1
|
Lukhna K, do Carmo HRP, Castillo AR, Davidson SM, Geffen H, Giesz S, Golforoush P, Bovi TG, Gorag D, Salama A, Imamdin A, Kalkhoran S, Lecour S, Perroud MW, Ntsekhe M, Sposito AC, Yellon DM. Effect of Remote Ischaemic Conditioning on the Inflammatory Cytokine Cascade of COVID-19 (RIC in COVID-19): a Randomized Controlled Trial. Cardiovasc Drugs Ther 2024; 38:433-445. [PMID: 36445625 PMCID: PMC9707178 DOI: 10.1007/s10557-022-07411-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Patients hospitalized with COVID-19 may develop a hyperinflammatory, dysregulated cytokine "storm" that rapidly progresses to acute respiratory distress syndrome, multiple organ dysfunction, and even death. Remote ischaemic conditioning (RIC) has elicited anti-inflammatory and cytoprotective benefits by reducing cytokines following sepsis in animal studies. Therefore, we investigated whether RIC would mitigate the inflammatory cytokine cascade induced by COVID-19. METHODS We conducted a prospective, multicentre, randomized, sham-controlled, single-blind trial in Brazil and South Africa. Non-critically ill adult patients with COVID-19 pneumonia were randomly allocated (1:1) to receive either RIC (intermittent ischaemia/reperfusion applied through four 5-min cycles of inflation (20 mmHg above systolic blood pressure) and deflation of an automated blood-pressure cuff) or sham for approximately 15 days. Serum was collected following RIC/sham administration and analyzed for inflammatory cytokines using flow cytometry. The endpoint was the change in serum cytokine concentrations. Participants were followed for 30 days. RESULTS Eighty randomized participants (40 RIC and 40 sham) completed the trial. Baseline characteristics according to trial intervention were overall balanced. Despite downward trajectories of all cytokines across hospitalization, we observed no substantial changes in cytokine concentrations after successive days of RIC. Time to clinical improvement was similar in both groups (HR 1.66; 95% CI, 0.938-2.948, p 0.08). Overall RIC did not demonstrate a significant impact on the composite outcome of all-cause death or clinical deterioration (HR 1.19; 95% CI, 0.616-2.295, p = 0.61). CONCLUSION RIC did not reduce the hypercytokinaemia induced by COVID-19 or prevent clinical deterioration to critical care. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04699227.
Collapse
Affiliation(s)
- Kishal Lukhna
- Division of Cardiology, Faculty of Health Sciences, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Helison R P do Carmo
- Atherosclerosis and Vascular Biology Laboratory, State University of Campinas, Campinas, Brazil
| | | | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Hayli Geffen
- Division of Cardiology, Faculty of Health Sciences, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Sara Giesz
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Pelin Golforoush
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Ticiane Gonçalez Bovi
- Atherosclerosis and Vascular Biology Laboratory, State University of Campinas, Campinas, Brazil
| | - Diana Gorag
- Atherosclerosis and Vascular Biology Laboratory, State University of Campinas, Campinas, Brazil
| | - Alan Salama
- Cape Heart Institute, University of Cape Town, Cape Town, South Africa
- The Royal Free Hospital, University College London, Pond St, London, NW3 2QG, UK
| | - Aqeela Imamdin
- Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - Siavash Kalkhoran
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Sandrine Lecour
- Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - Mauricio W Perroud
- Atherosclerosis and Vascular Biology Laboratory, State University of Campinas, Campinas, Brazil
| | - Mpiko Ntsekhe
- Division of Cardiology, Faculty of Health Sciences, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Andrei C Sposito
- Atherosclerosis and Vascular Biology Laboratory, State University of Campinas, Campinas, Brazil
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
2
|
Bell RM, Basalay M, Bøtker HE, Beikoghli Kalkhoran S, Carr RD, Cunningham J, Davidson SM, England TJ, Giesz S, Ghosh AK, Golforoush P, Gourine AV, Hausenloy DJ, Heusch G, Ibanez B, Kleinbongard P, Lecour S, Lukhna K, Ntsekhe M, Ovize M, Salama AD, Vilahur G, Walker JM, Yellon DM. Remote ischaemic conditioning: defining critical criteria for success-report from the 11th Hatter Cardiovascular Workshop. Basic Res Cardiol 2022; 117:39. [PMID: 35970954 PMCID: PMC9377667 DOI: 10.1007/s00395-022-00947-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 01/31/2023]
Abstract
The Hatter Cardiovascular Institute biennial workshop, originally scheduled for April 2020 but postponed for 2 years due to the Covid pandemic, was organised to debate and discuss the future of Remote Ischaemic Conditioning (RIC). This evolved from the large multicentre CONDI-2-ERIC-PPCI outcome study which demonstrated no additional benefit when using RIC in the setting of ST-elevation myocardial infarction (STEMI). The workshop discussed how conditioning has led to a significant and fundamental understanding of the mechanisms preventing cell death following ischaemia and reperfusion, and the key target cyto-protective pathways recruited by protective interventions, such as RIC. However, the obvious need to translate this protection to the clinical setting has not materialised largely due to the disconnect between preclinical and clinical studies. Discussion points included how to adapt preclinical animal studies to mirror the patient presenting with an acute myocardial infarction, as well as how to refine patient selection in clinical studies to account for co-morbidities and ongoing therapy. These latter scenarios can modify cytoprotective signalling and need to be taken into account to allow for a more robust outcome when powered appropriately. The workshop also discussed the potential for RIC in other disease settings including ischaemic stroke, cardio-oncology and COVID-19. The workshop, therefore, put forward specific classifications which could help identify so-called responders vs. non-responders in both the preclinical and clinical settings.
Collapse
Affiliation(s)
- R M Bell
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - M Basalay
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - H E Bøtker
- Aarhus University Hospital and Aarhus University, Aarhus, Denmark
| | - S Beikoghli Kalkhoran
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - R D Carr
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | | | - S M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - T J England
- Stroke, Division of Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - S Giesz
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - A K Ghosh
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - P Golforoush
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - A V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - D J Hausenloy
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
- CVMD, Duke-NUS, Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore
- Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taichung City, Taiwan
| | - G Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Duisburg, Germany
| | - B Ibanez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital & CIBERCV, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain
| | - P Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Duisburg, Germany
| | - S Lecour
- University of Cape Town, Cape Town, South Africa
| | - K Lukhna
- University of Cape Town, Cape Town, South Africa
| | - M Ntsekhe
- University of Cape Town, Cape Town, South Africa
| | - M Ovize
- INSERM U1060, CarMeN Laboratory, Université de Lyon, Groupement Hospitalier Est, Bâtiment B13, F-69500, Bron, France
| | | | - G Vilahur
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, CIBERCV, Barcelona, Spain
| | - J M Walker
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - D M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|