE, Nguyen MN, Vrellaku B, Gehmlich K, Robinson P. Nitric Oxide and Mechano-Electrical Transduction in Cardiomyocytes. Front Physiol 2020; 11:606740. [PMID: 33384614 PMCID: PMC7770138 DOI: 10.3389/fphys.2020.606740] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/23/2020] [Indexed: 12/22/2022] Open
Abstract
The ability§ of the heart to adapt to changes in the mechanical environment is critical for normal cardiac physiology. The role of nitric oxide is increasingly recognized as a mediator of mechanical signaling. Produced in the heart by nitric oxide synthases, nitric oxide affects almost all mechano-transduction pathways within the cardiomyocyte, with roles mediating mechano-sensing, mechano-electric feedback (via modulation of ion channel activity), and calcium handling. As more precise experimental techniques for applying mechanical stresses to cells are developed, the role of these forces in cardiomyocyte function can be further understood. Furthermore, specific inhibitors of different nitric oxide synthase isoforms are now available to elucidate the role of these enzymes in mediating mechano-electrical signaling. Understanding of the links between nitric oxide production and mechano-electrical signaling is incomplete, particularly whether mechanically sensitive ion channels are regulated by nitric oxide, and how this affects the cardiac action potential. This is of particular relevance to conditions such as atrial fibrillation and heart failure, in which nitric oxide production is reduced. Dysfunction of the nitric oxide/mechano-electrical signaling pathways are likely to be a feature of cardiac pathology (e.g., atrial fibrillation, cardiomyopathy, and heart failure) and a better understanding of the importance of nitric oxide signaling and its links to mechanical regulation of heart function may advance our understanding of these conditions.
Collapse
Affiliation(s)
- Hannah E. Boycott
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| | - My-Nhan Nguyen
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| | - Besarte Vrellaku
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| | - Katja Gehmlich
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Paul Robinson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Del-Canto I, Gómez-Cid L, Hernández-Romero I, Guillem MS, Fernández-Santos ME, Atienza F, Such L, Fernández-Avilés F, Chorro FJ, Climent AM. Ranolazine-Mediated Attenuation of Mechanoelectric Feedback in Atrial Myocyte Monolayers. Front Physiol 2020; 11:922. [PMID: 32848863 PMCID: PMC7417656 DOI: 10.3389/fphys.2020.00922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022] Open
Abstract
Background Mechanical stretch increases Na+ inflow into myocytes, related to mechanisms including stretch-activated channels or Na+/H+ exchanger activation, involving Ca2+ increase that leads to changes in electrophysiological properties favoring arrhythmia induction. Ranolazine is an antianginal drug with confirmed beneficial effects against cardiac arrhythmias associated with the augmentation of INaL current and Ca2+ overload. Objective This study investigates the effects of mechanical stretch on activation patterns in atrial cell monolayers and its pharmacological response to ranolazine. Methods Confluent HL-1 cells were cultured in silicone membrane plates and were stretched to 110% of original length. The characteristics of in vitro fibrillation (dominant frequency, regularity index, density of phase singularities, rotor meandering, and rotor curvature) were analyzed using optical mapping in order to study the mechanoelectric response to stretch under control conditions and ranolazine action. Results HL-1 cell stretch increased fibrillatory dominant frequency (3.65 ± 0.69 vs. 4.35 ± 0.74 Hz, p < 0.01) and activation complexity (1.97 ± 0.45 vs. 2.66 ± 0.58 PS/cm2, p < 0.01) under control conditions. These effects were related to stretch-induced changes affecting the reentrant patterns, comprising a decrease in rotor meandering (0.72 ± 0.12 vs. 0.62 ± 0.12 cm/s, p < 0.001) and an increase in wavefront curvature (4.90 ± 0.42 vs. 5.68 ± 0.40 rad/cm, p < 0.001). Ranolazine reduced stretch-induced effects, attenuating the activation rate increment (12.8% vs. 19.7%, p < 0.01) and maintaining activation complexity—both parameters being lower during stretch than under control conditions. Moreover, under baseline conditions, ranolazine slowed and regularized the activation patterns (3.04 ± 0.61 vs. 3.65 ± 0.69 Hz, p < 0.01). Conclusion Ranolazine attenuates the modifications of activation patterns induced by mechanical stretch in atrial myocyte monolayers.
Collapse
Affiliation(s)
- Irene Del-Canto
- INCLIVA Health Research Institute, Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Valencia, Spain.,Department of Electronic Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Lidia Gómez-Cid
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Madrid, Spain
| | | | - María S Guillem
- ITACA Institute, Universitat Politècnica de València, Valencia, Spain
| | - María Eugenia Fernández-Santos
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Madrid, Spain
| | - Felipe Atienza
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Madrid, Spain
| | - Luis Such
- INCLIVA Health Research Institute, Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Valencia, Spain.,Department of Physiology, Universitat de València Estudi General, Valencia, Spain
| | - Francisco Fernández-Avilés
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Madrid, Spain
| | - Francisco J Chorro
- INCLIVA Health Research Institute, Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Valencia, Spain.,Department of Cardiology, Hospital Clínico Universitario de Valencia, INCLIVA, Valencia, Spain
| | - Andreu M Climent
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Madrid, Spain.,ITACA Institute, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
5
|
Del Canto I, Santamaría L, Genovés P, Such-Miquel L, Arias-Mutis O, Zarzoso M, Soler C, Parra G, Tormos Á, Alberola A, Such L, Chorro FJ. Effects of the Inhibition of Late Sodium Current by GS967 on Stretch-Induced Changes in Cardiac Electrophysiology. Cardiovasc Drugs Ther 2019; 32:413-425. [PMID: 30173392 DOI: 10.1007/s10557-018-6822-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Mechanical stretch increases sodium and calcium entry into myocytes and activates the late sodium current. GS967, a triazolopyridine derivative, is a sodium channel blocker with preferential effects on the late sodium current. The present study evaluates whether GS967 inhibits or modulates the arrhythmogenic electrophysiological effects of myocardial stretch. METHODS Atrial and ventricular refractoriness and ventricular fibrillation modifications induced by acute stretch were studied in Langendorff-perfused rabbit hearts (n = 28) using epicardial multiple electrodes and high-resolution mapping techniques under control conditions and during the perfusion of GS967 at different concentrations (0.03, 0.1, and 0.3 μM). RESULTS On comparing ventricular refractoriness, conduction velocity and wavelength obtained before stretch had no significant changes under each GS967 concentration while atrial refractoriness increased under GS967 0.3 μM. Under GS967, the stretch-induced changes were attenuated, and no significant differences were observed between before and during stretch. GS967 0.3 μM diminished the normal stretch-induced changes resulting in longer (less shortened) atrial refractoriness (138 ± 26 ms vs 95 ± 9 ms; p < 0.01), ventricular refractoriness (155 ± 18 ms vs 124 ± 16 ms; p < 0.01) and increments in spectral concentration (23 ± 5% vs 17 ± 2%; p < 0.01), the fifth percentile of ventricular activation intervals (46 ± 8 ms vs 31 ± 3 ms; p < 0.05), and wavelength of ventricular fibrillation (2.5 ±0.5 cm vs 1.7 ± 0.3 cm; p < 0.05) during stretch. The stretch-induced increments in dominant frequency during ventricular fibrillation (control = 38%, 0.03 μM = 33%, 0.1 μM = 33%, 0.3 μM = 14%; p < 0.01) and the stretch-induced increments in arrhythmia complexity index (control = 62%, 0.03μM = 41%, 0.1 μM = 32%, 0.3 μM = 16%; p < 0.05) progressively decreased on increasing the GS967 concentration. CONCLUSIONS GS967 attenuates stretch-induced changes in cardiac electrophysiology.
Collapse
Affiliation(s)
- Irene Del Canto
- CIBER CV. Carlos III Health Institute, Madrid, Spain.,Department of Electronics, Universitat Politècnica de València, Valencia, Spain
| | - Laura Santamaría
- Department of Physiology, Valencia University - Estudi General, Valencia, Spain
| | | | - Luis Such-Miquel
- CIBER CV. Carlos III Health Institute, Madrid, Spain.,Department of Physiotherapy, Valencia University - Estudi General, Valencia, Spain
| | | | - Manuel Zarzoso
- Department of Physiotherapy, Valencia University - Estudi General, Valencia, Spain
| | - Carlos Soler
- Department of Physiology, Valencia University - Estudi General, Valencia, Spain
| | - Germán Parra
- Department of Physiology, Valencia University - Estudi General, Valencia, Spain
| | - Álvaro Tormos
- CIBER CV. Carlos III Health Institute, Madrid, Spain.,Department of Electronics, Universitat Politècnica de València, Valencia, Spain
| | - Antonio Alberola
- CIBER CV. Carlos III Health Institute, Madrid, Spain.,Department of Physiology, Valencia University - Estudi General, Valencia, Spain
| | - Luis Such
- CIBER CV. Carlos III Health Institute, Madrid, Spain.,Department of Physiology, Valencia University - Estudi General, Valencia, Spain
| | - Francisco J Chorro
- CIBER CV. Carlos III Health Institute, Madrid, Spain. .,Service of Cardiology, Valencia University Clinic Hospital, INCLIVA, Valencia, Spain. .,Department of Medicine, Valencia University - Estudi General, Valencia, Spain. .,Servicio de Cardiología, Hospital Clínico Universitario, Avda. Blasco Ibañez 17, 46010, Valencia, Spain.
| |
Collapse
|
6
|
Abstract
Electromechanical coupling studies have described the intervention of nitric oxide and S-nitrosylation processes in Ca2+ release induced by stretch, with heterogeneous findings. On the other hand, ion channel function activated by stretch is influenced by nitric oxide, and concentration-dependent biphasic effects upon several cellular functions have been described. The present study uses isolated and perfused rabbit hearts to investigate the changes in mechanoelectric feedback produced by two different concentrations of the nitric oxide carrier S-nitrosoglutathione. Epicardial multielectrodes were used to record myocardial activation at baseline and during and after left ventricular free wall stretch using an intraventricular device. Three experimental series were studied: (a) control (n = 10); (b) S-nitrosoglutathione 10 µM (n = 11); and (c) S-nitrosoglutathione 50 µM (n = 11). The changes in ventricular fibrillation (VF) pattern induced by stretch were analyzed and compared. S-nitrosoglutathione 10 µM did not modify VF at baseline, but attenuated acceleration of the arrhythmia (15.6 ± 1.7 vs. 21.3 ± 3.8 Hz; p < 0.0001) and reduction of percentile 5 of the activation intervals (42 ± 3 vs. 38 ± 4 ms; p < 0.05) induced by stretch. In contrast, at baseline using the 50 µM concentration, percentile 5 was shortened (38 ± 6 vs. 52 ± 10 ms; p < 0.005) and the complexity index increased (1.77 ± 0.18 vs. 1.27 ± 0.13; p < 0.0001). The greatest complexity indices (1.84 ± 0.17; p < 0.05) were obtained during stretch in this series. S-nitrosoglutathione 10 µM attenuates the effects of mechanoelectric feedback, while at a concentration of 50 µM the drug alters the baseline VF pattern and accentuates the increase in complexity of the arrhythmia induced by myocardial stretch.
Collapse
|
7
|
Bazoukis G, Tse G, Letsas KP, Thomopoulos C, Naka KK, Korantzopoulos P, Bazoukis X, Michelongona P, Papadatos SS, Vlachos K, Liu T, Efremidis M, Baranchuk A, Stavrakis S, Tsioufis C. Impact of ranolazine on ventricular arrhythmias - A systematic review. J Arrhythm 2018; 34:124-128. [PMID: 29657587 PMCID: PMC5891418 DOI: 10.1002/joa3.12031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/29/2017] [Indexed: 12/15/2022] Open
Abstract
Ranolazine is a new medication for the treatment of refractory angina. However, except its anti-anginal properties, it has been found to act as an anti-arrhythmic. The aim of our systematic review is to present the existing data about the impact of ranolazine in ventricular arrhythmias. We searched MEDLINE and Cochrane databases as well clinicaltrials.gov until September 1, 2017 to find all studies (clinical trials, observational studies, case reports/series) reported data about the impact of ranolazine in ventricular arrhythmias. Our search revealed 14 studies (3 clinical trials, 2 observational studies, 8 case reports, 1 case series). These data reported a beneficial impact of ranolazine in ventricular tachycardia/fibrillation, premature ventricular beats, and ICD interventions in different clinical settings. The existing data highlight the anti-arrhythmic properties of ranolazine in ventricular arrhythmias.
Collapse
Affiliation(s)
- George Bazoukis
- Department of CardiologyCatheterization LaboratoryEvangelismos General Hospital of AthensAthensGreece
| | - Gary Tse
- Department of Medicine and TherapeuticsFaculty of MedicineChinese University of Hong KongHong KongChina
- Li Ka Shing Institute of Health SciencesFaculty of MedicineChinese University of Hong KongHong KongChina
| | - Konstantinos P. Letsas
- Department of CardiologyCatheterization LaboratoryEvangelismos General Hospital of AthensAthensGreece
| | | | - Katerina K. Naka
- Second Department of CardiologySchool of MedicineUniversity of IoanninaIoanninaGreece
| | | | - Xenophon Bazoukis
- Department of CardiologyGeneral Hospital of Ioannina, “G Hatzikosta”IoanninaGreece
| | - Paschalia Michelongona
- Department of CardiologyCatheterization LaboratoryEvangelismos General Hospital of AthensAthensGreece
| | - Stamatis S. Papadatos
- FacultyDepartment of Internal MedicineAthens School of MedicineSotiria General HospitalNational and Kapodistrian University of AthensAthensGreece
| | - Konstantinos Vlachos
- Department of CardiologyCatheterization LaboratoryEvangelismos General Hospital of AthensAthensGreece
| | - Tong Liu
- Department of CardiologyTianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Michael Efremidis
- Department of CardiologyCatheterization LaboratoryEvangelismos General Hospital of AthensAthensGreece
| | - Adrian Baranchuk
- Division of Cardiology, Electrophysiology and PacingKingston General HospitalQueen's UniversityKingstonONCanada
| | | | - Costas Tsioufis
- First Cardiology ClinicHippokration HospitalUniversity of AthensAthensGreece
| |
Collapse
|
8
|
del Canto I, Such-Miquel L, Brines L, Soler C, Zarzoso M, Calvo C, Parra G, Tormos Á, Alberola A, Millet J, Such L, Chorro FJ. Effects of JTV-519 on stretch-induced manifestations of mechanoelectric feedback. Clin Exp Pharmacol Physiol 2016; 43:1062-1070. [DOI: 10.1111/1440-1681.12630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 07/16/2016] [Accepted: 08/01/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Irene del Canto
- Department of Medicine; Valencia University “Estudi General”; Valencia Spain
| | - Luis Such-Miquel
- Department of Physiotherapy; Valencia University “Estudi General”; Valencia Spain
| | - Laia Brines
- Department of Physiology; Valencia University “Estudi General”; Valencia Spain
| | - Carlos Soler
- Department of Physiology; Valencia University “Estudi General”; Valencia Spain
| | - Manuel Zarzoso
- Department of Physiotherapy; Valencia University “Estudi General”; Valencia Spain
| | - Conrado Calvo
- Department of Electronic Engineering; Valencia Polytechnic University; Valencia Spain
| | - Germán Parra
- Department of Physiology; Valencia University “Estudi General”; Valencia Spain
| | - Álvaro Tormos
- Department of Electronic Engineering; Valencia Polytechnic University; Valencia Spain
| | - Antonio Alberola
- Department of Physiology; Valencia University “Estudi General”; Valencia Spain
| | - José Millet
- Department of Electronic Engineering; Valencia Polytechnic University; Valencia Spain
| | - Luis Such
- Department of Physiology; Valencia University “Estudi General”; Valencia Spain
| | - Francisco J. Chorro
- Department of Medicine; Valencia University “Estudi General”; Valencia Spain
- Department of Cardiology; Valencia University Clinic Hospital; INCLIVA; Valencia Spain
| |
Collapse
|