1
|
Herrera J, Aguila G, Zhu Y, Xu Z, Guerrero Ruz S. Calcium-Poison-Resistant Cu/YCeO 2-TiO 2 Catalyst for the Selective Catalytic Reduction of NO with CO and Naphthalene in the Presence of Oxygen. ACS OMEGA 2024; 9:40394-40410. [PMID: 39371996 PMCID: PMC11447865 DOI: 10.1021/acsomega.4c02423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 10/08/2024]
Abstract
The pollution from industrial processes based on biomass combustion is still an ongoing problem. In the present contribution, the selective catalytic reduction of NO with CO and naphthalene is carried out in the presence of 10% oxygen. The accumulation of alkaline and alkaline earth metals during biomass combustion is here simulated by the addition of calcium to a Cu-impregnated YCeO2-TiO2 support. The results show that a high dispersion of copper is obtained, which is resistant to the accumulation of calcium. Full conversion of CO and naphthalene is achieved above 200 °C, whereas NO conversions of 80, 90, and 87% are obtained for the catalysts with Ca loadings of 2.6, 5.2, and 13%, respectively, at 350 °C. It is proposed that the high activity of the catalysts is ascribed to the formation of Cu-Ox-Ce species and that the accumulation of Ca acts as a barrier to avoid copper sintering. It was found that different forms of carbonate and nitrite/nitrate species form during reaction, coexisting as adsorbed species during the SCR reaction. The selectivity to N2 was almost 100% in all cases, due to the small presence of NO2 in the reactor outlet (no N2O was detected in any conditions).
Collapse
Affiliation(s)
- Josefina Herrera
- Universidad
de los Andes, Chile, Facultad de Ingeniería y Ciencias Aplicadas, Monseñor Álvaro del
Portillo, 12455 Las Condes, Chile
| | - Gonzalo Aguila
- Departamento
de Ciencias de la Ingenieria, Facultad de Ingenieria, Universidad Andres Bello, Avenida Antonio Varas 880, Providencia, Santiago 7500971, Chile
| | - Ye Zhu
- Department
of Applied Physics, Hong Kong Polytechnic
University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - ZhiHang Xu
- Department
of Applied Physics, Hong Kong Polytechnic
University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Sichem Guerrero Ruz
- Universidad
de los Andes, Chile, Facultad de Ingeniería y Ciencias Aplicadas, Monseñor Álvaro del
Portillo, 12455 Las Condes, Chile
| |
Collapse
|
2
|
Zou M, Wang M, Wang J, Zhu D, Liu J, Wang J, Xiao Q, Chen J. Weak Metal-Support Interaction over CuO/TiO 2 Catalyst Governed Low-Temperature Toluene Oxidation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1859. [PMID: 37368289 DOI: 10.3390/nano13121859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/28/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
Regulating the metal-support interaction is essential for obtaining highly efficient catalysts for the catalytic oxidation of volatile organic compounds (VOCs). In this work, CuO-TiO2(coll) and CuO/TiO2(imp) with different metal-support interactions were prepared via colloidal and impregnation methods, respectively. The results demonstrated that CuO/TiO2(imp) has higher low-temperature catalytic activity, with a 50% removal of toluene at 170 °C compared to CuO-TiO2(coll). Additionally, the normalized reaction rate (6.4 × 10-6 mol·g-1·s-1) at 160 °C over CuO/TiO2(imp) was almost four-fold higher than that over CuO-TiO2(coll) (1.5 × 10-6 mol·g-1·s-1), and the apparent activation energy value (27.9 ± 2.9 kJ·mol-1) was lower. Systematic structure and surface analysis results disclosed that abundant Cu2+ active species and numerous small CuO particles were presented over CuO/TiO2(imp). Owing to the weak interaction of CuO and TiO2 in this optimized catalyst, the concentration of reducible oxygen species associated with the superior redox property could be enhanced, thus significantly contributing to its low-temperature catalytic activity for toluene oxidation. This work is helpful in exploring the influence of metal-support interaction on the catalytic oxidation of VOCs and developing low-temperature catalysts for VOCs catalytic oxidation.
Collapse
Affiliation(s)
- Meilin Zou
- Faculty of Environment Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Mingyue Wang
- Faculty of Environment Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jingge Wang
- Faculty of Environment Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Danrui Zhu
- Faculty of Environment Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jiaying Liu
- Faculty of Environment Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Junwei Wang
- Faculty of Environment Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Qingchao Xiao
- Kunming Youdu Environmental Monitoring Co., Ltd., Kunming 650100, China
| | - Jianjun Chen
- Faculty of Environment Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
3
|
Yuan S, Bai P, He Y, Chen J, Zhao Y, Li Y. Black TiO2-supported copper nanoparticles for efficient photocatalytic N-formylation of N-methylaniline with CO2. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2023.102453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
Bahruji H, Abdul Razak S, Mahadi AH, Prasetyoko D, Sholehah NA, Jiao Y. PdZn on ZSM-5 nanoparticles for CO2 hydrogenation to dimethyl ether: comparative in situ analysis with Pd/TiO2 and PdZn/TiO2. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
High-Dispersed V2O5-CuOX Nanoparticles on h-BN in NH3-SCR and NH3-SCO Performance. NANOMATERIALS 2022; 12:nano12142329. [PMID: 35889554 PMCID: PMC9325198 DOI: 10.3390/nano12142329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023]
Abstract
Typically, to meet emission regulations, the selective catalytic reduction of NOX with NH3 (NH3-SCR) technology cause NH3 emissions owing to high NH3/NOX ratios to meet emission regulations. In this study, V-Cu/BN-Ti was used to remove residual NOX and NH3. Catalysts were evaluated for selective catalytic oxidation of NH3 (NH3-SCO) in the NH3-SCR reaction at 200–300 °C. The addition of vanadium and copper increased the number of Brønsted and Lewis acid sites available for the reaction by increasing the ratio of V5+ and forming Cu+ species, respectively. Furthermore, h-BN was dispersed in the catalyst to improve the content of vanadium and copper species on the surface. NH3 and NOX conversion were 98% and 91% at 260 °C, respectively. Consequently, slipped NH3 (NH3-Slip) emitted only 2% of the injected ammonia. Under SO2 conditions, based on the NH3 oxidation reaction, catalytic deactivation was improved by addition of h-BN. This study suggests that h-BN is a potential catalyst that can help remove residual NOX and meet NH3 emission regulations when placed at the bottom of the SCR catalyst layer in coal-fired power plants.
Collapse
|
6
|
Effect of TiO 2 Calcination Pretreatment on the Performance of Pt/TiO 2 Catalyst for CO Oxidation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123875. [PMID: 35744997 PMCID: PMC9227817 DOI: 10.3390/molecules27123875] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/19/2022]
Abstract
In order to improve the CO catalytic oxidation performance of a Pt/TiO2 catalyst, a series of Pt/TiO2 catalysts were prepared via an impregnation method in this study, and various characterization methods were used to explore the effect of TiO2 calcination pretreatment on the CO catalytic oxidation performance of the catalysts. The results revealed that Pt/TiO2 (700 °C) prepared by TiO2 after calcination pretreatment at 700 °C exhibits a superior CO oxidation activity at low temperatures. After calcination pretreatment, the catalyst exhibited a suitable specific surface area and pore structure, which is beneficial to the diffusion of reactants and reaction products. At the same time, the proportion of adsorbed oxygen on the catalyst surface was increased, which promoted the oxidation of CO. After calcination pretreatment, the adsorption capacity of the catalyst for CO and CO2 decreased, which was beneficial for the simultaneous inhibition of the CO self-poisoning of Pt sites. In addition, the Pt species exhibited a higher degree of dispersion and a smaller particle size, thereby increasing the CO oxidation activity of the Pt/TiO2 (700 °C) catalyst.
Collapse
|
7
|
Utomo WP, Wu H, Ng YH. Modulating the Active Sites of Oxygen-Deficient TiO 2 by Copper Loading for Enhanced Electrocatalytic Nitrogen Reduction to Ammonia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200996. [PMID: 35460186 DOI: 10.1002/smll.202200996] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/31/2022] [Indexed: 06/14/2023]
Abstract
The electrocatalytic nitrogen reduction reaction (NRR) provides a sustainable route for NH3 synthesis. However, the process is plagued by the strong NN triple bond and high reaction barrier. Modification of catalyst surface to increase N2 adsorption and activation is crucial. Herein, copper nanoparticles are loaded on the oxygen-deficient TiO2 , which exhibits an enhanced NRR performance with NH3 yield of 13.6 µg mgcat -1 h-1 at -0.5 V versus reversible hydrogen electrode (RHE) and Faradaic efficiency of 17.9% at -0.4 V versus RHE compared to the pristine TiO2 . The enhanced performance is ascribed to the higher electrochemically active surface area, promoted electron transfer, and increased electron density originated from the strong metal-support interaction (SMSI) between Cu nanoparticles and oxygen-deficient TiO2 . The SMSI effect also results in lopsided local charge distribution, which polarizes the adsorbed N2 molecules for better activation. This work provides a facile strategy toward the electrocatalyst design for efficient NRR under ambient conditions.
Collapse
Affiliation(s)
- Wahyu Prasetyo Utomo
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Hao Wu
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen, 518057, China
| | - Yun Hau Ng
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen, 518057, China
| |
Collapse
|
8
|
He K, Wang Q, Wei J. A Robust Cu Catalyst for Low-Temperature CO Oxidation in Flue Gas: Mitigating Deactivation via Co-Doping. Catal Letters 2021. [DOI: 10.1007/s10562-020-03471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|