1
|
Sun R, Tian Y, Xiao L, Bukhtiyarova GA, Wu W. Porous Hollow Nanostructure Promoting the Catalytic Performance and Stability of Ni 3P in Furfural Hydrogenation. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Ruyu Sun
- National Center for International Research on Catalytic Technology, Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion, College of Heilongjiang Province, School of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, P. R. China
| | - Ye Tian
- National Center for International Research on Catalytic Technology, Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion, College of Heilongjiang Province, School of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, P. R. China
| | - Linfei Xiao
- National Center for International Research on Catalytic Technology, Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion, College of Heilongjiang Province, School of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, P. R. China
| | | | - Wei Wu
- National Center for International Research on Catalytic Technology, Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion, College of Heilongjiang Province, School of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, P. R. China
| |
Collapse
|
2
|
Zhang Y, Li A, Kubů M, Shamzhy M, Čejka J. Highly selective reduction of biomass-derived furfural by tailoring the microenvironment of Rh@BEA catalysts. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Li ZF, Shen Y, Zhang Q, Hu TL. Budget MOF-derived catalyst to realize full conversion from furfural to furfuryl alcohol. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Liu Y, Liu X, Li M, Meng Y, Li J, Zhang Z, Zhang H. Recyclable Zr/Hf-Containing Acid-Base Bifunctional Catalysts for Hydrogen Transfer Upgrading of Biofuranics: A Review. Front Chem 2021; 9:812331. [PMID: 34993179 PMCID: PMC8724202 DOI: 10.3389/fchem.2021.812331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/22/2021] [Indexed: 12/03/2022] Open
Abstract
The massive burning of a large amount of fossil energy has caused a lot of serious environmental issues (e.g., air pollution and climate change), urging people to efficiently explore and valorize sustainable alternatives. Biomass is being deemed as the only organic carbon-containing renewable resource for the production of net-zero carbon emission fuels and fine chemicals. Regarding this, the selective transformation of high-oxygen biomass feedstocks by catalytic transfer hydrogenation (CTH) is a very promising strategy to realize the carbon cycle. Among them, the important Meerwein-Ponndorf-Verley (MPV) reaction is believed to be capable of replacing the traditional hydrogenation strategy which generally requires high-pressure H2 and precious metals, aiming to upgrade biomass into downstream biochemical products and fuels. Employing bifunctional heterogeneous catalysts with both acidic and basic sites is needed to catalyze the MPV reaction, which is the key point for domino/cascade reaction in one pot that can eliminate the relevant complicated separation/purification step. Zirconium (Zr) and hafnium (Hf), belonging to transition metals, rich in reserves, can demonstrate similar catalytic efficiency for MPV reaction as that of precious metals. This review introduced the application of recyclable heterogeneous non-noble Zr/Hf-containing catalysts with acid-base bifunctionality for CTH reaction using the safe liquid hydrogen donor. The corresponding catalysts were classified into different types including Zr/Hf-containing metal oxides, supported materials, zeolites, metal-organic frameworks, metal-organic hybrids, and their respective pros and cons were compared and discussed comprehensively. Emphasis was placed on evaluating the bifunctionality of catalytic material and the key role of the active site corresponding to the structure of the catalyst in the MPV reaction. Finally, a concise summary and prospect were also provided centering on the development and suggestion of Zr/Hf-containing acid-base bifunctional catalysts for CTH.
Collapse
Affiliation(s)
- Yixuan Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Xixi Liu
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central University for Nationalities, Wuhan, China
| | - Mingrui Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Ye Meng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Jie Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Zehui Zhang
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central University for Nationalities, Wuhan, China
| | - Heng Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
5
|
Kamble PA, Kantam ML, Rathod VK. Hydrogenation of Furfural to Furfuryl Alcohol over Nickel Supported Bentonite Catalyst. ChemistrySelect 2021. [DOI: 10.1002/slct.202101370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Paresh A. Kamble
- Department of Chemical Engineering Institute of Chemical Technology Mumbai 400019 India
| | | | - Virendra K. Rathod
- Department of Chemical Engineering Institute of Chemical Technology Mumbai 400019 India
| |
Collapse
|
6
|
Tian Y, Wang Y, Zhang H, Xiao L, Wu W. Novel C@Ni3P Nanoparticles for Highly Selective Hydrogenation of Furfural to Furfuryl Alcohol. Catal Letters 2021. [DOI: 10.1007/s10562-021-03680-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Synthesis and Characterization of Nickel(II) Homogeneous and Supported Complexes for the Hydrogenation of Furfural to Furfuryl Alcohol. Catalysts 2021. [DOI: 10.3390/catal11060684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nickel(II) complexes have been synthesized and characterized using nuclear magnetic resonance (NMR), infrared spectroscopy, high resolution mass spectroscopy, and elemental analysis. The complexes were evaluated as pre-catalysts in the direct hydrogenation of furfural to furfuryl alcohol. The pre-catalysts C1 and C4 gave higher furfural conversion (97% and 96%, respectively), as a result, they were also evaluated in the transfer hydrogenation of furfural using formic acid as the hydrogen source where higher furfural conversion (93%) was obtained and selectivity (100%) toward the formation of furfuryl alcohol at 4 h. The catalyst C1 was recycled three times with and it was observed that the catalytic activity might be due to a mixture of both molecular catalysis and nanoparticles, as evidenced by the decrease in activity in mercury poisoning experiments. The hydrogenation reactions were also extended to alpha-β unsaturated substrates and were selective toward saturation of the carbonyl functionality over alkene groups.
Collapse
|
8
|
Highly Efficient Hydrogenation of Furfural to Furfuryl Alcohol Catalyzed by Pt Supported on Bi-Metallic MIL-100 (Fe, Mn/Co) MOFs Derivates Prepared by Hydrothermal Polyol Reduction Method. Catal Letters 2021. [DOI: 10.1007/s10562-021-03656-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Feng Y, Long S, Tang X, Sun Y, Luque R, Zeng X, Lin L. Earth-abundant 3d-transition-metal catalysts for lignocellulosic biomass conversion. Chem Soc Rev 2021; 50:6042-6093. [PMID: 34027943 DOI: 10.1039/d0cs01601b] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transformation of biomass to chemicals and fuels is a long-term goal in both science and industry. However, high cost is one of the major obstacles to the industrialization of this sustainable technology. Thus, developing catalysts with high activity and low-cost is of great importance for biomass conversion. The last two decades have witnessed the increasing achievement of the use of earth-abundant 3d-transition-metals in catalysis due to their low-cost, high efficiency and excellent stability. Here, we aim to review the fast development and recent advances of 3d-metal-based catalysts including Cu, Fe, Co, Ni and Mn in lignocellulosic biomass conversion. Moreover, present research trends and invigorating perspectives on future development are given.
Collapse
Affiliation(s)
- Yunchao Feng
- College of Energy, Xiamen University, Xiamen 361102, China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Selective Mesitylene Oxidative Coupling Reaction by Metastructured Electrocatalyst Comprised of Carbonaceous Scaffold Coated with Pd Derived from Zeolitic Imidazole Framework. Catal Letters 2021. [DOI: 10.1007/s10562-020-03335-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Improving Biocatalytic Synthesis of Furfuryl Alcohol by Effective Conversion of D-Xylose into Furfural with Tin-Loaded Sulfonated Carbon Nanotube in Cyclopentylmethyl Ether-Water Media. Catal Letters 2021. [DOI: 10.1007/s10562-021-03570-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Zhao M, Yang N, Li Z, Xie H. MOFs Derived Catalysts Prepared by Pyrolysis for Hydrogenation of Bio‐Based Furfural: A Mini‐Review. ChemistrySelect 2020. [DOI: 10.1002/slct.202003770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Mei‐Xia Zhao
- Jiangsu Vocational Institute of Architectural Technology Xuzhou, Jiangsu China
- Key Laboratory of Coal Processing and Efficient Utilization Ministry of Education, China University of Mining & Technology, Xuzhou Jiangsu China
- Jiangsu Collaborative Innovation Center for Building Energy Saving and Construct Technology Xuzhou, Jiangsu China
| | - Ning Yang
- Jiangsu Vocational Institute of Architectural Technology Xuzhou, Jiangsu China
- Jiangsu Collaborative Innovation Center for Building Energy Saving and Construct Technology Xuzhou, Jiangsu China
| | - Zhi‐Xin Li
- School of Chemistry and Chemical Engineer Shandong University, Jinan Shandong China
- Key Laboratory of Coal Processing and Efficient Utilization Ministry of Education, China University of Mining & Technology, Xuzhou Jiangsu China
| | - Heng‐Shen Xie
- Jiangsu Vocational Institute of Architectural Technology Xuzhou, Jiangsu China
| |
Collapse
|
13
|
Wang X, Hao J, Deng L, Zhao H, Liu Q, Li N, He R, Zhi K, Zhou H. The construction of novel and efficient hafnium catalysts using naturally existing tannic acid for Meerwein-Ponndorf-Verley reduction. RSC Adv 2020; 10:6944-6952. [PMID: 35493886 PMCID: PMC9049710 DOI: 10.1039/c9ra10317a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/29/2020] [Indexed: 11/21/2022] Open
Abstract
The conversion of carbonyl compounds into alcohols or their derivatives via the catalytic transfer hydrogenation (CTH) process known as Meerwein-Ponndorf-Verley reduction is an important reaction in the reaction chain involved in biomass transformation. The rational design of efficient catalysts using natural and renewable materials is critical for decreasing the catalyst cost and for the sustainable supply of raw materials during catalyst preparation. In this study, a novel hafnium-based catalyst was constructed using naturally existing tannic acid as the ligand. The prepared hafnium-tannic acid (Hf-TA) catalyst was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetry (TG). Hf-TA was applied in the conversion of furfuraldehyde (FD) to furfuryl alcohol (FA) using isopropanol (2-PrOH) as both the reaction solvent and the hydrogen source. Both preparation conditions and the effects of the reaction parameters on the performance of the catalyst were studied. Under the relatively mild reaction conditions of 70 °C and 3 h, FD (1 mmol) could be converted into FA with a high yield of 99.0%. In addition, the Hf-TA catalyst could be reused at least ten times without a notable decrease in activity and selectivity, indicating its excellent stability. It was proved that Hf-TA could also catalyze the conversion of various carbonyl compounds with different structures. The high efficiency, natural occurrence of tannic acid, and facile preparation process make Hf-TA a potential catalyst for applications in the biomass conversion field.
Collapse
Affiliation(s)
- Xiaolu Wang
- College of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of High-Value Functional Utilization of Low Rank Carbon Resources Hohhot 010051 Inner Mongolia China
| | - Jianxiu Hao
- College of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of High-Value Functional Utilization of Low Rank Carbon Resources Hohhot 010051 Inner Mongolia China
| | - Lijuan Deng
- Hohhot No. 2 High School Hohhot 010010 Inner Mongolia China
| | - Hongye Zhao
- College of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of High-Value Functional Utilization of Low Rank Carbon Resources Hohhot 010051 Inner Mongolia China
| | - Quansheng Liu
- College of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of High-Value Functional Utilization of Low Rank Carbon Resources Hohhot 010051 Inner Mongolia China
| | - Na Li
- College of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of High-Value Functional Utilization of Low Rank Carbon Resources Hohhot 010051 Inner Mongolia China
| | - Runxia He
- College of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of High-Value Functional Utilization of Low Rank Carbon Resources Hohhot 010051 Inner Mongolia China
| | - Keduan Zhi
- College of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of High-Value Functional Utilization of Low Rank Carbon Resources Hohhot 010051 Inner Mongolia China
| | - Huacong Zhou
- College of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of High-Value Functional Utilization of Low Rank Carbon Resources Hohhot 010051 Inner Mongolia China
| |
Collapse
|
14
|
Nickel (II) complex [NiCl2(DMF)2L2] bearing diaminobenzene and sulfonamide: Crystal structure and catalytic application in the reduction of nitrobenzenes. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114181] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Highly Active CuFeAl-containing Catalysts for Selective Hydrogenation of Furfural to Furfuryl Alcohol. Catalysts 2019. [DOI: 10.3390/catal9100816] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CuFe-containing catalysts with different copper oxide content were prepared by fusion of metal salts. The obtained catalyst showed high activity in the hydrogenation of furfural to furfuryl alcohol (FA) in the batch reactor in the presence of isopropanol as a solvent at a temperature of 100 °C and a hydrogen pressure of 6.0 MPa. The yield of FA and furfural conversion are 97% and 98%, respectively. In the solvent-free reaction in the flow-type reactor; the most active catalyst Cu20Fe66Al14 leads to the 96% formation of FA with 100% conversion of furfural at liquid hourly space velocity (LHSV) = 1 h−1; 160 °C and a hydrogen pressure of 5.0 MPa during 30 h. According to the X-ray diffraction (XRD) method, the active component of the spent and fresh Cu20Fe66Al14 catalyst is the same and is represented by metallic copper and Fe3O4-type spinel. Using different methods, the formation of active sites was investigated.
Collapse
|