1
|
Bourgade B, Xie H, Lindblad P, Stensjö K. Development of a CRISPR activation system for targeted gene upregulation in Synechocystis sp. PCC 6803. Commun Biol 2025; 8:772. [PMID: 40399557 PMCID: PMC12095680 DOI: 10.1038/s42003-025-08164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 05/02/2025] [Indexed: 05/23/2025] Open
Abstract
The photosynthetic cyanobacterium Synechocystis sp. PCC 6803 offers a promising sustainable solution for simultaneous CO2 fixation and compound bioproduction. While various heterologous products have now been synthesised in Synechocystis, limited genetic tools hinder further strain engineering for efficient production. Here, we present a versatile CRISPR activation (CRISPRa) system for Synechocystis, enabling robust multiplexed activation of both heterologous and endogenous targets. Following tool characterisation, we applied CRISPRa to explore targets influencing biofuel production, specifically isobutanol (IB) and 3-methyl-1-butanol (3M1B), demonstrating a proof-of-concept approach to identify key reactions constraining compound biosynthesis. Notably, individual upregulation of target genes, such as pyk1, resulted in up to 4-fold increase in IB/3M1B formation while synergetic effects from multiplexed targeting further enhanced compound production, highlighting the value of this tool for rapid metabolic mapping. Interestingly, activation efficacy did not consistently predict increases in compound formation, suggesting complex regulatory interactions influencing bioproduction. This work establishes a CRISPRa system for targeted upregulation in cyanobacteria, providing an adaptable platform for high-throughput screening, metabolic pathway optimisation and functional genomics. Our CRISPRa system provides a crucial advance in the genetic toolbox available for Synechocystis and will facilitate innovative applications in both fundamental research and metabolic engineering in cyanobacteria.
Collapse
Affiliation(s)
- Barbara Bourgade
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Hao Xie
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Stensjö
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Hou Y, Wang W, Liu Z, Yu L, Zhao L. Boosting microalgae-based carbon sequestration with the artificial CO 2 concentration system. Crit Rev Biotechnol 2025:1-19. [PMID: 40374568 DOI: 10.1080/07388551.2025.2498464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/16/2024] [Accepted: 04/05/2025] [Indexed: 05/17/2025]
Abstract
Global warming caused by CO2 emissions has been considered as one of the major challenges of this century. In an endeavor to control and reduce CO2 emissions, a series of Carbon dioxide Capture, Utilization, and Storage (CCUS) technologies have been developed specifically for the sequestration of CO2 from atmospheric air. Microalgae, as versatile and universal photosynthetic microorganisms, represent a promising avenue for biological CO2 sequestration. Nevertheless, further advancements are necessary to optimize microalgae-based carbon sequestration technology in terms of light reaction and dark reaction. This review discusses the current status of microalgae-based artificial CO2 sequestration technique, with a particular focus on the selection of CO2-resistant species, optimization of cultivation for CO2 sequestration, design of carbon concentration reactor, and the potential of synthetic biology to enhance CO2 solubility and biofixation efficiency. Furthermore, a discussion of Life cycle assessment and Techno-economic analysis regarding microalgae-based carbon capture was performed. The aim of this comprehensive review is to stimulate further research into microalgae-based CO2 sequestration, addressing challenges and opportunities for future development.
Collapse
Affiliation(s)
- Yuyong Hou
- State Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenqiao Wang
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Liu
- State Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Longjiang Yu
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Zhao
- State Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| |
Collapse
|
3
|
Yu J, Ding B, Li R, Chen X, Yin D, Song M, Ye X. The efficient capture of polysaccharides in Tetradesmus obliquus of indole-3-acetic acid coupling sludge extraction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168963. [PMID: 38065504 DOI: 10.1016/j.scitotenv.2023.168963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/26/2023] [Accepted: 11/26/2023] [Indexed: 12/17/2023]
Abstract
Polysaccharide is an important biomass of algae. The sludge extract is rich in organic substances, which can be used by algae for biomass growth and high-value biomass synthesis, but its organic toxicity has an inhibitory effect on algae. To overcome inhibition and improve polysaccharide enrichment, Tetradesmus obliquus was cultured with sludge extract with different indole-3-acetic acid (IAA) concentrations. Within 30 days of the culture cycle, T. obliquus showed in good condition at the IAA dosage content of 10-6 M, the maximum cell density and dry weight were respectively (106.78 ± 2.20) × 106 cell/mL and 2.941 ± 0.067 g/L while the contents of chlorophyll-a, chlorophyll-b, and carotenoid were 1.79, 1.91 and 2.80 times that of the blank group, respectively. The highest polysaccharide accumulation was obtained under this culture condition, reaching 533.15 ± 21.11 mg/L on the 30th day, which was 2.49 times that in the blank group. By FT-IR and NMR analysis, it was found that the polysaccharides of T. obliquus were sulfated polysaccharide with glucose and rhamnose as the main monosaccharides. Proteomic showed that the up-regulation of A0A383WL26 and A0A383WLM8 enhanced the light trapping ability, and A0A383WMJ2 enhanced the accumulation of NADPH. The up-regulation of A0A383WHD5 and A0A383WAY6 indicated that IAA culture could repair the damage caused by sludge toxicity, thus promoting the accumulation of biomass. The above findings provided new insights into the mechanism of sludge toxicity removal of T. obliquus and the enhancement of the polysaccharide accumulation effect under different concentrations of IAA.
Collapse
Affiliation(s)
- Jiayu Yu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Biao Ding
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Renjie Li
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiurong Chen
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Danning Yin
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Meijing Song
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyun Ye
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Yuan L, Qin YL, Zou ZC, Appiah B, Huang H, Yang ZH, Qun C. Enhancing intracellular NADPH bioavailability through improving pentose phosphate pathway flux and its application in biocatalysis asymmetric reduction reaction. J Biosci Bioeng 2022; 134:528-533. [PMID: 36224065 DOI: 10.1016/j.jbiosc.2022.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/27/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022]
Abstract
The intracellular NAD(P)H insufficiency is the key factor which limits the reduced product (such as chiral alcohols) synthesis by whole cell biocatalysis or microbial cell factory. In this paper, we reported a novel solution to increase NADPH supply through strengthening the pentose phosphate pathway (PPP) flux with overexpression of extra zwf (gene for glucose 6-phosphatedehydrogenase) and glk (gene for glucokinase) by recombinant Escherichia coli BL21(DE3)/pETDuet-1-glk-zwf and pET28a-bccr containing a carbonyl reductase gene bccr. The amount of intracellular NADPH was significantly increased from 150.3 μmol/L to 681.8 μmol/L after strengthening the PPP flux, which was 4.5-fold to that of the control. It was applied to improve the asymmetric reduction of 4-chloroacetoacetate to ethyl S-4-chloro-3-hydroxybutylate catalyzed by the BcCR, which increased the reaction yield 2.8-fold to the control. This strategy provides a new way to increase NADPH supply in E. coli cell factories.
Collapse
Affiliation(s)
- Lin Yuan
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yan-Li Qin
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Zhi-Cheng Zou
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Bright Appiah
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Hao Huang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Zhong-Hua Yang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Can Qun
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| |
Collapse
|
5
|
Du HJ, Luo W, Appiah B, Zou ZC, Yang ZH, Zeng R, Luo L. Promotion of the Asymmetric Reduction of Prochiral Ketone with Recombinant E. coli Through Strengthening Intracellular NADPH Supply by Modifying EMP and Introducing NAD Kinase. Catal Letters 2021. [DOI: 10.1007/s10562-020-03490-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Wang N, Xu Y, Peng C, Wang X, Wei Y, Li K, Wang S, Xu A, Gao J. Identification of a newly isolated Rhodotorula mucilaginosa NQ1 and its development for the synthesis of bulky carbonyl compounds by whole-cell bioreduction. Lett Appl Microbiol 2020; 72:399-407. [PMID: 33217003 DOI: 10.1111/lam.13431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 11/29/2022]
Abstract
A strain NQ1, which showed efficient asymmetric reduction of 3,5-bis(trifluoromethyl) acetophenone (BTAP) to enantiopure (S)-[3,5-bis(trifluoromethyl)phenyl]ethanol ((S)-BTPE), which is the key intermediate for the synthesis of a receptor antagonist and antidepressant, was isolated from a soil sample. Based on its morphological and internal transcribed spacer sequence, the strain NQ1 was identified to be Rhodotorula mucilaginosa NQ1. Some key reaction parameters involved in the bioreduction catalyzed by whole cells of R. mucilaginosa NQ1 were subsequently optimized, and the optimized conditions for the synthesis of (S)-BTPE were determined to be as follows: 5·0 ml phosphate buffer (200 mmol l-1 , pH 7·0), 80 mmol l-1 of BTAP, 250 g (wet weight) l-1 of resting cell, 35 g l-1 of glucose and a reaction for 18 h at 30°C and 180 rev min-1 . The strain NQ1 exhibited a best yield of 99% and an excellent enantiomeric excess of 99% for the preparation of (S)-BTPE under the above optimal conditions, and could also asymmetrically reduce a variety of bulky prochiral carbonyl compounds to their corresponding optical hydroxyl compound with excellent enantioselectivity. These results indicated that R. mucilaginosa NQ1 had a good capacity to reduce BTAP to its corresponding (S)-BTPE, and might be a new potential biocatalyst for the production of valuable chiral hydroxyl compounds in industry.
Collapse
Affiliation(s)
- N Wang
- School of Life Science, Hunan University of Science and Technology, Xiangtan, People's Republic of China.,Hunan key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Xiangtan, People's Republic of China
| | - Y Xu
- School of Life Science, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - C Peng
- School of Life Science, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - X Wang
- School of Life Science, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - Y Wei
- School of Life Science, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - K Li
- School of Life Science, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - S Wang
- School of Life Science, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - A Xu
- School of Life Science, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - J Gao
- School of Life Science, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| |
Collapse
|
7
|
Wang N, Luo Z, Li K, Xu Y, Peng C. Identification of a newly isolated Sphingomonas sp. LZ1 and its application to biosynthesize chiral alcohols. J GEN APPL MICROBIOL 2020; 66:289-296. [PMID: 32741888 DOI: 10.2323/jgam.2019.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A strain LZ1, which showed efficient asymmetric reduction of 3,5-bis(trifluoromethyl) acetophenone to enantiopure (S)-[3,5-bis(trifluoromethyl)phenyl]ethanol, which is the key intermediate for the synthesis of a receptor antagonist and antidepressant, was isolated from a soil sample. Based on its morphological, 16S rDNA sequence, and phylogenetic analysis, the strain LZ1 was identified to be Sphingomonas sp. LZ1. To our knowledge, this is the first reported case of the species Sphingomonas exhibiting stricter S-enantioselectivity and its use for the asymmetric reduction of 3,5-bis(trifluoromethyl) acetophenone. Some key reaction parameters involved in the bioreduction catalyzed by whole cells of Sphingomonas sp. LZ1 were subsequently optimized, and the optimized conditions for the synthesis of (S)-[3,5-bis(trifluoromethyl)phenyl]ethanol were determined to be as follows: phosphate buffer pH 7.5, 70 mM of 3,5-bis(trifluoromethyl) acetophenone, 30 g/L of glucose as a co-substrate, 300 g (wet weight)/L of resting cell as the biocatalyst, and a reaction for 24 h at 30°C and 180 rpm. Under the above conditions, a best yield of 94% and an excellent enantiomeric excess of 99.6% were obtained, respectively. Sphingomonas sp. LZ1 could also asymmetrically reduce a variety of prochiral ketones to their corresponding optical alcohols with excellent enantioselectivity. These results indicated that Sphingomonas sp. LZ1 had a remarkable capacity to reduce 3,5-bis(trifluoromethyl)acetophenone to its corresponding (S)-[3,5-bis(trifluoromethyl)phenyl]ethanol, and might be a new potential biocatalyst for the production of valuable chiral alcohols in industry.
Collapse
Affiliation(s)
- Nengqiang Wang
- School of Life Science, Hunan University of Science and Technology.,Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization
| | - Zhen Luo
- School of Life Science, Hunan University of Science and Technology
| | - Kaiqin Li
- School of Life Science, Hunan University of Science and Technology
| | - Yingcui Xu
- School of Life Science, Hunan University of Science and Technology
| | - Cheng Peng
- School of Life Science, Hunan University of Science and Technology
| |
Collapse
|
8
|
High-Efficient Production of ( S)-1-[3,5-Bis(trifluoromethyl)phenyl]ethanol via Whole-Cell Catalyst in Deep-Eutectic Solvent-Containing Micro-Aerobic Medium System. Molecules 2020; 25:molecules25081855. [PMID: 32316570 PMCID: PMC7221904 DOI: 10.3390/molecules25081855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 01/12/2023] Open
Abstract
The ratio of substrate to catalyst (S/C) is a prime target for the application of asymmetric production of enantiomerically enriched intermediates by whole-cell biocatalyst. In the present study, an attractive increase in S/C was achieved in a natural deep-eutectic solvent (NADES) containing reaction system under microaerobic condition for high production of (S)-1-[3,5-bis(trifluoromethyl)phenyl]ethanol ((S)-3,5-BTPE) with Candida tropicalis 104. In PBS buffer (0.2 M, pH 8.0) at 200 rpm and 30 °C, 79.5 g (Dry Cell Weight, DCW)/L C. tropicalis 104 maintained the same yield of 73.7% for the bioreduction of 3,5-bis(trifluoromethyl)acetophenone (BTAP) under an oxygen-deficient environment compared with oxygen-sufficient conditions, while substrate load increased 4.0-fold (from 50 mM to 200 mM). Furthermore, when choline chloride:trehalose (ChCl:T, 1:1 molar ratio) was introduced into the reaction system for its versatility of increasing cell membrane permeability and declining BTAP cytotoxicity to biocatalyst, the yields were further increased to 86.2% under 200 mM BTAP, or 72.9% at 300 mM BTAP. After the optimization of various reaction parameters involved in the bioreduction, and the amount of biocatalyst and maltose co-substrate remained 79.5 g (DCW)/L and 50 g/L, the S/C for the reduction elevated 6.3 times (3.8 mM/g versus 0.6 mM/g). By altering the respiratory pattern of the whole-cell biocatalyst and exploiting the ChCl:T-containing reaction system, the developed strategy exhibits an attractive potential for enhancing catalytic efficiency of whole-cell-mediated reduction, and provides valuable insight for the development of whole-cell catalysis.
Collapse
|
9
|
Luo W, Du HJ, Bonku EM, Hou YL, Li LL, Wang XQ, Yang ZH. An Alkali-tolerant Carbonyl Reductase from Bacillus subtilis by Gene Mining: Identification and Application. Catal Letters 2019. [DOI: 10.1007/s10562-019-02873-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
A Novel Thermal Stable Carbonyl Reductase from Bacillus cereus by Gene Mining as Biocatalyst for β-Carbonyl Ester Asymmetric Reduction Reaction. Catal Letters 2019. [DOI: 10.1007/s10562-018-2645-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Sengupta A, Sunder AV, Sohoni SV, Wangikar PP. The effect of CO 2 in enhancing photosynthetic cofactor recycling for alcohol dehydrogenase mediated chiral synthesis in cyanobacteria. J Biotechnol 2018; 289:1-6. [PMID: 30412731 DOI: 10.1016/j.jbiotec.2018.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/16/2018] [Accepted: 11/04/2018] [Indexed: 11/17/2022]
Abstract
The light harvesting photosystem in cyanobacteria offers a potential pathway for the regeneration of the nicotinamide cofactor NADPH, thereby facilitating the application of cyanobacteria as excellent whole cell biocatalysts in oxidoreductase-mediated biotransformation. The use of cyanobacterial metabolism for cofactor recycling improves the atom economy of the process compared to the commonly employed enzyme-coupled cofactor recycling using enzymes such as glucose dehydrogenase. Here we report the asymmetric conversion of acetophenone to chiral 1-phenylethanol by recombinant Synechococcus elongatus PCC 7942 whole cell biocatalyst that expresses the NADPH dependent L. kefir alcohol dehydrogenase. Besides light, it was observed that carbon dioxide levels play a critical role in improving the bioconversion efficiency possibly due to the enhanced growth rate and improved cofactor availability at elevated CO2 levels. Complete reduction of acetophenone to optically pure (R)-1-phenylethanol at 99% enantiomeric excess was achieved within 6 h with a relatively low cell density of 0.66 g/l by coupling optimum light and CO2 levels and without the need for a co-substrate.
Collapse
Affiliation(s)
- Annesha Sengupta
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 India
| | - Avinash Vellore Sunder
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 India
| | - Sujata V Sohoni
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 India
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 India; DBT-Pan IIT Centre for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai 400076 India; Wadhwani Research Centre for Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 India.
| |
Collapse
|