1
|
Guan G, Zhang Y, Qian J, Wang F, Qu L, Zou B. Advancements in the Research on the Preparation of Isoamyl Acetate Catalyzed by Immobilized Lipase. MATERIALS (BASEL, SWITZERLAND) 2025; 18:2476. [PMID: 40508473 PMCID: PMC12155815 DOI: 10.3390/ma18112476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2025] [Revised: 05/19/2025] [Accepted: 05/21/2025] [Indexed: 06/16/2025]
Abstract
This study aims to delve into the application potential of immobilized lipases in the catalytic synthesis of isoamyl acetate. Through a comparative analysis of various immobilization methods, including physical adsorption, encapsulation, covalent binding, and crosslinking, along with the utilization of nanomaterials, such as magnetic nanoparticles, mesoporous silica SBA-15, and covalent organic frameworks (COFs) as carriers, the study systematically evaluates their enhancing effects on lipase catalytic performance. Additionally, solvent engineering strategies, encompassing the introduction of organic solvents, supercritical fluids, ionic liquids, and deep eutectic solvents, are employed to intensify the enzymatic catalytic process. These approaches effectively improve mass transfer efficiency, activate enzyme molecules, and safeguard enzyme structural stability, thereby significantly elevating the synthesis efficiency and yield of isoamyl acetate. Consequently, this research provides solid scientific rationale and technical support for the industrial production of flavor ester compounds.
Collapse
Affiliation(s)
- Guoqiang Guan
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China; (G.G.); (Y.Z.); (J.Q.); (F.W.)
| | - Yuyang Zhang
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China; (G.G.); (Y.Z.); (J.Q.); (F.W.)
| | - Jingya Qian
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China; (G.G.); (Y.Z.); (J.Q.); (F.W.)
| | - Feng Wang
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China; (G.G.); (Y.Z.); (J.Q.); (F.W.)
| | - Liang Qu
- School of Food and Biological Engineering, Wuhu Institute of Technology, Wuhu 241003, China;
| | - Bin Zou
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China; (G.G.); (Y.Z.); (J.Q.); (F.W.)
| |
Collapse
|
2
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
3
|
Affiliation(s)
- Toshiyuki Itoh
- Department
of Chemistry and Biotechnology, Graduate School of Engineering and ‡Center for Research
on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan
| |
Collapse
|
4
|
Lipase-Catalyzed Synthesis of Indolyl 4H-Chromenes via a Multicomponent Reaction in Ionic Liquid. Catalysts 2017. [DOI: 10.3390/catal7060185] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
5
|
Matsubara Y, Kadotani S, Nishihara T, Hikino Y, Fukaya Y, Nokami T, Itoh T. Phosphonium alkyl PEG sulfate ionic liquids as coating materials for activation ofBurkholderia cepacialipase. Biotechnol J 2015; 10:1944-51. [DOI: 10.1002/biot.201500413] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/23/2015] [Accepted: 10/19/2015] [Indexed: 01/17/2023]
|