1
|
Li W, Wu G, Hu W, Dang J, Wang C, Weng X, da Silva I, Manuel P, Yang S, Guan N, Li L. Direct Propylene Epoxidation with Molecular Oxygen over Cobalt-Containing Zeolites. J Am Chem Soc 2022; 144:4260-4268. [PMID: 35192361 DOI: 10.1021/jacs.2c00792] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Direct propylene epoxidation with molecular oxygen is a dream reaction with 100% atom economy, but aerobic epoxidation is challenging because of the undesired over-oxidation and isomerization of epoxide products. Herein, we report the construction of uniform cobalt ions confined in faujasite zeolite, namely, Co@Y, which exhibits unprecedented catalytic performance in the aerobic epoxidation of propylene. Propylene conversion of 24.6% is achieved at propylene oxide selectivity of 57% at 773 K, giving a state-of-the-art propylene oxide production rate of 4.7 mmol/gcat/h. The catalytic performance of Co@Y is very stable, and no activity loss can be observed for over 200 h. Spectroscopic analyses reveal the details of molecular oxygen activation on isolated cobalt ions, followed by interaction with propylene to produce epoxide, in which the Co2+-Coδ+-Co2+ (2 < δ < 3) redox cycle is involved. The reaction pathway of propylene oxide and byproduct acrolein formation from propylene epoxidation is investigated by density functional theory calculations, and the unique catalytic performance of Co@Y is interpreted. This work presents an explicit example of constructing specific transition-metal ions within the zeolite matrix toward selective catalytic oxidations.
Collapse
Affiliation(s)
- Weijie Li
- Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, Nankai University, Tianjin300350, China
| | - Guangjun Wu
- Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, Nankai University, Tianjin300350, China.,Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, College of Chemistry, Nankai University, Tianjin300071, China
| | - Wende Hu
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology, Shanghai201208, China
| | - Jian Dang
- Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, Nankai University, Tianjin300350, China
| | - Chuanming Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology, Shanghai201208, China
| | - Xuefei Weng
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
| | - Ivan da Silva
- ISIS Facility, STFC, Rutherford Appleton Laboratory, Chilton, OxfordshireOX11 0QX, U.K
| | - Pascal Manuel
- ISIS Facility, STFC, Rutherford Appleton Laboratory, Chilton, OxfordshireOX11 0QX, U.K
| | - Sihai Yang
- Department of Chemistry, The University of Manchester, ManchesterM13 9PL, U.K
| | - Naijia Guan
- Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, Nankai University, Tianjin300350, China
| | - Landong Li
- Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, Nankai University, Tianjin300350, China.,Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, College of Chemistry, Nankai University, Tianjin300071, China
| |
Collapse
|
2
|
Zaera F. Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts? Chem Rev 2022; 122:8594-8757. [PMID: 35240777 DOI: 10.1021/acs.chemrev.1c00905] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A critical review of different prominent nanotechnologies adapted to catalysis is provided, with focus on how they contribute to the improvement of selectivity in heterogeneous catalysis. Ways to modify catalytic sites range from the use of the reversible or irreversible adsorption of molecular modifiers to the immobilization or tethering of homogeneous catalysts and the development of well-defined catalytic sites on solid surfaces. The latter covers methods for the dispersion of single-atom sites within solid supports as well as the use of complex nanostructures, and it includes the post-modification of materials via processes such as silylation and atomic layer deposition. All these methodologies exhibit both advantages and limitations, but all offer new avenues for the design of catalysts for specific applications. Because of the high cost of most nanotechnologies and the fact that the resulting materials may exhibit limited thermal or chemical stability, they may be best aimed at improving the selective synthesis of high value-added chemicals, to be incorporated in organic synthesis schemes, but other applications are being explored as well to address problems in energy production, for instance, and to design greener chemical processes. The details of each of these approaches are discussed, and representative examples are provided. We conclude with some general remarks on the future of this field.
Collapse
Affiliation(s)
- Francisco Zaera
- Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, California 92521, United States
| |
Collapse
|
3
|
A DFT Study for Catalytic Deoxygenation of Methyl Butyrate on a Lewis Acid Site of ZSM-5 Zeolite. Catalysts 2020. [DOI: 10.3390/catal10111233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The catalytic deoxygenation mechanism of fatty acid esters on a Lewis acid site of ZSM-5 zeolite was elucidated via density functional theory (DFT) by using a methyl butyrate (MB) as the model compound for fatty acid esters. The configurations of the initial reactant, transition states, and products together with the activation barrier of each elementary reaction were determined. The activation barrier of different initial cracking reactions decreases in the order of α-C–C > β-C–C > α-C–O > β-C–O. The best reaction path for catalytic deoxygenation of methyl butyrate over Lewis acid site is CH3CH2CH2C(OCH3)=O⋯Lewis → CH3CH2⋯Lewis⋯C(=CH2)OCH3 → CH2=CH2 + CH3COOCH3 + Lewis. The oxygen of methyl butyrate is mainly removed as CO2, methyl acetate, formaldehyde, and butyraldehyde, while ethylene, propylene, and butane are the main hydrocarbon products. In addition, the group generated by cracking of methyl butyrate form a bond with the Lewis acid site, promoting the transformation between a Lewis acid and a Brønsted acid. The corresponding intermediates have a high single point energy, but the poor stability leads to further deoxygenation and cracking reactions. This work provides a theoretical basis for the modification in the number of Brønsted acid and Lewis acid sites in the ZSM-5 zeolite.
Collapse
|
4
|
Zhu X, Wang D, Li Z, Ma W. Enhanced activity for gas phase propylene oxide rearrangement to allyl alcohol by Au promotion of Li3PO4 catalyst. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.120922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
5
|
He X, Chen Y, Liu Y, Fang L, Chen Z, Ji H. Distribution of Products from Catalytic Conversion of Cellulose Over Metal-Modified Hierarchical H-ZSM-5 in Aqueous Media. Catal Letters 2019. [DOI: 10.1007/s10562-019-02795-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|