1
|
Camilli M, Viscovo M, Maggio L, Bonanni A, Torre I, Pellegrino C, Lamendola P, Tinti L, Teofili L, Hohaus S, Lanza GA, Ferdinandy P, Varga Z, Crea F, Lombardo A, Minotti G. Sodium-glucose cotransporter 2 inhibitors and the cancer patient: from diabetes to cardioprotection and beyond. Basic Res Cardiol 2025; 120:241-262. [PMID: 38935171 PMCID: PMC11790819 DOI: 10.1007/s00395-024-01059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/18/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i), a new drug class initially designed and approved for treatment of diabetes mellitus, have been shown to exert pleiotropic metabolic and direct cardioprotective and nephroprotective effects that extend beyond their glucose-lowering action. These properties prompted their use in two frequently intertwined conditions, heart failure and chronic kidney disease. Their unique mechanism of action makes SGLT2i an attractive option also to lower the rate of cardiac events and improve overall survival of oncological patients with preexisting cardiovascular risk and/or candidate to receive cardiotoxic therapies. This review will cover biological foundations and clinical evidence for SGLT2i modulating myocardial function and metabolism, with a focus on their possible use as cardioprotective agents in the cardio-oncology settings. Furthermore, we will explore recently emerged SGLT2i effects on hematopoiesis and immune system, carrying the potential of attenuating tumor growth and chemotherapy-induced cytopenias.
Collapse
Affiliation(s)
- Massimiliano Camilli
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy.
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168, Rome, Italy.
| | - Marcello Viscovo
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Maggio
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168, Rome, Italy
| | - Alice Bonanni
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168, Rome, Italy
| | - Ilaria Torre
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168, Rome, Italy
| | - Claudio Pellegrino
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Priscilla Lamendola
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Lorenzo Tinti
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168, Rome, Italy
| | - Luciana Teofili
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Stefan Hohaus
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gaetano Antonio Lanza
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168, Rome, Italy
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
- MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zoltan Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Filippo Crea
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
- Center of Excellence of Cardiovascular Sciences, Ospedale Isola Tiberina - Gemelli Isola, Rome, Italy
| | - Antonella Lombardo
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168, Rome, Italy
| | | |
Collapse
|
2
|
Yu PL, Yu Y, Li S, Mu BC, Nan MH, Pang M. Dapagliflozin in heart failure and type 2 diabetes: Efficacy, cardiac and renal effects, safety. World J Diabetes 2024; 15:1518-1530. [PMID: 39099807 PMCID: PMC11292345 DOI: 10.4239/wjd.v15.i7.1518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/12/2024] [Accepted: 05/14/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Heart failure (HF), especially HF with reduced ejection fraction (HFrEF), presents complex challenges, particularly in the aging population where it often coexists with type 2 diabetes mellitus (T2DM). AIM To analyze the effect of dapagliflozin treatment on cardiac, renal function, and safety in patients with HFrEF combined with T2DM. METHODS Patients with T2DM complicated with HFrEF who underwent treatment in our hospital from February 2018 to March 2023 were retrospectively analyzed as the subjects of this study. The propensity score matching method was used, and a total of 102 eligible samples were scaled. The clinical efficacy of the two groups was evaluated at the end of the treatment, comparing the results of blood glucose, insulin, cardiac function, markers of myocardial injury, renal function indexes, and 6-min walk test (6MWT) before and after the treatment. We compared the occurrence of adverse effects on the treatment process of the two groups of patients. The incidence of adverse outcomes in patients within six months of treatment was counted. RESULTS The overall clinical efficacy rate of patients in the study group was significantly higher than that of patients in the control group (P = 0.013). After treatment, the pancreatic beta-cell function index, left ventricular ejection fraction, and glomerular filtration rate of patients in the study group were significantly higher than control group (P < 0.001), while their fasting plasma glucose, 2-h postprandial glucose, glycosylated hemoglobin, insulin resistance index, left ventricular end-systolic diameter, left ventricular end-diastolic diameter, cardiac troponin I, creatine kinase-MB, N-terminal pro b-type natriuretic peptide, serum creatinine, and blood urea nitrogen were significantly lower than those of the control group. After treatment, patients in the study group had a significantly higher 6MWT than those in the control group (P < 0.001). Hypoglycemic reaction (P = 0.647), urinary tract infection (P = 0.558), gastrointestinal adverse effect (P = 0.307), respiratory disturbance (P = 0.558), and angioedema (P = 0.647) were not statistically different. There was no significant difference between the incidence of adverse outcomes between the two groups (P = 0.250). CONCLUSION Dapagliflozin significantly enhances clinical efficacy, cardiac and renal function, and ambulatory capacity in patients with HFrEF and T2DM without an increased risk of adverse effects or outcomes.
Collapse
Affiliation(s)
- Pei-Ling Yu
- The Second Department of Cardiology, The Second Affiliated Hospital of Liaoning Hospital of Traditional Chinese Medicine, Shenyang 110034, Liaoning Province, China
| | - You Yu
- The Second Department of Cardiology, The Second Affiliated Hospital of Liaoning Hospital of Traditional Chinese Medicine, Shenyang 110034, Liaoning Province, China
| | - Shuang Li
- The Second Department of Cardiology, The Second Affiliated Hospital of Liaoning Hospital of Traditional Chinese Medicine, Shenyang 110034, Liaoning Province, China
| | - Bai-Chen Mu
- The Second Department of Cardiology, The Second Affiliated Hospital of Liaoning Hospital of Traditional Chinese Medicine, Shenyang 110034, Liaoning Province, China
| | - Ming-Hua Nan
- The Second Department of Cardiology, The Second Affiliated Hospital of Liaoning Hospital of Traditional Chinese Medicine, Shenyang 110034, Liaoning Province, China
| | - Min Pang
- Department of Outpatient, The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110034, Liaoning Province, China
| |
Collapse
|
3
|
Li N, Chelu MG, Birnbaum Y. Dapagliflozin for Atrial Fibrillation. Cardiovasc Drugs Ther 2024; 38:1-3. [PMID: 38319469 PMCID: PMC11428186 DOI: 10.1007/s10557-024-07543-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/02/2024] [Indexed: 02/07/2024]
Affiliation(s)
- Na Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, USA
| | - Mihail G Chelu
- Department of Medicine (Section of Cardiology), Baylor College of Medicine, 7200 Cambridge Street, MS BCM620, Houston, TX, 77030, USA
| | - Yochai Birnbaum
- Department of Medicine (Section of Cardiology), Baylor College of Medicine, 7200 Cambridge Street, MS BCM620, Houston, TX, 77030, USA.
| |
Collapse
|