1
|
Ahmad I, Kedhim M, Jadeja Y, Sangwan G, V K, Kashyap A, Shomurotova S, Kazemi M, Javahershenas R. A comprehensive review on carbonylation reactions: catalysis by magnetic nanoparticle-supported transition metals. NANOSCALE ADVANCES 2025; 7:3189-3209. [PMID: 40303976 PMCID: PMC12035756 DOI: 10.1039/d5na00040h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/13/2025] [Indexed: 05/02/2025]
Abstract
Magnetic catalysts have become a crucial innovation in carbonylation reactions, providing a sustainable and highly efficient means of synthesizing compounds that contain carbonyl groups. This review article explores the diverse and significant role of magnetic catalysts in various carbonylation processes, emphasizing their essential contributions to improving reaction rates, selectivity, and recyclability of catalysts. The distinctive magnetic properties of these catalysts enable straightforward separation and recovery, a feature that significantly mitigates waste and reduces environmental impact. As a result, magnetic catalysts' environmental and economic advantages position them as key players in contemporary synthetic chemistry, driving the evolution of green chemistry practices. Particularly noteworthy is the combination of magnetic nanoparticles with transition metals, resulting in the development of robust catalytic systems that exploit the complementary effects of magnetism and catalysis. Recent advances have showcased the adaptability of magnetic nanoparticles supported by transition metal catalysts in various carbonylation reactions, including carbonylative coupling, alkoxy carbonylation, thio carbonylation, and amino carbonylation. This review meticulously examines the mechanistic aspects of how magnetic fields influenced catalytic performance between 2014 and the end of 2024.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University Abha Saudi Arabia
| | - Munthar Kedhim
- College of Pharmacy, The Islamic University Najaf Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah Al Diwaniyah Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon Babylon Iraq
| | - Yashwantsinh Jadeja
- Marwadi University Research Center, Department of Chemistry, Faculty of Science, Marwadi University Rajkot 360003 Gujarat India
| | - Gargi Sangwan
- Chitkara Centre for Research and Development, Chitkara University Baddi Himachal Pradesh 174103 India
| | - Kavitha V
- Department of Chemistry, Sathyabama Institute of Science and Technology Chennai Tamil Nadu India
| | - Aditya Kashyap
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University Rajpura 140401 Punjab India
| | - Shirin Shomurotova
- Department of Chemistry Teaching Methods, Tashkent State Pedagogical University named after Nizami Bunyodkor Street 27 Tashkent Uzbekistan
| | - Mosstafa Kazemi
- Young Researchers and Elite Club, Islamic Azad University Tehran Branch Tehran Iran
| | | |
Collapse
|
2
|
Abudken AMH, Saadi L, Ali R, Kazemi M. Fe 3O 4@SiO 2-DHB/DI(S-NH)-Pd(0) nanocomposite: a novel, efficient, and reusable heterogeneous catalyst for carbonylative preparation of N-aryl amides. BMC Chem 2025; 19:71. [PMID: 40089717 PMCID: PMC11910856 DOI: 10.1186/s13065-025-01440-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/28/2025] [Indexed: 03/17/2025] Open
Abstract
N-aryl amides hold significant importance in organic chemistry due to their widespread presence in pharmaceuticals, agrochemicals, and various bioactive compounds. As a result, catalysts and preparation methodologies for amide derivatives have long been a target of active investigation of interest. In the current work, a simple and accessible route was adopted for preparation of a magnetic catalyst [Fe3O4@SiO2-DHB/DI(S-NH)-Pd (0)] and then its catalysis in three-component amide synthesis via carbonylation reaction between aryl iodides and amines was examined. In experiments, its efficiency in producing a range of amides with high yields in a short and under mild conditions was unequivocally confirmed, and its efficiency in producing a range of amides with high yields in a short and under mild conditions was confirmed unequivocally through experiments. High yields of the desired compound ease in catalyst separation, high reusability of catalysts, mild reaction conditions, ease in accommodation of a range of substrates, and a thorough analysis for determination of the catalyst and produced compounds for characterization and purification have been taken as key features of this work.
Collapse
Affiliation(s)
| | - Lina Saadi
- College of Pharmacy, Al-Qadisiyah University, Al-Qadisiyah, Iraq
| | - Radwan Ali
- Department of Basic Sciences, Al-Qadisiyah University, Qadisiyyah, Iraq
| | - Mosstafa Kazemi
- Young Researchers and Elite Club, Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Dong Y, Zhou Z, Wang Y, Li X, Li T, Ren Y, Hu W, Zhang L, Zhang X, Wei C. Palladium supported on pyrrole functionalized hypercrosslinked polymer: Synthesis and its catalytic evaluations towards Suzuki-Miyaura coupling reactions in aqueous media. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Mastalir Á, Molnár Á. Coupling reactions induced by ionic palladium species deposited onto porous support materials. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Cortés-Mendoza S, Adamczyk D, Badillo-Gómez JI, Urrutigoity M, Ortega-Alfaro MC, López-Cortés JG. Carbonylative Suzuki Coupling Catalyzed by Pd Complexes Based on [N,P]‐Pyrrole Ligands: Direct Access to 2‐Hydroxybenzophenones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Mhaldar PM, Patil MV, Rashinkar GS, Pore DM. Magnetically Recoverable Palladium Nanocatalyst [Pd(II)-Benz-Am-Fe3O4@SiO2] for Ullmann Type Homocoupling of Aryl halides with N2H4 as an Efficient Reductant. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02340-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Niakan M, Masteri-Farahani M. Pd–Ni bimetallic catalyst supported on dendrimer-functionalized magnetic graphene oxide for efficient catalytic Suzuki-Miyaura coupling reaction. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Jadidi Nejad M, Heydari A. Palladium supported on MRGO@CoAl‐LDH catalyzed reductive carbonylation of nitroarenes and carbonylative Suzuki coupling reactions using formic acid as liquid CO and H
2
source. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Akbar Heydari
- Chemistry Department Tarbiat Modares University Tehran Iran
| |
Collapse
|
9
|
Khedkar MV, Khan SR, Lambat TL, Chaudhary RG, Abdala AA. CO Surrogates: A Green Alternative in Palladium-Catalyzed CO Gas Free Carbonylation Reactions. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200622115655] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Carbonylation reactions with carbon monoxide (CO) provide efficient and attractive
routes for the synthesis of bulk and fine chemicals. However, the practice of using a
large excess of an inflammable, lethal and greenhouse CO gas is always a concern in this
chemistry. The development of CO surrogates has gained substantial interest and become a
green alternative to gaseous CO. Many of the recent studies have focused on the development
of other benign and safe reagents to work as a CO source in carbonylation reactions,
and the assortment of feasible CO surrogates for specific reaction can be accomplished by
the literature data. This review describes the recent developments in palladium-catalyzed
carbonyl insertions without the direct use of gaseous CO.
Collapse
Affiliation(s)
- Mayur V. Khedkar
- Department of Chemistry, Hislop College, Nagpur 440001, Maharashtra, India
| | - Shoeb R. Khan
- Department of Chemistry, Hislop College, Nagpur 440001, Maharashtra, India
| | - Trimurti L. Lambat
- Department of Chemistry, Manoharbhai Patel College of Arts, Commerce & Science, Deori, Gondia 441901, Maharashtra, India
| | - Ratiram G. Chaudhary
- Post Graduate Department of Chemistry, S. K. Porwal College of Arts, Commerce & Science, Kamptee-441001, Maharashtra, India
| | - Ahmed A. Abdala
- Chemical Engineering Program, Texas A & M University at Qatar, P.O.B. 23784, Doha, Qatar
| |
Collapse
|
10
|
Yadav R, Baskaran T, Kaiprathu A, Ahmed M, Bhosale SV, Joseph S, Al‐Muhtaseb AH, Singh G, Sakthivel A, Vinu A. Recent Advances in the Preparation and Applications of Organo‐functionalized Porous Materials. Chem Asian J 2020; 15:2588-2621. [DOI: 10.1002/asia.202000651] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/26/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Rekha Yadav
- Department of Chemistry Sri Venkateswara College University of Delhi Delhi 110021 India
| | - Thangaraj Baskaran
- Department of Chemistry Central University of Kerala Periye P.O. 671320 Kerala India
| | - Anjali Kaiprathu
- Department of Chemistry Central University of Kerala Periye P.O. 671320 Kerala India
| | - Maqsood Ahmed
- Department of Chemistry University of Delhi Delhi India
| | | | - Stalin Joseph
- Global Innovative Center for Advanced Nanomaterials Faculty of Engineering and Built Environment The University of Newcastle Callaghan 2308, NSW Australia
| | - Ala'a H. Al‐Muhtaseb
- Department of Petroleum and Chemical Engineering College of Engineering Sultan Qaboos University Muscat 123 P.O.Box 33 Oman
| | - Gurwinder Singh
- Global Innovative Center for Advanced Nanomaterials Faculty of Engineering and Built Environment The University of Newcastle Callaghan 2308, NSW Australia
| | | | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials Faculty of Engineering and Built Environment The University of Newcastle Callaghan 2308, NSW Australia
| |
Collapse
|