1
|
Wang N, Li X. Mining of a novel reductase and its application for asymmetric reduction of p-methoxyacetophenone. Lett Appl Microbiol 2023; 76:ovad091. [PMID: 37533205 DOI: 10.1093/lambio/ovad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/16/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023]
Abstract
(R)-1-(4-methoxyphenyl) ethanol [(R)-1b] is an essential precursor for the synthesis of aryl propanoic acids' anti-inflammatatory drugs. Biocatalysts for (R)-1b preparation are limited and reductase has problems of low substrate concentration and low conversion rate. As a result, there is a constant need for discovering novel biocatalysts with excellent catalytic performances. In this study, a novel reductase LpSDR from Lacisediminihabitans profunda for the biocatalytic reduction of p-methoxyacetophenone (1a) to (R)-1b was obtained based on gene-mining technology, and some key reaction parameters were also investigated to improve the conversion rate of 1a using whole cells of recombinant Escherichia coli expressing reductase LpSDR as biocatalysts. It was found that the optimal concentration of isopropanol, ZnSO4·7H2O solution, 1a, and recombinant E. coli resting cells, the optimal reaction temperature, buffer pH, and reaction time were 1.95 mol l-1, 0.75 mmol l-1, 75 mmol l-1, 250 g (wet weight) l-1, 28°C, 7.0, and 21 h, respectively. Under the above conditions, a conversion rate of 99.5% and an enantiomeric excess of 99.6% were obtained, which were superior to the corresponding values previously reported. This study provides a novel reductase LpSDR, which is helpful in reducing 1a to (R)-1b.
Collapse
Affiliation(s)
- Nengqiang Wang
- College of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
- Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Education Department of Guangxi Zhuang Autonomous Region, Baise 533000, Guangxi, China
| | - Xiaojun Li
- Department of Fundamental Medicine, Xinyu University, Xinyu 338004, Jiangxi, China
| |
Collapse
|
2
|
Martínez-Herrera RE, Alemán-Huerta ME, Rutiaga-Quiñones OM, de Luna-Santillana EJ, Elufisan TO. A comprehensive view of Bacillus cereus as a polyhydroxyalkanoate (PHA) producer: A promising alternative to Petroplastics. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
3
|
Yuan L, Qin YL, Zou ZC, Appiah B, Huang H, Yang ZH, Qun C. Enhancing intracellular NADPH bioavailability through improving pentose phosphate pathway flux and its application in biocatalysis asymmetric reduction reaction. J Biosci Bioeng 2022; 134:528-533. [PMID: 36224065 DOI: 10.1016/j.jbiosc.2022.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/27/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022]
Abstract
The intracellular NAD(P)H insufficiency is the key factor which limits the reduced product (such as chiral alcohols) synthesis by whole cell biocatalysis or microbial cell factory. In this paper, we reported a novel solution to increase NADPH supply through strengthening the pentose phosphate pathway (PPP) flux with overexpression of extra zwf (gene for glucose 6-phosphatedehydrogenase) and glk (gene for glucokinase) by recombinant Escherichia coli BL21(DE3)/pETDuet-1-glk-zwf and pET28a-bccr containing a carbonyl reductase gene bccr. The amount of intracellular NADPH was significantly increased from 150.3 μmol/L to 681.8 μmol/L after strengthening the PPP flux, which was 4.5-fold to that of the control. It was applied to improve the asymmetric reduction of 4-chloroacetoacetate to ethyl S-4-chloro-3-hydroxybutylate catalyzed by the BcCR, which increased the reaction yield 2.8-fold to the control. This strategy provides a new way to increase NADPH supply in E. coli cell factories.
Collapse
Affiliation(s)
- Lin Yuan
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yan-Li Qin
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Zhi-Cheng Zou
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Bright Appiah
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Hao Huang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Zhong-Hua Yang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Can Qun
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| |
Collapse
|
4
|
Du HJ, Luo W, Appiah B, Zou ZC, Yang ZH, Zeng R, Luo L. Promotion of the Asymmetric Reduction of Prochiral Ketone with Recombinant E. coli Through Strengthening Intracellular NADPH Supply by Modifying EMP and Introducing NAD Kinase. Catal Letters 2021. [DOI: 10.1007/s10562-020-03490-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Tailoring an aldo-keto reductase KmAKR for robust thermostability and catalytic efficiency by stepwise evolution and structure-guided consensus engineering. Bioorg Chem 2021; 109:104712. [PMID: 33735657 DOI: 10.1016/j.bioorg.2021.104712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/28/2021] [Indexed: 01/13/2023]
Abstract
t-Butyl 6-cyano-(3R,5R)-dihydroxyhexanoate ((3R,5R)-2) is an advanced chiral diol intermediate of the cholesterol-lowering drug atorvastatin. KmAKRM5 (W297H/Y296W/K29H/Y28A/T63M) constructed in our previous work, displayed good biocatalytic performance on (3R,5R)-2. In the present work, stepwise evolution was applied to further enhance the thermostability and activity of KmAKRM5. For thermostability enhancement, N109 and S196 located far from the active site were picked out by structure-guided consensus engineering, and mutated by site-directed mutagenesis (SDM). For catalytic efficiency improvement, the residues A30 and T302 adjacent to the substrate-binding pocket were subjected to site-saturation mutagenesis (SSM). As a result, the "best" mutant KmAKRM9 (W297H/Y296W/K29H/Y28A/T63M/A30P/T302S/N109K/S196C) was developed, of which T5015 and Tm were 5.0 °C and 8.2 °C higher than those of KmAKRM5. Moreover, compared to KmAKRM5, KmAKRM9 displayed a 1.9-fold (846 vs 2436 min) and 6.7-fold (126 vs 972 min) longer half-lives at 40 and 50 °C, respectively. Structural analysis suggested that beneficial mutations introduced additional hydrophobic interactions and hydrogen bonds, contributing rigidification of the flexible loops and the increase of internal forces, hence increasing the thermostability and activity. 5 g DCW (dry cell weight) L-1KmAKRM9 completely reduced 350 g L-1t-butyl 6-cyano-(5R)-hydroxy-3-oxo-hexanoate ((5R)-1), within 3.7 h at 40 °C, yielding optically pure (3R,5R)-2 (d.e.p > 99.5%) with a space-time yield (STY) of 1.82 kg L-1 d-1. Hence, KmAKRM9 is a robust biocatalyst for the synthesis of (3R,5R)-2.
Collapse
|
6
|
Wang N, Xu Y, Peng C, Wang X, Wei Y, Li K, Wang S, Xu A, Gao J. Identification of a newly isolated Rhodotorula mucilaginosa NQ1 and its development for the synthesis of bulky carbonyl compounds by whole-cell bioreduction. Lett Appl Microbiol 2020; 72:399-407. [PMID: 33217003 DOI: 10.1111/lam.13431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 11/29/2022]
Abstract
A strain NQ1, which showed efficient asymmetric reduction of 3,5-bis(trifluoromethyl) acetophenone (BTAP) to enantiopure (S)-[3,5-bis(trifluoromethyl)phenyl]ethanol ((S)-BTPE), which is the key intermediate for the synthesis of a receptor antagonist and antidepressant, was isolated from a soil sample. Based on its morphological and internal transcribed spacer sequence, the strain NQ1 was identified to be Rhodotorula mucilaginosa NQ1. Some key reaction parameters involved in the bioreduction catalyzed by whole cells of R. mucilaginosa NQ1 were subsequently optimized, and the optimized conditions for the synthesis of (S)-BTPE were determined to be as follows: 5·0 ml phosphate buffer (200 mmol l-1 , pH 7·0), 80 mmol l-1 of BTAP, 250 g (wet weight) l-1 of resting cell, 35 g l-1 of glucose and a reaction for 18 h at 30°C and 180 rev min-1 . The strain NQ1 exhibited a best yield of 99% and an excellent enantiomeric excess of 99% for the preparation of (S)-BTPE under the above optimal conditions, and could also asymmetrically reduce a variety of bulky prochiral carbonyl compounds to their corresponding optical hydroxyl compound with excellent enantioselectivity. These results indicated that R. mucilaginosa NQ1 had a good capacity to reduce BTAP to its corresponding (S)-BTPE, and might be a new potential biocatalyst for the production of valuable chiral hydroxyl compounds in industry.
Collapse
Affiliation(s)
- N Wang
- School of Life Science, Hunan University of Science and Technology, Xiangtan, People's Republic of China.,Hunan key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Xiangtan, People's Republic of China
| | - Y Xu
- School of Life Science, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - C Peng
- School of Life Science, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - X Wang
- School of Life Science, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - Y Wei
- School of Life Science, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - K Li
- School of Life Science, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - S Wang
- School of Life Science, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - A Xu
- School of Life Science, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - J Gao
- School of Life Science, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| |
Collapse
|
7
|
Luo W, Du HJ, Bonku EM, Hou YL, Li LL, Wang XQ, Yang ZH. An Alkali-tolerant Carbonyl Reductase from Bacillus subtilis by Gene Mining: Identification and Application. Catal Letters 2019. [DOI: 10.1007/s10562-019-02873-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|