1
|
Ganesan K, Hayagreevan C, Rahul R, Jeevagan AJ, Adinaveen T, Bhuvaneshwari DS, Muthukumar P, Amalraj M. Catalytic hydrolysis of sodium borohydride for hydrogen production using phosphorylated silica particles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21199-21212. [PMID: 36261635 DOI: 10.1007/s11356-022-23672-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Hydrolysis of sodium borohydride (NaBH4) offers substantial applications in the production of hydrogen but requires an inexpensive catalyst. Herein, silica (SP) and phosphorylated silica (SP-PA) are used as a catalyst for the generation of hydrogen from NaBH4 hydrolysis. The catalyst is prepared by sol-gel route synthesis by taking tetraethyl orthosilicate as the precursor of silica whereas phosphoric acid served as the gelation and phosphorylating agent. The prepared catalyst is characterized by FT-IR spectroscopy, XRD, SEM, and EDAX. The hydrogen generation rate at SP-PA particles (762.4 mL min-1 g-1) is higher than that of silica particles (133 mL min-1 g-1 of catalyst). The higher catalytic activity of SP-PA particles might be due to the acidic functionalities that enhance the hydrogen production rate. The kinetic parameters (activation energy and pre-exponential factor) are calculated from the Arrhenius plot and the thermodynamic parameters (enthalpy, entropy, and free energy change) are evaluated using the Erying plot. The calculated activation energy for NaBH4 hydrolysis at SP-PA catalyst is 29.92 kJ.mol-1 suggesting the high catalytic activity of SP-PA particles. The obtained entropy of activation (ΔS‡ = - 97.75 JK-1) suggested the Langmuir-Hinshelwood type associative mechanism for the hydrolysis of NaBH4 at SP-PA particles.
Collapse
Affiliation(s)
- Kottaikalai Ganesan
- Department of Chemistry, Thiagarajar College, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Chelvam Hayagreevan
- Department of Chemistry, Arul Anandar College (Autonomous), Madurai Kamaraj University, Karumathur, Madurai, 625514, Tamil Nadu, India
| | - Ramkumar Rahul
- Department of Chemistry, Arul Anandar College (Autonomous), Madurai Kamaraj University, Karumathur, Madurai, 625514, Tamil Nadu, India
| | - Arockiam John Jeevagan
- Department of Chemistry, Arul Anandar College (Autonomous), Madurai Kamaraj University, Karumathur, Madurai, 625514, Tamil Nadu, India
| | - Thambidurai Adinaveen
- Department of Chemistry, Loyola College (Autonomous), University of Madras, Nungambakkam, Chennai, 600034, Tamil Nadu, India
| | | | - Palanisamy Muthukumar
- Department of Chemistry, Bannari Amman Institute of Technology (Autonomous), Sathyamangalam, 638401, Tamil Nadu, India
| | - Murugan Amalraj
- Department of Chemistry, Arul Anandar College (Autonomous), Madurai Kamaraj University, Karumathur, Madurai, 625514, Tamil Nadu, India.
| |
Collapse
|
2
|
Effect of Titanium Dioxide Support for Cobalt Nanoparticle Catalysts for Hydrogen Generation from Sodium Borohydride Hydrolysis. Catal Letters 2022. [DOI: 10.1007/s10562-022-04215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
3
|
Yan J, Zhou Y, Liu X, Li DS. Mechanistic insights into H 2 evolution via water splitting at the expense of B 2(OH) 4: a theoretical study. Phys Chem Chem Phys 2022; 24:8182-8188. [PMID: 35343980 DOI: 10.1039/d1cp05277b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
H2 has been comprehensively deemed a promising potential candidate to replace traditional fossil fuel-based energy. Typically, the hydrolysis of most hydrogen-rich boron hydrides (e.g. NaBH4, NH3BH3 and Me2NHBH3) catalyzed by nanomaterials generates H2 with only one H atom supplied by water and the other one by a hydrogen-rich boron hydride. Interestingly, both H atoms of produced H2 are provided by water upon hydrolysis of B2(OH)4. Herein, the catalytic mechanisms of H2 evolution upon water splitting at the expense of B2(OH)4 in its hydrolysis reactions catalyzed by acid, base or metal nanoparticles have been investigated by density functional theory (DFT) calculations. By computational studies, the mechanisms of catalysis by base and metal nanoparticles are basically the same as those speculated from our previous experiments. The previously proposed acid catalytic mechanism has been overturned, however. This study not only provides important insights into the catalytic mechanism for water splitting at the expense of B2(OH)4, but also opens up an exciting opportunity to use water to store H2.
Collapse
Affiliation(s)
- Jiaying Yan
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei, 443002, China.
| | - Yuhang Zhou
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei, 443002, China.
| | - Xiang Liu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei, 443002, China.
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei, 443002, China.
| |
Collapse
|
4
|
Efficient Hydrogen Generation with Co3O4@TiO2-g-C3N4 Composite Catalyst via Catalytic NaBH4 Hydrolysis. Catal Letters 2021. [DOI: 10.1007/s10562-021-03848-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Chen W, Lv G, Liu X, Yan J, Zhang Q, Li DS. A universal high-efficient and reusable “on–off” switch for the on-demand hydrogen evolution. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|