1
|
Iranmanesh F, Dapaah DY, Nyman JS, Willett TL. An improved linear systems model of hydrothermal isometric tension testing to aid in assessing bone collagen quality: Effects of ribation and type-2 diabetes. Bone 2024; 186:117139. [PMID: 38823567 PMCID: PMC12103735 DOI: 10.1016/j.bone.2024.117139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
This study sought to further develop and validate a previously proposed physics-based model that maps denaturation kinetics from differential scanning calorimetry (DSC) to the isometric tension generated during hydrothermal isometric tension (HIT) testing of collagenous tissues. The primary objectives of this study were to verify and validate two physics-based model parameters: α, which indicates the amount of instantaneous isometric tension developed per unit of collagen denaturation, and β, which captures the proportionality between temperature and the generated isometric tension post denaturation initiation. These parameters were used as measures of bone collagen quality, employing data from HIT and DSC testing of human bone collagen from two previous studies. Additionally, given the physical basis of the model, the study aimed to further validate Max.Slope, the rate of change in isometric tensile stress with change in temperature, as an independent measure of collagen network connectivity. Max.Slope has previously been positively correlated with measures of cortical bone fracture resistance. Towards this verification and validation, the hypotheses were a) that α would correlate strongly with HIT denaturation temperature, Td, and the enthalpy of melting (ΔH) from DSC, and b) that β would correlate positively and strongly with Max.Slope. The model was employed in the analysis of HIT-DSC data from the testing of demineralized bone collagen isolated from cadaveric human femurs in two prior studies. In one study, data were collected from HIT-DSC testing of cortical bone collagen from 74 donors. Among them, 38 had a history of type 2 diabetes +/- chronic kidney disease, while the remaining 36 had no history of T2D again with or without CKD. Cortical bone specimens were extracted from the lateral mid-shaft. The second study involved 15 donor femora, with four cortical bone specimens extracted from each. Of these four, two specimens underwent a 4-week incubation in 0.1 M ribose at 37 °C to induce non-enzymatic ribation and advanced glycation endproducts, while the other two served as non-ribated controls. The examination involved investigating correlations between the model parameters α and β and various measures, such as Max.Slope, Td, ΔH, age, and duration of type 2 diabetes. The results revealed positive correlations between the model parameter β and Max.Slope (r = 0.55-0.58). The parameter α was found to be associated with Td, but also sensitive to the shape of the HIT curve around Td resulting in difficulties with variability and interpretation. As a result, while both hypotheses are confirmed, Max.Slope and β are better indicators of bone collagen quality because they are measures of the connectivity or, more generally, the integrity of the bone collagen network.
Collapse
Affiliation(s)
- Faezeh Iranmanesh
- Composite Biomaterials System Lab, System Design Engineering Department, University of Waterloo, Ontario, Canada
| | - Daniel Y Dapaah
- Composite Biomaterials System Lab, System Design Engineering Department, University of Waterloo, Ontario, Canada
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, United States of America; United States Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, United States of America
| | - Thomas L Willett
- Composite Biomaterials System Lab, System Design Engineering Department, University of Waterloo, Ontario, Canada.
| |
Collapse
|
2
|
Łabuś W, Kitala D, Klama-Baryła A, Szapski M, Kraut M, Smętek W, Glik J, Kucharzewski M, Rojczyk E, Utrata-Wesołek A, Trzebicka B, Szeluga U, Sobota M, Poloczek R, Kamiński A. Influence of electron beam irradiation on extracellular matrix of the human allogeneic skin grafts. J Biomed Mater Res B Appl Biomater 2021; 110:547-563. [PMID: 34478207 DOI: 10.1002/jbm.b.34934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/29/2021] [Accepted: 08/22/2021] [Indexed: 12/14/2022]
Abstract
The nonviable allogeneic human skin grafts might be considered as the most suitable skin substitutes in the treatment of extensive and deep burns. However, in accordance to biological security such grafts require the final sterilization prior to clinical application. The aim of the study was to verify the influence of electron beam irradiation of three selected doses: 18, 25, and 35 kGy on the extracellular matrix of human skin. Prior to sterilization, the microbiological tests were conducted and revealed contamination in all examined cases. Individual groups were subjected to single electron beam radiation sterilization at proposed doses and then subjected to microbiological tests again. The results of microbiological testing performed for all irradiation doses used were negative. Only in the control group was a growth of microorganisms observed. The FTIR spectrometry tests were conducted followed by the histological evaluation and mechanical tests. In addition, cost analysis of radiation sterilization of individual doses was performed. The results of spectroscopic analysis, mechanical tests, and histological staining showed no significant changes in composition and characteristics of tested tissues after their irradiation, in comparison to control samples. The cost analysis has shown that irradiation with 18 kGy is the most cost-effective and 35 kGy is the least favorable. However, according to biological risk reduction, the recommended sterilization dose is 35 kGy, despite the higher price compared to the other doses tested.
Collapse
Affiliation(s)
- Wojciech Łabuś
- Dr Stanisław Sakiel Center for Burns Treatment, Siemianowice Śląskie, Poland
| | - Diana Kitala
- Dr Stanisław Sakiel Center for Burns Treatment, Siemianowice Śląskie, Poland
| | | | - Michał Szapski
- Dr Stanisław Sakiel Center for Burns Treatment, Siemianowice Śląskie, Poland.,Gyncentrum, Laboratory of Molecular Biology and Virology, Katowice, Poland
| | - Małgorzata Kraut
- Dr Stanisław Sakiel Center for Burns Treatment, Siemianowice Śląskie, Poland
| | - Wojciech Smętek
- Dr Stanisław Sakiel Center for Burns Treatment, Siemianowice Śląskie, Poland.,Warsaw University of Technology, Warsaw, Poland
| | - Justyna Glik
- Dr Stanisław Sakiel Center for Burns Treatment, Siemianowice Śląskie, Poland.,Department of Chronic Wounds Healing Management Chronic Wound Care, School of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marek Kucharzewski
- Dr Stanisław Sakiel Center for Burns Treatment, Siemianowice Śląskie, Poland.,Department of Descriptive and Topographic Anatomy, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Zabrze, Poland
| | - Ewa Rojczyk
- Department of Descriptive and Topographic Anatomy, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Zabrze, Poland
| | | | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Urszula Szeluga
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Michał Sobota
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Ryszard Poloczek
- Laboratory for Microscopic Examination "Diagno-Med", Siemianowice Slaskie, Poland
| | - Artur Kamiński
- Department of Transplantology and Central Tissue Bank, Medical University of Warsaw, Warszawa, Poland.,National Centre for Tissue and Cell Banking, Warszawa, Poland
| |
Collapse
|
3
|
El-Hansi NS, Sallam AM, Talaat MS, Said HH, Khalaf MA, Desouky OS. Biomechanical properties enhancement of gamma radiation-sterilized cortical bone using antioxidants. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:571-581. [PMID: 32444954 DOI: 10.1007/s00411-020-00848-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Gamma radiation sterilization is the method used by the majority of tissue banks to reduce disease transmission from infected donors to recipients through bone allografts. However, many studies have reported that gamma radiation impairs the structural and mechanical properties of bone via formation of free radicals, the effect of which could be reduced using free radical scavengers. The aim of this study is to examine the radioprotective role of hydroxytyrosol (HT) and alpha lipoic acid (ALA) on the mechanical properties of gamma-sterilized cortical bone of bovine femur, using three-point bending and microhardness tests. Specimens of bovine femurs were soaked in ALA and HT for 3 and 7 days, respectively, before being exposed to 35-kGy gamma radiation. In unirradiated samples, both HT and ALA pre-treatment improved the cortical bone bending plastic properties (maximum bending stress, maximum bending strain, and toughness) without affecting microhardness. Irradiation resulted in a drastic reduction of the plastic properties and an increased microhardness. ALA treatment before irradiation alleviated the aforementioned reductions in maximum bending stress, maximum bending strain, and toughness. In addition, under ALA treatment, the microhardness was not increased after irradiation. For HT treatment, similar effects were found. In conclusion, the results indicate that HT and ALA can be used before irradiation to enhance the mechanical properties of gamma-sterilized bone allografts.
Collapse
Affiliation(s)
- Naglaa S El-Hansi
- Biophysics Lab, Radiation Physics Department, (NCRRT), Atomic Energy Authority (AEA), Nasr City, Cairo, Egypt
| | - Abdelsattar M Sallam
- Biophysics Branch, Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mona S Talaat
- Biophysics Branch, Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hoda H Said
- Biophysics Lab, Radiation Physics Department, (NCRRT), Atomic Energy Authority (AEA), Nasr City, Cairo, Egypt.
| | - Mahmoud A Khalaf
- Microbiology Department (NCRRT), Atomic Energy Authority (AEA), Nasr City, Cairo, Egypt
| | - Omar S Desouky
- Biophysics Lab, Radiation Physics Department, (NCRRT), Atomic Energy Authority (AEA), Nasr City, Cairo, Egypt
| |
Collapse
|