1
|
Elgarahy AM, Eloffy MG, Alengebawy A, El-Sherif DM, Gaballah MS, Elwakeel KZ, El-Qelish M. Sustainable management of food waste; pre-treatment strategies, techno-economic assessment, bibliometric analysis, and potential utilizations: A systematic review. ENVIRONMENTAL RESEARCH 2023; 225:115558. [PMID: 36842700 DOI: 10.1016/j.envres.2023.115558] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Food waste (FW) contains many nutritional components such as proteins, lipids, fats, polysaccharides, carbohydrates, and metal ions, which can be reused in some processes to produce value-added products. Furthermore, FW can be converted into biogas, biohydrogen, and biodiesel, and this type of green energy can be used as an alternative to nonrenewable fuel and reduce reliance on fossil fuel sources. It has been demonstrated in many reports that at the laboratory scale production of biochemicals using FW is as good as pure carbon sources. The goal of this paper is to review approaches used globally to promote turning FW into useable products and green energy. In this context, the present review article highlights deeply in a transdisciplinary manner the sources, types, impacts, characteristics, pre-treatment strategies, and potential management of FW into value-added products. We find that FW could be upcycled into different valuable products such as eco-friendly green fuels, organic acids, bioplastics, enzymes, fertilizers, char, and single-cell protein, after the suitable pre-treatment method. The results confirmed the technical feasibility of all the reviewed transformation processes of FW. Furthermore, life cycle and techno-economic assessment studies regarding the socio-economic, environmental, and engineering aspects of FW management are discussed. The reviewed articles showed that energy recovery from FW in various forms is economically feasible.
Collapse
Affiliation(s)
- Ahmed M Elgarahy
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt; Egyptian Propylene and Polypropylene Company (EPPC), Port-Said, Egypt.
| | - M G Eloffy
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt.
| | - Ahmed Alengebawy
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Dina M El-Sherif
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt.
| | - Mohamed S Gaballah
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt; College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing, 100083, PR China.
| | - Khalid Z Elwakeel
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt.
| | - Mohamed El-Qelish
- Water Pollution Research Department, National Research Centre, El Buhouth St., Dokki, 12622, Cairo, Egypt.
| |
Collapse
|
2
|
Novel Challenges on the Catalytic Synthesis of 5-Hydroxymethylfurfural (HMF) from Real Feedstocks. Catalysts 2022. [DOI: 10.3390/catal12121664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The depletion of fossil resources makes the transition towards renewable ones more urgent. For this purpose, the synthesis of strategic platform-chemicals, such as 5-hydroxymethylfurfural (HMF), represents a fundamental challenge for the development of a feasible bio-refinery. HMF perfectly deals with this necessity, because it can be obtained from the hexose fraction of biomass. Thanks to its high reactivity, it can be exploited for the synthesis of renewable monomers, solvents, and bio-fuels. Sustainable HMF synthesis requires the use of waste biomasses, rather than model compounds such as monosaccharides or polysaccharides, making its production more economically advantageous from an industrial perspective. However, the production of HMF from real feedstocks generally suffers from scarce selectivity, due to their complex chemical composition and HMF instability. On this basis, different strategies have been adopted to maximize the HMF yield. Under this perspective, the properties of the catalytic system, as well as the choice of a suitable solvent and the addition of an eventual pretreatment of the biomass, represent key aspects of the optimization of HMF synthesis. On this basis, the present review summarizes and critically discusses the most recent and attractive strategies for HMF production from real feedstocks, focusing on the smartest catalytic systems and the overall sustainability of the adopted reaction conditions.
Collapse
|
3
|
Al Amin Leamon AKM, Venegas MP, Orsat V, Auclair K, Dumont MJ. Semisynthetic transformation of banana peel to enhance the conversion of sugars to 5-hydroxymethylfurfural. BIORESOURCE TECHNOLOGY 2022; 362:127782. [PMID: 35970500 DOI: 10.1016/j.biortech.2022.127782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to efficiently convert banana peels (BP) into 5-hydroxymethylfurfural (HMF) by using an integrated mechanoenzymatic/catalytic approach. There is no report on HMF production using mechanoenzymatic hydrolysis. Moreover, this method enables saccharification of lignocellulose without bulk solvents or pretreatment. The effects of the reaction volume, milling time, and reactive aging (RAging) on the mechanoenzymatic hydrolysis of BP were studied. The solvent-free enzymatic hydrolysis of BP under RAging conditions was found to provide higher glucose (40.5 wt%) and fructose (17.2 wt%) yields than chemical hydrolysis. Next, the conversion of the resulting monosaccharides into HMF in the presence of the AlCl3·H2O/HCl-DMSO/H2O system resulted in 71.9 mol% yield, which is so far the highest HMF yield obtained from cellulosic food wastes. Under identical reaction conditions, direct conversion of untreated BP to HMF yielded 22.7 mol% HMF, suggesting that mechanoenzymatic hydrolysis greatly promotes the release of sugars from BP to improve HMF yield.
Collapse
Affiliation(s)
- A K M Al Amin Leamon
- Bioresource Engineering Department, McGill University, 21111 Lakeshore Rd., Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Mario Perez Venegas
- Chemistry Department, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Valérie Orsat
- Bioresource Engineering Department, McGill University, 21111 Lakeshore Rd., Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Karine Auclair
- Chemistry Department, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Marie-Josée Dumont
- Bioresource Engineering Department, McGill University, 21111 Lakeshore Rd., Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; Chemical Engineering Department, Université Laval, 1065, av. de la Médecine, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
4
|
Lin X, Jiang K, Liu X, Han D, Zhang Q. Review on development of ionic liquids in lignocellulosic biomass refining. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
5
|
Ultrasonic Processing of Food Waste to Generate Value-Added Products. Foods 2022; 11:foods11142035. [PMID: 35885279 PMCID: PMC9319240 DOI: 10.3390/foods11142035] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Ultrasonic processing has a great potential to transform waste from the food and agriculture industry into value-added products. In this review article, we discuss the use of ultrasound for the valorisation of food and agricultural waste. Ultrasonic processing is considered a green technology as compared to the conventional chemical extraction/processing methods. The influence of ultrasound pre-treatment on the soluble chemical oxygen demand (SCOD), particle size, and cell wall content of food waste is first discussed. The use of ultrasonic processing to produce/extract bioactives such as oil, polyphenolic, polysaccharides, fatty acids, organic acids, protein, lipids, and enzymes is highlighted. Moreover, ultrasonic processing in bioenergy production from food waste such as green methane, hydrogen, biodiesel, and ethanol through anaerobic digestion is also reviewed. The conversion of waste oils into biofuels with the use of ultrasound is presented. The latest developments and future prospective on the use of ultrasound in developing energy-efficient methods to convert food and agricultural waste into value-added products are summarised.
Collapse
|
6
|
Marullo S, D’Anna F. The Role Played by Ionic Liquids in Carbohydrates Conversion into 5-Hydroxymethylfurfural: A Recent Overview. Molecules 2022; 27:2210. [PMID: 35408609 PMCID: PMC9000634 DOI: 10.3390/molecules27072210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Obtaining industrially relevant products from abundant, cheap, renewable, and low-impacting sources such as lignocellulosic biomass, is a key step in reducing consumption of raw fossil materials and, consequently, the environmental footprint of such processes. In this regard, a molecule that is similar to 5-hydroxymethylfurfural (5-HMF) plays a pivotal role, since it can be produced from lignocellulosic biomass and gives synthetic access to a broad range of industrially important products and polymers. Recently, ionic liquids (ILs) have emerged as suitable solvents for the conversion of biomass and carbohydrates into 5-HMF. Herein, we provide a bird's-eye view on recent achievements about the use of ILs for the obtainment of 5-HMF, covering works that were published over the last five years. In particular, we first examine reactions involving homogeneous catalysis as well as task-specific ionic liquids. Then, an overview of the literature addressing the use of heterogeneous catalysts, including enzymes, is presented. Whenever possible, the role of ILs and catalysts driving the formation of 5-HMF is discussed, also comparing with the same reactions that are performed in conventional solvents.
Collapse
Affiliation(s)
| | - Francesca D’Anna
- Dipartimento STEBICEF, Università degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy;
| |
Collapse
|
7
|
A green and simple method for the synthesis of 2,4,5-trisubstituted-1H-imidazole derivatives using acidic ionic liquid as an effective and recyclable catalyst under ultrasound. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04517-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Kılmanoğlu H, Hoşoğlu Mİ, Güneşer O, Yüceer YK. Optimization of pretreatment and enzymatic hydrolysis conditions of tomato pomace for production of alcohols and esters by Kluyveromyces marxianus. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|