1
|
Du S, Cao S, Chen W, Xi J. Fibrous catalyst based on atomic Pd and N-doped holey graphene functionalized cotton fiber for continuous-flow reaction. Int J Biol Macromol 2024; 280:136049. [PMID: 39332556 DOI: 10.1016/j.ijbiomac.2024.136049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/14/2024] [Accepted: 09/25/2024] [Indexed: 09/29/2024]
Abstract
Continuous-flow catalysis bridges the gap between bench-scale laboratories and production-scale factories and thus should be a green and promising technology for the manufacture of value-added chemicals. Here, we present the construction of a continuous-flow catalytic system by integrating a tubular reactor with novel catalytic fibers, which are comprised of single-atomic Pd (Pd1) and nitrogen-doped holey graphene (NHG) functionalized cotton fibers (CFs). Due to the loosely packed structure, highly exposed dual-active sites (i.e., single-atomic PdN4 sites and activated C sites in the NHG carbocatalyst) of the CF@(Pd1/NHG) catalytic fibers, the corresponding flowing system exhibites remarkably high catalytic performance (activity and durability) and processing rate in organic reactions, including oxidative hydroxylation of phenylboronic acid and reduction of nitroarenes. Typically, the processing rate of the catalytic system toward 4-nitrophenol (a representative nitroarene) reduction can reach up to 2.46 × 10-3 mmol·mg-1·min-1, significantly higher than that of those packing catalysts reported in recent years.
Collapse
Affiliation(s)
- Shuaihu Du
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Sufeng Cao
- Aramco Boston Research Center, Cambridge, MA 02139, United States
| | - Wei Chen
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jiangbo Xi
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
2
|
Choudhary P, Kumari K, Sharma D, Kumar S, Krishnan V. Surface Nanoarchitectonics of Boron Nitride Nanosheets for Highly Efficient and Sustainable ipso-Hydroxylation of Arylboronic Acids. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9412-9420. [PMID: 36775910 DOI: 10.1021/acsami.2c21545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
One of the important industrial processes commonly employed in the pharmaceutical, explosive, and plastic manufacturing industries is ipso-hydroxylation of arylboronic acids. In this work, a straightforward, metal-free methodology for the synthesis of phenols from arylboronic acids has been demonstrated using hydroxyl functionalized boron nitride (BN-OH) nanosheets. The functionalized hydroxyl groups on the BN nanosheets act as the active sites for the hydroxylation reaction to take place. The detailed optimization of reaction parameters was done in order to attain high catalytic efficiency, and the reactions were conducted in water, which eliminates the use of toxic solvents. The as-synthesized catalysts exhibited excellent recyclability and reusability in addition to high product yields and good turnover numbers. The green metrics parameters were also evaluated for the model reaction to examine the sustainable nature of the developed protocol. The use of BN-OH catalysts for the ipso-hydroxylation reactions under base-free and metal-free conditions using environmentally benign solvents is utmost desired for industrial processes and can pave a way toward sustainable organic catalysis.
Collapse
Affiliation(s)
- Priyanka Choudhary
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi 175075, Himachal Pradesh, India
| | - Kamlesh Kumari
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi 175075, Himachal Pradesh, India
| | - Devendra Sharma
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi 175075, Himachal Pradesh, India
| | - Sahil Kumar
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi 175075, Himachal Pradesh, India
| | - Venkata Krishnan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi 175075, Himachal Pradesh, India
| |
Collapse
|
3
|
Jaleh B, Mousavi SS, Sajjadi M, Eslamipanah M, Maryaki MJ, Orooji Y, Varma RS. Synthesis of bentonite/Ag nanocomposite by laser ablation in air and its application in remediation. CHEMOSPHERE 2023; 315:137668. [PMID: 36581123 DOI: 10.1016/j.chemosphere.2022.137668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/05/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
In this research, a simple, green, and efficient approach is described to produce novel bentonite/Ag nanocomposite wherein the preparation of Ag nanoparticles (Ag NPs) deployed the laser ablation method in air; Ag NPs are deposited on the bentonite via the magnetic stirring method. The structural and morphological characterization of the as-prepared bentonite/Ag nanocomposite (denoted as B/Ag30, 30 min being the laser ablation time) is accomplished using different methods. Additionally, the catalytic assessment of the ensued composite exhibited excellent catalytic reduction/degradation activity for common aqueous pollutants namely methyl orange (MO), congo red (CR) and 4-nitrophenol (4-NP) utilizing NaBH4 as reductant. Furthermore, the recycling tests displayed the high stability/reusability of B/Ag30 nanocomposite for at least 4 runs with retention of catalytic prowess.
Collapse
Affiliation(s)
- Babak Jaleh
- Department of Physics, Bu-Ali Sina University, 65174, Hamedan, Iran.
| | | | - Mohaddeseh Sajjadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | | | - Motahar Jafari Maryaki
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia; Research & Development Department, Shandong Advanced Materials Industry Association, Jinan 250200, Shandong, China.
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| |
Collapse
|
4
|
Farhang M, Akbarzadeh AR, Rabbani M, Ghadiri AM. A retrospective-prospective review of Suzuki–Miyaura reaction: From cross-coupling reaction to pharmaceutical industry applications. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Sharma M, Adhikari B, Awoyemi RF, Perkins AM, Duckworth AK, Donnadieu B, Wipf DO, Stokes SL, Emerson JP. Copper(II) NHC Catalyst for the Formation of Phenol from Arylboronic Acid. CHEMISTRY (BASEL, SWITZERLAND) 2022; 4:560-575. [PMID: 38031556 PMCID: PMC10686634 DOI: 10.3390/chemistry4020040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Arylboronic acids are commonly used in modern organic chemistry to form new C-C and C-heteroatom bonds. These activated organic synthons show reactivity with heteroatoms in a range of substrates under ambient oxidative conditions. This broad reactivity has limited their use in protic, renewable solvents like water, ethanol, and methanol. Here, we report our efforts to study and optimize the activation of arylboronic acids by a copper(II) N-heterocyclic carbene (NHC) complex in aqueous solution and in a range of alcohols to generate phenol and aryl ethers, respectively. The optimized reactivity showcases the ability to make targeted C-O bonds, but also identifies conditions where water and alcohol activation could be limiting for C-C and C-heteroatom bond-forming reactions. This copper(II) complex shows strong reactivity toward arylboronic acid activation in aqueous medium at ambient temperature. The relationship between product formation and temperature and catalyst loading are described. Additionally, the effects of buffer, pH, base, and co-solvent are explored with respect to phenol and ether generation reactions. Characterization of the new copper(II) NCN-pincer complex by X-ray crystallography, HR-MS, cyclic voltammetry, FT-IR and UV-Vis spectral studies is reported.
Collapse
Affiliation(s)
- Mitu Sharma
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762-9573, USA
| | - Bhupendra Adhikari
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762-9573, USA
| | - Raymond Femi Awoyemi
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762-9573, USA
| | - Amanda M. Perkins
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762-9573, USA
| | - Alison K. Duckworth
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762-9573, USA
| | - Bruno Donnadieu
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762-9573, USA
| | - David O. Wipf
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762-9573, USA
| | - Sean L. Stokes
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762-9573, USA
| | - Joseph P. Emerson
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762-9573, USA
| |
Collapse
|
6
|
Arnawtee WH, Jaleh B, Nasrollahzadeh M, Bakhshali‐Dehkordi R, Nasri A, Orooji Y. Lignin valorization: Facile synthesis, characterization and catalytic activity of multiwalled carbon nanotubes/kraft lignin/Pd nanocomposite for environmental remediation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Highly efficient, recyclable and alternative method of synthesizing phenols from phenylboronic acids using non-endangered metal: Samarium oxide. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Sustainable Synthesis of Biaryls Using Silica Supported Ferrocene Appended N-Heterocyclic Carbene-Palladium Complex. Catal Letters 2021. [DOI: 10.1007/s10562-020-03480-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Chutia R, Chetia B, Hazarika R. A highly active Pd-CuFe2O4 magnetic nanocatalyst for ligand free Suzuki-Miyura coupling reaction. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
10
|
Wang CN, Lu YH, Liu Y, Liu J, Yang YY, Zhao ZG. Electrochemical coupling halobenzene into biphenyl on a reusable Pd nanoparticle-coated carbon-paper electrode at ambient conditions. NEW J CHEM 2021. [DOI: 10.1039/d0nj06027e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrochemical homo-coupling halobenzene into biphenyl compounds on the Pd/C surface.
Collapse
Affiliation(s)
- Chao-Nan Wang
- Key Laboratory of Basic Chemistry of State Ethnic Commission
- School of Chemistry and Environment
- Southwest Minzu University
- Chengdu 610041
- China
| | - Yong-Heng Lu
- Key Laboratory of Basic Chemistry of State Ethnic Commission
- School of Chemistry and Environment
- Southwest Minzu University
- Chengdu 610041
- China
| | - Yue Liu
- Key Laboratory of Basic Chemistry of State Ethnic Commission
- School of Chemistry and Environment
- Southwest Minzu University
- Chengdu 610041
- China
| | - Jun Liu
- Key Laboratory of Basic Chemistry of State Ethnic Commission
- School of Chemistry and Environment
- Southwest Minzu University
- Chengdu 610041
- China
| | - Yao-Yue Yang
- Key Laboratory of Basic Chemistry of State Ethnic Commission
- School of Chemistry and Environment
- Southwest Minzu University
- Chengdu 610041
- China
| | - Zhi-Gang Zhao
- Key Laboratory of Basic Chemistry of State Ethnic Commission
- School of Chemistry and Environment
- Southwest Minzu University
- Chengdu 610041
- China
| |
Collapse
|
11
|
Wu S, Ding N, Jiang P, Wu L, Feng Q, Zhao L, Wang Y, Su Q, Zhang H, Yang Q. A two-dimensional amide-linked covalent organic framework anchored Pd catalyst for Suzuki-Miyaura coupling reaction in the aqueous phase at room temperature. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
12
|
Jaleh B, Karami S, Sajjadi M, Feizi Mohazzab B, Azizian S, Nasrollahzadeh M, Varma RS. Laser-assisted preparation of Pd nanoparticles on carbon cloth for the degradation of environmental pollutants in aqueous medium. CHEMOSPHERE 2020; 246:125755. [PMID: 31927368 DOI: 10.1016/j.chemosphere.2019.125755] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 05/09/2023]
Abstract
Laser ablation in liquid (LAL), one of the attractive methods for fabrication of nanoparticles, was used for the modification of carbon cloth (CC) by deposition of palladium nanoparticles (Pd NPs); a simple stirring method was deployed to deposit Pd NPs on the CC surface. Characterization techniques viz X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES) were applied to study the surface of the ensuing samples which confirmed that LAL technique managed to fabricate and deposit the Pd NPs on the surface of CC. In addition, the catalytic prowess of the carbon cloth-Pd NPs (CC/Pd NPs) was investigated in the NaBH4- or HCOOH-assisted reduction of assorted environmental pollutants in aqueous medium namely hexavalent chromium [Cr(VI)], 4-nitrophenol (4-NP), congo red (CR) and methylene blue (MB). The CC/Pd NPs system has advantages such as high stability/sustainability, high catalytic performance and easy reusability.
Collapse
Affiliation(s)
- Babak Jaleh
- Department of Physics Faculty of Science, Bu-Ali Sina University, 65174, Hamedan, Iran.
| | - Shohreh Karami
- Department of Physics Faculty of Science, Bu-Ali Sina University, 65174, Hamedan, Iran
| | - Mohaddeseh Sajjadi
- Department of Chemistry, Faculty of Science, University of Qom, Qom, 3716146611, Iran
| | | | - Saeid Azizian
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | | | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
13
|
In situ decorated Pd NPs on chitosan-encapsulated Fe3O4/SiO2-NH2 as magnetic catalyst in Suzuki-Miyaura coupling and 4-nitrophenol reduction. Carbohydr Polym 2020; 235:115966. [DOI: 10.1016/j.carbpol.2020.115966] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023]
|
14
|
Sadhasivam V, Harikrishnan M, Elamathi G, Balasaravanan R, Murugesan S, Siva A. Copper nanoparticles supported on highly nitrogen-rich covalent organic polymers as heterogeneous catalysts for the ipso-hydroxylation of phenyl boronic acid to phenol. NEW J CHEM 2020. [DOI: 10.1039/c9nj05759e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we report the synthesis of highly nitrogen-rich covalent organic polymers as a solid heterogeneous catalyst for the oxidation of phenylboronic acid under atmospheric conditions in an aqueous medium to achieve very good yields up to 99%.
Collapse
Affiliation(s)
- Velu Sadhasivam
- Department of Chemistry
- V. M. K. V. Engineering College
- Vinayaga Mission's Research Foundation (Deemed to be University)
- Salem
- India
| | - Muniyasamy Harikrishnan
- Supramolecular and Organometallic Chemistry Lab
- Department of Inorganic Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625 021
| | - Ganesan Elamathi
- Supramolecular and Organometallic Chemistry Lab
- Department of Inorganic Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625 021
| | - Rajendran Balasaravanan
- Supramolecular and Organometallic Chemistry Lab
- Department of Inorganic Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625 021
| | - Sepperumal Murugesan
- Supramolecular and Organometallic Chemistry Lab
- Department of Inorganic Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625 021
| | - Ayyanar Siva
- Supramolecular and Organometallic Chemistry Lab
- Department of Inorganic Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625 021
| |
Collapse
|
15
|
Hao L, Ding G, Deming DA, Zhang Q. Recent Advances in Green Synthesis of Functionalized Phenols from Aromatic Boronic Compounds. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901303] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Leiduan Hao
- Department of Chemistry; Washington State University; 99164 Pullman Washington USA
| | - Guodong Ding
- Department of Chemistry; Washington State University; 99164 Pullman Washington USA
| | - Derek A. Deming
- Department of Chemistry; Washington State University; 99164 Pullman Washington USA
| | - Qiang Zhang
- Department of Chemistry; Washington State University; 99164 Pullman Washington USA
- Materials Science and Engineering Program; Washington State University; 99164 Pullman Washington USA
| |
Collapse
|
16
|
Tamoradi T, Veisi H, Karmakar B. Pd Nanoparticle Fabricated Tetrahydroharman‐3‐carboxylic Acid Analog Immobilized CoFe
2
O
4
Catalyzed Fast and Expedient C–C Cross and C–S Coupling. ChemistrySelect 2019. [DOI: 10.1002/slct.201902934] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Hojat Veisi
- Department of ChemistryPayame Noor University Tehran Iran
| | - Bikash Karmakar
- Department of ChemistryGobardanga Hindu College, 24- Parganas (North) India
| |
Collapse
|
17
|
Hassanien R, Abed‐Elmageed AAI, Husein DZ. Eco‐Friendly Approach to Synthesize Selenium Nanoparticles: Photocatalytic Degradation of Sunset Yellow Azo Dye and Anticancer Activity. ChemistrySelect 2019. [DOI: 10.1002/slct.201901267] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Reda Hassanien
- Chemistry DepartmentFaculty of ScienceNew Valley University El-Kharja 72511 EgyptTel.: +201152815056Tel.: +2 (092)2934027
| | | | - Dalal Z. Husein
- Chemistry DepartmentFaculty of ScienceNew Valley University El-Kharja 72511 EgyptTel.: +201152815056Tel.: +2 (092)2934027
| |
Collapse
|
18
|
Jaleh B, Etivand ES, Mohazzab BF, Nasrollahzadeh M, Varma RS. Improving Wettability: Deposition of TiO 2 Nanoparticles on the O 2 Plasma Activated Polypropylene Membrane. Int J Mol Sci 2019; 20:ijms20133309. [PMID: 31284439 PMCID: PMC6651641 DOI: 10.3390/ijms20133309] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 11/29/2022] Open
Abstract
Radio frequency plasma is one of the means to modify the polymer surface namely in the activation of polypropylene membranes (PPM) with O2 plasma. Activated membranes were deposited with TiO2 nanoparticles by the dip coating method and the bare sample and modified sample (PPM5-TiO2) were irradiated by UV lamps for 20–120 min. Characterization techniques such as X-ray diffraction (XRD), Attenuated total reflection technique- Fourier transform infrared spectroscopy (ATR-FTIR), Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM) and water contact angle (WCA) measurements were applied to study the alteration of ensuing membrane surface properties which shows the nanoparticles on the sample surface including the presence of Ti on PPM. The WCA decreased from 135° (PPM) to 90° (PPM5-TiO2) and after UV irradiation, the WCA of PPM5-TiO2 diminished from 90° to 40°.
Collapse
Affiliation(s)
- Babak Jaleh
- Department of Physics, Faculty of Science, University of Bu-Ali Sina, Hamedan 65174, Iran.
| | - Ehsan Sabzi Etivand
- Department of Physics, Faculty of Science, University of Bu-Ali Sina, Hamedan 65174, Iran
| | - Bahareh Feizi Mohazzab
- Department of Physics, Faculty of Science, University of Bu-Ali Sina, Hamedan 65174, Iran
| | | | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|