1
|
Shin M, Pelletier MH, Lovric V, Walsh WR, Martens PJ, Kruzic JJ, Gludovatz B. Effect of gamma irradiation and supercritical carbon dioxide sterilization with Novakill™ or ethanol on the fracture toughness of cortical bone. J Biomed Mater Res B Appl Biomater 2024; 112:e35356. [PMID: 38247241 DOI: 10.1002/jbm.b.35356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 09/15/2023] [Accepted: 11/11/2023] [Indexed: 01/23/2024]
Abstract
Sterilization of structural bone allografts is a critical process prior to their clinical use in large cortical bone defects. Gamma irradiation protocols are known to affect tissue integrity in a dose dependent manner. Alternative sterilization treatments, such as supercritical carbon dioxide (SCCO2 ), are gaining popularity due to advantages such as minimal exposure to denaturants, the lack of toxic residues, superior tissue penetration, and minor impacts on mechanical properties including strength and stiffness. The impact of SCCO2 on the fracture toughness of bone tissue, however, remains unknown. Here, we evaluate crack initiation and growth toughness after 2, 6, and 24 h SCCO2 -treatment using Novakill™ and ethanol as additives on ~11 samples per group obtained from a pair of femur diaphyses of a canine. All mechanical testing was performed at ambient air after 24 h soaking in Hanks' balanced salt solution (HBSS). Results show no statistically significant difference in the failure characteristics of the Novakill™-treated groups whereas crack growth toughness after 6 and 24 h of treatment with ethanol significantly increases by 37% (p = .010) and 34% (p = .038), respectively, compared to an untreated control group. In contrast, standard 25 kGy gamma irradiation causes significantly reduced crack growth resistance by 40% (p = .007) compared to untreated bone. FTIR vibrational spectroscopy, conducted after testing, reveals a consistent trend of statistically significant differences (p < .001) with fracture toughness. These trends align with variations in the ratios of enzymatic mature to immature crosslinks in the collagen structure, suggesting a potential association with fracture toughness. Additional Raman spectroscopy after testing shows a similar trend with statistically significant differences (p < .005), which further supports that collagen structural changes occur in the SCF-treated groups with ethanol after 6 and 24 h. Our work reveals the benefits of SCCO2 sterilization compared to gamma irradiation.
Collapse
Affiliation(s)
- Mihee Shin
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, Australia
| | - Matthew H Pelletier
- Surgical and Orthopedic Research Laboratories, Prince of Wales Clinical School, University of New South Wales (UNSW Sydney), Sydney, New South Wales, Australia
| | - Vedran Lovric
- Surgical and Orthopedic Research Laboratories, Prince of Wales Clinical School, University of New South Wales (UNSW Sydney), Sydney, New South Wales, Australia
| | - William R Walsh
- Surgical and Orthopedic Research Laboratories, Prince of Wales Clinical School, University of New South Wales (UNSW Sydney), Sydney, New South Wales, Australia
| | - Penny J Martens
- Graduate School of Biomedical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, Australia
| | - Jamie J Kruzic
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, Australia
| | - Bernd Gludovatz
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Nikolaeva N, Rozanov V, Chernyaev A, Matveychuk I, Makarova M. The Influence of Combined Sterilization Factors on the Structural and Functional Characteristics of Bone Implants. Int J Mol Sci 2023; 24:14426. [PMID: 37833874 PMCID: PMC10573022 DOI: 10.3390/ijms241914426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The results of a comprehensive study of the patterns of structural and functional changes in bone tissue samples after combined (ozone + radiation) sterilization are presented. The study used a different approach to the sterilization process with selective ozone or radiation exposure and an integral, combined one, based on a combined ozone-oxygen treatment of bone samples at the first stage and radiation at the second. The methods of IR spectroscopy, scanning electron microscopy with a prefix for elemental analysis, atomic force microscopy, and mechanical analysis with determination of elastic-plastic properties (Vickers microhardness index) were used in the work. It is shown that the ozone exposure used at the first stage of the combined sterilization process of bone implants does not lead to negative consequences with respect to their properties and characteristics. The results obtained serve as a scientific and methodological basis for the further improvement and optimization of sterilization technologies (including combined). They also offer a comprehensive justification of the parameters of sterilization regimes to ensure the safety of using bone implants during reconstructive operations, minimizing structural and functional changes in bone matter, and creating effective health-saving technologies and the possibility of using them for various biomedical applications.
Collapse
Affiliation(s)
- Nadezhda Nikolaeva
- Radiation Technologies Laboratory, Institute of Physics and Technology, M.K. Ammosov North-Eastern Federal University, 677000 Yakutsk, Russia; (N.N.); (A.C.)
| | - Vladimir Rozanov
- Radiation Technologies Laboratory, Institute of Physics and Technology, M.K. Ammosov North-Eastern Federal University, 677000 Yakutsk, Russia; (N.N.); (A.C.)
- Physical Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
- Scientific and Educational-Methodical Center of Biomedical Technology, The All-Russian Research Institute of Medicinal and Aromatic Plants, 117216 Moscow, Russia;
| | - Alexander Chernyaev
- Radiation Technologies Laboratory, Institute of Physics and Technology, M.K. Ammosov North-Eastern Federal University, 677000 Yakutsk, Russia; (N.N.); (A.C.)
- Physical Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Igor Matveychuk
- Scientific and Educational-Methodical Center of Biomedical Technology, The All-Russian Research Institute of Medicinal and Aromatic Plants, 117216 Moscow, Russia;
| | - Milena Makarova
- Radiation Technologies Laboratory, Institute of Physics and Technology, M.K. Ammosov North-Eastern Federal University, 677000 Yakutsk, Russia; (N.N.); (A.C.)
| |
Collapse
|
3
|
Mansour RN, Karimizade A, Enderami SE, Abasi M, Talebpour Amiri F, Jafarirad A, Mellati A. The effect of source animal age, decellularization protocol, and sterilization method on bovine acellular dermal matrix as a scaffold for wound healing and skin regeneration. Artif Organs 2023; 47:302-316. [PMID: 36161305 DOI: 10.1111/aor.14415] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Healing the full-thickness skin wounds has remained a challenge. One of the most frequently used grafts for skin regeneration is xenogeneic acellular dermal matrices (ADMs), including bovine ADMs. This study investigated the effect of the source animal age, enzymatic versus non-enzymatic decellularization protocols, and gamma irradiation versus ethylene oxide (EO) sterilization on the scaffold. METHODS ADMs were prepared using the dermises of fetal bovine or calf skins. All groups were decellularized through chemical and mechanical methods, unless T-FADM samples, in which an enzymatic step was added to the decellularization protocol. All groups were sterilized with ethylene oxide (EO), except G-FADM which was sterilized using gamma irradiation. The scaffolds were characterized through scanning electron microscopy, differential scanning calorimetry, tensile test, MTT assay, DNA quantification, and real-time PCR. The performance of the ADMs in wound treatment was also evaluated macroscopically and histologically. RESULTS All ADMs were effectively decellularized. In comparison to FADM (EO-sterilized fetal ADM), morphological, and mechanical properties of G-FADM, T-FADM, and CADM (EOsterilized calf ADM) were changed to different extents. In addition, the CADM and G-FADM were thermally more stable than the FADM and T-FADM. Although all ADMs were noncytotoxic, the wounds of the FADM, T-FADM, and G-FADM groups were contracted to almost 30.0% of the original area on day 7, significantly faster than the CADM (17.5% ± 1.7) and control (12.2% ± 1.59) groups. However, by day 21, all ADMs were mostly closed except for the untreated group (60.1 ± 1.8). CONCLUSION Altogether, fetal source and EO-sterilized samples performed better than calf source and gamma-sterilized samples unless in some mechanical properties. There was no added value in using enzymatic treatment during the decellularization process. Our results suggest that the age, decellularization, and sterilization methods of animal source should be selected based on the clinical requirements.
Collapse
Affiliation(s)
- Reyhaneh Nassiri Mansour
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ayoob Karimizade
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mozhgan Abasi
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Abdolreza Jafarirad
- Department of Surgery, Zare Psychiatry and Burn Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amir Mellati
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
4
|
Arthur Augusto de Castro P, Augusto Dias D, Del-Valle M, Noronha Veloso M, Sebastiana Ribeiro Somessari E, Maria Zezell D. Assessment of bone dose response using ATR-FTIR spectroscopy: A potential method for biodosimetry. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 273:120900. [PMID: 35220053 DOI: 10.1016/j.saa.2022.120900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
The health care application of ionizing radiation has expanded worldwide during the last several decades. While the health impacts of ionizing radiation improved patient care, inaccurate handling of radiation technology is more prone to potential health risks. Therefore, the present study characterizes the bone dose response using bovine femurs from a slaughterhouse. The gamma irradiation was designed into low-doses (0.002, 0.004 and 0.007 kGy) and high-doses (1, 10, 15, 25, 35, 50 and 60 kGy), all samples received independent doses. The combination of FTIR spectroscopy and PLS-DA allows the detection of differences in the control group and the ionizing dose, as well as distinguishing between high and low radiation doses. In this way, our findings contribute to future studies of the dose response to track ionizing radiation effects on biological systems.
Collapse
Affiliation(s)
| | - Derly Augusto Dias
- Center for Lasers and Applications, Nuclear and Energy Research Institute, IPEN - CNEN, 05508-000, Brazil
| | - Matheus Del-Valle
- Center for Lasers and Applications, Nuclear and Energy Research Institute, IPEN - CNEN, 05508-000, Brazil
| | - Marcelo Noronha Veloso
- Center for Lasers and Applications, Nuclear and Energy Research Institute, IPEN - CNEN, 05508-000, Brazil.
| | | | - Denise Maria Zezell
- Center for Lasers and Applications, Nuclear and Energy Research Institute, IPEN - CNEN, 05508-000, Brazil.
| |
Collapse
|
5
|
Waletzko-Hellwig J, Pohl C, Riese J, Schlosser M, Dau M, Engel N, Springer A, Bader R. Effect of High Hydrostatic Pressure on Human Trabecular Bone Regarding Cell Death and Matrix Integrity. Front Bioeng Biotechnol 2021; 9:730266. [PMID: 34458245 PMCID: PMC8387795 DOI: 10.3389/fbioe.2021.730266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
The reconstruction of critical size bone defects is still clinically challenging. Even though the transplantation of autologous bone is used as gold standard, this therapy is accompanied by donor site morbidities as well as tissue limitations. The alternatively used allografts, which are devitalized due to thermal, chemical or physical processing, often lose their matrix integrity and have diminished biomechanical properties. High Hydrostatic Pressure (HHP) may represent a gentle alternative to already existing methods since HHP treated human osteoblasts undergo cell death and HHP treated bone cylinders maintain their mechanical properties. The aim of this study was to determine the biological effects caused by HHP treatment regarding protein/matrix integrity and type of cell death in trabecular bone cylinders. Therefore, different pressure protocols (250 and 300 MPa for 10, 20 and 30 min) and end point analysis such as quantification of DNA-fragmentation, gene expression, SDS-PAGE, FESEM analysis and histological staining were performed. While both protein and matrix integrity was preserved, molecular biological methods showed an apoptotic differentiation of cell death for lower pressures and shorter applications (250 MPa for 10 and 20 min) and necrotic differentiation for higher pressures and longer applications (300 MPa for 30 min). This study serves as a basis for further investigation as it shows that HHP successfully devitalizes trabecular bone cylinders.
Collapse
Affiliation(s)
- Janine Waletzko-Hellwig
- Department of Oral, Maxillofacial and Plastic Surgery, Rostock University Medical Center, Rostock, Germany
| | - Christopher Pohl
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medical Center Greifswald, Greifswald, Germany
| | - Janik Riese
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medical Center Greifswald, Greifswald, Germany
| | - Michael Schlosser
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medical Center Greifswald, Greifswald, Germany
| | - Michael Dau
- Department of Oral, Maxillofacial and Plastic Surgery, Rostock University Medical Center, Rostock, Germany
| | - Nadja Engel
- Department of Oral, Maxillofacial and Plastic Surgery, Rostock University Medical Center, Rostock, Germany
| | - Armin Springer
- Medical Biology and Electron Microscopy Center, Rostock University Medical Center, Rostock, Germany
| | - Rainer Bader
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|